用户名: 密码: 验证码:
钝体绕流及风致振动流固耦合的CFD研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结以往学者在CFD研究理论的基础之上,采用有限体积法,利用SST湍流模型以及大涡模型进行湍流的模拟,并结合动网格方法对工程中较常用断面的静止、风致振动下的流场进行了数值模拟,同时针对传统风洞试验中条件难以实施,而工程实际中急需解决的问题进行了研究。本文主要包括以下一些工作:
     1、以工程使用最多的圆形截面为研究对象,通过使用计算流体动力学方法,分别采用SST湍流模型与大涡湍流模型对不同雷诺数下的三维圆柱进行了非定常绕流数值模拟。着重研究了三维圆柱的阻力系数、升力系数和斯脱罗哈数随Re数的变化规律及其三维流动特性。通过与已有试验结果与数值模拟结果进行比较,验证了两种湍流模型在钝体外型结构计算中的准确性,为本文工作的进一步开展提供依据。
     2、采用CFD方法研究了全尺寸双曲冷却塔在运行过程中内外表面的平均风压系数。首先,通过对规范内规定高度的某冷却塔进行外表面风压系数计算,考虑全尺寸冷却塔混凝土表面粗糙度对外表面风压系数的影响,将结果与以往风洞试验以及现场实测进行对比,结果表明,在外压计算中必须考虑冷却塔外表面混凝土粗糙度对风压系数的影响;然后,将此方法应用于超出规范范围的220米高的冷却塔外压计算上,指导目前世界最高塔的设计与计算。在塔内表面压力系数计算中,通过编制程序进行二次开发,在冷却塔填料区添加热水程序,模拟冷却塔在运行过程中塔内自然通风过程中发生的传热传质过程,内压结果表明二次开发程序的正确性,并对内压系数的确定提供了参考依据;最后研究了侧风对冷却塔运行性能影响,提出了各种防侧风措施的选取原则。
     3、通过使用ANSYS CFX的User Fortran工具对现有商业计算程序CFX进行二次开发,提出了一种流固耦合分析方法用以分析涡致振动及横风向驰振两种风致振动现象。流固耦合分析结果不仅成功地实现了对涡致振动的模拟,准确地捕捉到涡振区间、“锁定”和“拍”现象,同时再现了风洞试验中出现的斜拉桥拉索驰振现象,而且能较好地解释驰振力的形成机理,从而验证了流固耦合计算方法的正确性,可供类似问题研究作参考。
     4、CFD数值模拟作为平台,采用“动网格”技术研究了列车风对桥梁主梁气动影响,结果表明,有侧风和无侧风情况下,列车运行导致的主梁结构周围压力场的变化趋势是一致的;普通列车冲击波对桥主梁的冲击气流压力并不大,设计时候不需要考虑,而高速动车冲击波对主梁影响有限,但其对桥梁附属结构的安全性会构成威胁,设计中应加以考虑。
In this work, the flow characteristic around cross-section which is most commonly used in the civil engineering is simulated with the Shear-Stress Transport(SST) model and Large Eddy Simulation(LES) on the basis of current finite volume methods of CFD thesis. Beside, the wind-induced vibration has been simulated by using moving grid method. the main research work is as follows:
     1. The hydrodynamic characteristics of the circular cylinder which is commonly used in the civil engineering is simulated by computational fluid dynamic method with SST and LES turbulence model. The simulation is focused on three-dimensional flow characteristics and variation of drag coefficient,lift coefficient and Strouhal number with different Reynolds. The agreement of CFD simulation result with former recorded data prove the accuracy of two turbulence modle in bluff body calculation.This give a basis thesis for the further work of the paper.
     2. CFD technique is employed to obtain the mean wind pressure coefficient distribution at various heights of isolated large hyperbolic cooling tower. First, effects of surface roughness on mean pressure coefficient of concrete cooling tower which is below the high degree of code for cooling tower is tested. The comparison of CFD result with former recorded data via full-scale measurement and wind-tunnel testing shows that the effect of roughness on full-scale cooling tower surface can not be ignored.then, the method will be proposed to abtain the mean prssure coefficient of cooling tower with220meters heigh which is out of the high degree of standards. The mean pressure coefficient inside the cooling tower is discussed by a external program with heat and mass transfer, the result prove the correctness of external program,and provides a reference method for the determination of internal mean pressure coefficient of cooling tower. The effects of crosswind on the performance of cooling tower is discussed, and the principle of how to choice the defensive measures to crosswind is offered.
     3. A numerical method has been proposed to solving the fluid-structure interaction of vortex-induced vibrations and cross-wind galloping with the User Fortran module of ANSYS CFX. The simulation not only successfully captured the "lock-in" and "beat" phenomena,and reproduced the galloping which take place in the wind-tunnel. The results explain the formation mechanism of galloping well,and prove the correctness of method which can be used to the similar problems.
     4. By using the CFD numerical method as a platform, the moving grid technique is used to discussed wind effects on bridge, where the wind is induced by train.the result indicate that the variation trend of pressure which is induecd by train is similar under different condition with crosswind and without crosswind. The effects of shock wave by train with normal speed can be negligible in the design calculation of bridge. The effect of high speed train on the bridge is limited, while pressure shock wave may be dangerous to the subsidiary structure of bridge,and should be considered carefully.
引文
[1]Von Karman.On the theory of turbulence.Proc Natl Acad Sci U S,1937,a:23-98.
    [2]Hinze J O.Trubulence.2nd ed. New York:McGraw Hill,1975.
    [3]魏志刚.壁面湍流数值模拟的LES方法及其在桥梁绕流中的应用.[同济大学博士论文].上海:同济大学,2010,1-110.
    [4]Kolmogorov A. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers.J.Fluid Mech,1962.
    [5]Larssen J V,Devenport.W.J. Interaction of Large Scale Homogeneous Turbulence with a Cascade of Flat Plates. AIAA Journal,2003,(January).
    [6]Kolmogorov A.The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Mathmatical and Physical Sciences,1991.
    [7]Alamo J C D,Jimenez J,Zandonade P,et al. Scaling of the energy spectra of turbulent channels J. Fluid Mech,2004,500:135-144.
    [8]Frisch U,Kolmogorov A.Turbulence:the legacy of A.N.Kolmogorov.1995.
    [9]Reynolds W C,Computation of turbulent flows, Ann Rev Fluid Mech,1976,P:8: 183-206.
    [10]Feiereisen W J,Reynolds W C,Ferziger J H, Numerical simulation of compressible, homogeneous,turbulent shear flow, Rep TF-13, Dept Mech Engng,Stanford Univ,1981.
    [11]Kim J,Moin P,Moser R,Turbulence statistics in fully developed channel flow at low Reynolds number, J Fluid Mech,1987, P177:133-166.
    [12]Spalart P R,Direct simulation of a turbulent boundary layer up to Re=1410,J Fluid Mech,P:18:61-98,1988.
    [13]陈十一.Abstract of papers, Int Conf on Fluid Mech and theory Phys in Honor of Prof Chou P Y"s 90th Anniversary, June 1-3, Beijing,1992.
    [14]F.R. Menter. Improved two-equation k-w turbulence models for aerodynamic flows[R]. NASA TM 103975,1992.
    [15]F.R. Menter. Zonl two-equation k-w turbulence models for aerodynamic flows[C] AIAA Paper.1993-2906.
    [16]F.R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA-Journal,1994,32(8):269-289.
    [17]D.C. Wilcox. Multiscale model for turbulent flows[C]. AIAA 24th Aerospace Sciences Meeting.1986-0029
    [18]F.R. Menter, M. Kuntz and R. Langtry. Ten years of industrial experience with the SST turbulence model[R]. Turbulence, Heat and Mass Transfer 4.2003.
    [19]D.C. Wilcox. Reassessment of the scale-determining equation for advanced turbulence model[J]. AIAA Journal,1988,26(11):1299-1310.
    [20]Deardorff J W,A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers,J Fluids Mech,1970,41:453-480.
    [21]Kwak H,Reynolds W C, Ferziger J H, Three-dimensional time-dependent computation of turbulent flow,Rep, TF-5, Dept.Mech.Eng.,Standford Univ.,1975.
    [22]Metais.O,Lesieur.M, Spectral large-eddy simulation of isotropic and stably stratified turbulence, J.Fluid Mech,1992,256,157-194.
    [23]Lilly D K.A proposed modification of the Germano subgrid-scale closure method,Phys Fluids,1992,A4(3):633-635.
    [24]Hermann Schliching. Boundary-Layer Theory[M]. New York:Mcgraw-Hill Book Company,1979.
    [25]徐有恒.带有局部圆弧面建筑模型风洞试验的雷诺数模拟问题,第五届全国风工程及工业空气动力学学术会议,1998,5.
    [26]E. Simiu, R. H. Scanlan. Wind effects on structures [M]. New York:Wieley,1996.
    [27]Achenbach,E.Influence of surface roughness on the cross-flow around a circular cylinder[J]. Journal of Fluid Mechanics,1971.Vol.46 part2.
    [28]Niemann H.-J.,Holscher N., A review of recent experiments on the flow past circular cylinders,Journal of Wind Engineering and Industrial Aerodynamic,1999, vol.89.
    [29]Taylor G.J. Pressure distribution round a cylinder techh. Rep. Adv.Com.For Aeroamities 1915.
    [30]Roshko,A. Experiment on the flow past a circular cylinder at very high Reynolds number, Journal of Fluid Mechanic,1961,Vol.10.
    [31]Homann F. Einfluss grosser Zahigkeit bei stromung um Zylinder Forschg. Ing. Wes.7.1936.1-10.
    [32]Hiroshi,S.Mikio,A. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulence boundary layer,Journal of Fluid Mechanics,1983, Vol.126.
    [33]David,S.Some effects of intense turbulence on the aerodynamics of a circular cylinder at sub-critical Reynolds number, Journal of Fluid Mechanics,1972. Vol.52.
    [34]Y.Suzuki,M. Arie M.Hangino. A contribution to the free-stream turbulence effect on the flow past a circular cylinder, Journal of Fluid Mechanics,1982,Vol.115.
    [35]C.Lei,L.Cheng, K.Kavanagh, Spanwise lengh effects on three-dimentional modeling of flow over a circular cylinder[J], Comput. Methods Appl. Mech.Engrg, 2001(190):2909-2923.
    [36]王亚玲,刘应中,缪国平.圆柱绕流的三维数值模拟[J].上海交通大学学报,2001,35(19):1464-1469.
    [37]Michael Breuer,A challenging test case for large eddy simulation:high Reynolds number circular cylinder flow[J],Heat and Fluid Flow,2000(21):648-654.
    [38]Pietro.Catalano. Numercal Simulation of the Flow Around a Circular Cylinder at High Reynold Number [J]. International Journal of Heat and Fluid Flow, 2003,24:463-469.
    [39]Hermann Schliching.Boundary-Layer Theory[M]. New York:Mcgraw-Hill Book Company,1979.
    [40]C.Lei,L.Cheng, K.Kavanagh, Spanwise lengh effects on three-dimentional modeling of flow over a circular cylinder[J], Comput. Methods Appl. Mech.Engrg, 2001(190):2909-2923P
    [41]Murakami S. Overview of turbulence models applied in CWE-1997.Journal of Wind Engineering and Industrial Aerodynamics 1998;74-76:1-24.
    [42]Shenghong Huang,Q.S.Li,Shengli Xu. Numerical evolauation of wind effects on a tall steel building by CFD.Journal of Constructional Steel Research,2007,63: 612-627.
    [43]Franke J, Frank W. Large Eddy Simulation of the Flow Past a Circular Cylinder at Re=3900. Journal of Wind Engineering and Industrial Aerodynamics,2002,90: 1191-1206.
    [44]Taylor I, Vezza M. Prediction of unsteady flow around square and rectangular section cylinders using a discrete vortex method. Journal of Wind Engineering and Industrial Aerodynamics,1999,82:247-269.
    [45]Milton V D.An Album Of Fluid Motion. California:The parabolic press,1988.
    [46]李会知,樊友景,吴义章,李思堂.不同粗糙表面的圆柱风压分布试验研究.工程力学,2002,19(2):129-131.
    [47]CEGB.Report of the committee of inquiry into the collapse of cooling towers at Ferrybridge on November 7,1965.UK:Central Electricity Generating Board;1965.
    [48]Armitt J,Wind Loading on Cooling Towers.J Struct Div,1980.106(ST3):623-641.
    [49]ICI. Report of the committee of inquiry into the collapse of the tower at Ardeer Nylon Works,Ayrshire,on Thursday September 27,1973.UK:Imperial Chemical Industries(Petrochemical Division); 1974.
    [50]CEGB.Report on Fiddlers Ferry power station cooling tower collapse on January 13,1984.UK:Central Electricity Generating Board;1984.
    [51]H J Niemann. Zur stationaren Windbelastung rotationssymmelrischer Bauwerke im Bereich transkritischer Reynoldszahlen. Mitt.Nr.71-2,Tech.-wissensch.Mitt. Institut fur Konstr.Ing.-ban,Ruhr-Universitat Bochum, West Germany,1971.
    [52]H J Niemann, H.Propper. Some Properties of Fluctuating Wind Pressures on a Full-scale Cooling Tower,Jouranl of Industrial Aerodynamics,(1975/1976),1, 349-359.
    [53]Armitt J,Wind Loading on Cooling Towers. J Struct Div,1980.106(ST3):623-641.
    [54]M.Pimer. Wind pressure fluctuations on a cooling tower. Journal of Wind Engineering and Industrial Aerodynamics,1982,10:343-360.
    [55]孙天凤,周良茂.无肋双曲线冷却塔风压分布的全尺寸测量和风洞研究.空气动力学学报,1983,4:68-76.
    [56]周良茂,李培华.两个邻近全尺寸双曲型冷却塔风压分布的测量.气动试验与测量控制,1992,6(3):37-44.
    [57]Niemann H J. Wind effects on cooling tower shells. ASCE Journal of Structural Engineering.1980,106(ST3):643-661.
    [58]S.H. Abu-Sitta, M.G Hashish. Dynamic wind stresses in hyperbolic cooling towers. Journal of the Structural Division,1973,99(9):1823-1835.
    [59]Cesca Farell,Okta Guven,Federico Maisch. Mean Wind Loading on Rough-walled Cooling Towers,Journal of the engineering Mechanics division,ASCE,1976, 102(6):1059-1081.
    [60]阎文成,张彬乾,李建英.超大型双曲冷却塔风荷载特性风洞试验研究,流体力学实验与测量.2003,17:85-89.
    [61]许林汕,赵林,葛耀君.超大型冷却塔随机风振响应分析[C].第十三届全国结构风工程学术会议论文集.大连.2007:887-893.
    [62]许林汕,赵林,葛耀君.超大型冷却塔风致干扰效应试验研究[C].第十三届全国结构风工程学术会议论文集.大连.2007:894-900.
    [63]赵林,李鹏飞,葛耀君.等效静风荷载下超大型冷却塔受力性能分析[J].工程力学2008,25(7):79-86.
    [64]鲍侃袁,沈国辉,孙炳楠.大型双曲冷却塔平均风荷载的数值模拟研究.空气动力学学报,2009,27(6):650-655.
    [65]沈国辉,刘若斐,孙炳楠.双塔情况下冷却塔风荷载的数值模拟.浙江大学学报.2007,41(6):1017-1022.
    [66]刘若斐,沈国辉,孙炳楠.大型冷却塔的数值模拟研究.工程力学,2006,23(1):177-183.
    [67]张陈胜.大型双曲冷却塔风荷载的数值模拟研究[D].浙江大学,2008.
    [68]Farell,C. Flow around fixed circular cylinders.J of the Eng. Mech. Division ASCE,1981,vol.107.
    [69]Bearman,P.W., The flow around a circular cylinder in the critical Reynolds number regime,J.fluid Mech,1969, Vol.37.
    [70]Bearman, P.W., On vortex shedding from a circular cylinder in the critical regime Journal of Fluid Mechanic,1969, vol.37.
    [71]Guven, O. Farell C. Surface-roughness effects on the mean flow past circular cylinder, Journal of Fluid Mechanics,1980,Vol.98 Part 4.
    [72]李加武.桥梁断面雷诺数效应及其控制研究.[同济大学博士学位论文]上海:同济大学,2003:1-100.
    [73]V.Kolousek, M.Pimer, O.Fischer, J.Naprstek. Wind effects on civil engineering structures[M]. Prague:Czechoslovak Academy of Sciences,1984.
    [74]H. J.Niemann. On the stationary wind loading of axisymmetric structures in the transcritical Reynolds number region[R].Institut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum,1971,Report No.71-2.
    [75]C.Farell, F.E.Maisch. External roughness effects on the mean wind pressure distribution on hyperbolic cooling towers.Iowa:The university of Iowa,1974.
    [76]C.Farell, O.Guven, F Maisch. Mean wind loading on rough-walled cooling towers[J]. Journal of the Engineering Mechanics Division,1976,106(EM6): 1059-1081.
    [77]M.Pirner. Wind pressure fluctuations on a cooling tower. Journal of Wind Engineering and Industrial Aerodynamics.1982,10:343-360.
    [78]T.F.Sun,L.M.Zhou.Wind pressure distribution around a ribless hyperbolic cooling tower[J]. Journal of wind engineering and industrial aerodynamics.1983,14(1-3): 181-192.
    [79]刘天成,赵林,丁志斌.圆形截面冷却塔不同表面粗糙度时绕流特性的试验研究.工业建筑,2006,36:301-304.
    [80]赵林,宋锦忠,高玲等.冷却塔群塔刚体测压试验研究.验流体力学,2007.21(2):56-62.
    [81]周良茂,李培华.两个邻近全尺寸双曲冷却塔风压分布的测量明.气动实验与 测量控制,1992.,6(3):37-44.
    [82]GB 50009-2001,建筑结构荷载规范[S].北京:中国建筑工业出版社,2002.
    [83]GB/T 50102-2003,工业循环水冷却设计规范[S].北京:中国电力出版社,2003.
    [84]NDGJ5-88,火力发电厂水工设计技术规定[S].北京:中国电力出版社,1989.
    [85]PrEN 1991-1-1-4:2004, Actions on structures-General actions-Part 1-4:Wind actions[S]. Brussels:European Committee For Standardization.
    [86]White, F.M.Viscous Fluid Flow, Second Edition, McGraw-Hill,1991.
    [87]H. Schlichting., Boundary Layer Theory, McGraw-Hill,1979.
    [88]Coleman H.W., Hodge B.K., Taylor R.P..A Re-Evaluation of Schlichting's Surface Roughness Experiment. Journal of Fluids Engineering,1984, Vol.106.
    [89]R Lechner, F.R. Menter. Development of a rough wall boundary condition for w-based turbulence models[R]. Technical Report ANSYS/TR-04-04,2004.
    [90]Zou Yun-feng, Niu Hua-wei,Chen Zheng-qing.Wind tunnel investigation of wind load characteristics on a 220m high hyperbolic cooling tower.
    [91]邹云峰,牛华伟,陈政清,谢嵘,吴惠全.220m高双曲冷却塔塔内风荷载风洞试验研究,第十五届风工程会议.杭州.2011.
    [92]Y.Suzuki,M. Arie M.Hangino. A contribution to the free-stream turbulence effect on the flow past a circular cylinder, Journal of Fluid Mechanics,1982,Vol.115.
    [93]N.J.Sollenberger, R.H.Scanlan, D.P.Billington. Wind loading and response of cooling towers. Journal of the structural division,1980,106(ST3):601-621.
    [94]Niemann H J. On the stationary wind loading of axisymmetric structures in the transcritical Reynolds number region[R]. Institut fur Konstruktiven Ingenieurbau, Ruhr-Universitat Bochum,1971,Report No.71-2.
    [95]李鹏飞,赵林,葛耀君,黄志龙.超大型冷却塔风荷载特性风洞试验研究.工程力学,2008,25(6):60-67.
    [96]Y.Kawarabata, S.Nakae, N.Harada. Some Aspects of the Wind Design of Cooling Towers, Journal of Wind Engineering and Industrial Aerodynamics,1983, Vol. 14:167-180.
    [97]Damjakob H, Tummers N. Back to future of the hyperbolic concrete towe. Proceedings of the 5th international symposium on natural draught cooling towers. London:A.A.Balkema Publishers,2004,3-21.
    [98]Kloppers J C, KrOger D G. Loss coefficient correlation for wet-cooling tower fills. Applied Thermal Engineering,2003,23(17):2201-2211.
    [99]Kloppers J C. A critical evaluation and refinement of the performance of wet-cooling towers. Stellenbosch, South Africa:University of Stellenbosch,2003.
    [100]赵振国.冷却塔.中国水利水电出版社,北京,2001.
    [101]王凯.具有导风板的自然通风逆流湿式冷却塔进风阻力研究及性能优化.[山东大学博士学位论文],2009.
    [102]N.J.Sollenberger, R.H.Scanlan, D.P.Billington. Wind loading and response of cooling towers. Journal of the structural division,1980,106(ST3):601-621.
    [103]Y.Kawarabata, S.Nakae, N.Harada. Some Aspects of the Wind Design of Cooling Towers, Journal of Wind Engineering and Industrial Aerodynamics,1983, Vol. 14:167-180.
    [104]Robert H. Scanlan, Leonard J. Fortier. Turbulent Winds and Pressure Effects around a Rough Cylinder at High Reynolds Number,Journal of Wind Engineering and Industrial Aerodynamics,1982, Vol.9:207-236.
    [105]J. Smrekar, J.Oman, B.Sirok. Improving the effciency of natural draft cooling towers.Energy Conversion and Management,Vol.47,2006,P1086-1100.
    [106]Qing-ding Wei, Bo-yin Zhang, Ke-qi Liu et al. A study of the unfavorable effects of wind on the cooling efficiency of dry cooling towers. Journal of Wind Engineering and Industrial Aerodynamics,1995,P633-643.
    [107]Rafat Al-waked, Masud Behnia. CFD simulation of wet cooling towers. Applied Thermal Engineering.2006,26:382-359.
    [108]赵元宾.侧风对于自然通风逆流湿式冷却塔传热传质影响机制的研究.[山东大学博士论文].济南:山东大学,2009,1-96.
    [109]W. Ranz,W.Marshall. Evaporation from drops, Part Ⅰ, Chemical Engineering Progress.48 (1952) 141-146.
    [110]W. Ranz,W.Marshall. Evaporation from drops, Part Ⅱ, Chemical Engineering Progress.48 (1952) 173-180.
    [111]翟志强,朱克勤,符松.横向风对自然通风于式冷却塔空气流场影响的模型实验研究.实验力学,1997,12(2):306-311.
    [112]A.F.Du Preez,D.G.Kroger. The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds.Journal of Wind Engineering and Industrial Aerodynamics,1995,58:293-303.
    [113]Al-Waked R, Behnia M. The effect of wind-break walls on the thermal performance of natural draft dry cooling towers. Heat Transfer Engineering, 2005,26(8):50-62.
    [114]Rafat Al-Waked, Masud Behnia. The performance of natural draft dry cooling towers under crosswind:CFD study.International Journal of Energy Research, 2004,28:147-161.
    [115]张晓东,王清照.侧风对自然通风空冷塔冷却性能的影响.中国电力,1999,6(32):34-37.
    [116]赵振国,石金玲,魏庆鼎,张伯寅.自然风对空冷塔的不利影响及其改善措施.应用科学学报,1998,16(1):112-120.
    [117]赵元宾,孙奉仲,王凯,陈友良,高明,王宏国,史月涛.十字隔墙湿式冷却塔冷却特性的数值研究.中国电机工程学报,2009,29(8):6-13.
    [118]Simiu E, Scanlan R H. Wind effects on structures-fundamentals and applications to design. Third Edition. New York:Wiley-lnterscience publication,1996,1-323.
    [119]Yu D H, Kareem A. Numerical simulation of flow around rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics,1997,67-68:195-208.
    [120]李永君.大跨度桥梁涡振二维计算模型及其实验研究:[同济大学硕士学位论文].上海:同济大学,2004,1-78.
    [121]Hartlen R T, Currie I G. Lift-Oscillator Model of Vortex-Induced Vibration. Journal of Engineering Mechanics, ASCE,1970,96:577-591.
    [122]Yoshimuraa T, Mizutaa Y, Yamadab F, et al. Prediction of vortex-induced oscillations of a bridge girder with span-wise varying geometry. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(14-15):1717-1728.
    [123]Novak M. Aeroelastic galloping of prismatic bodies. Journal of Engineering Mechanics, ASCE,1969,95:115-142.
    [124]Novak M, Tanska H. Effects of turbulence on galloping instability. Journal of Engineering Mechanics, ASCE,1974,100:27-47.
    [125]Scanlan R H, Romko J J. Airfoil and bridge deck flutter derivatives. Journal of Engineering Mechanics, ASCE.1971,97:1717-1737.
    [126]Ibrahim S R, Mikucik E C. A test domain modal vibration test technique. The Shock and Vibration Bulletin,1973,43(4):21-37.
    [127]Ibrahim S R, Mikucik E C. The experimental determination of vibration parameters from time responses. The Shock and Vibration Bulletin,1976,46(5), 187-196.
    [128]Ibrahim S R, Mikucik E C. A method for the direct identification of vibration parameters from the free response. The Shock and Vibration Bulletin,1977,47(4): 183-198.
    [129]谢霁明.识别非定常气动力模型的初脉冲耦合振动法.空气动力学学报,1986,3:258-267.
    [130]Sarkar P P, Jones N P, Scanlan R H. System dentification for estimation of flutter derivatives. Journal of Wind Engineering and Industrial Aerodynamics,1992,42: 1243-1254.
    [131]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析:[同济大学博士学位论文].上海:同济大学,2001,1-80.
    [132]张若雪.桥梁结构气动参数识别的理论和试验研究:[同济大学博士学位论文].上海:同济大学,1998,1-60.
    [133]陈政清.桥梁风工程.北京:人民交通出版社,2005,1-133.
    [134]陈政清,于向东.大跨桥梁颤振自激力的强迫振动法研究.土木工程学报,2002,35(5):34-41.
    [135]陈政清,胡建华.桥梁颤振导数识别的时域法与频域法对比研究.工程力学,2005,22(6):127-133.
    [136]郭震山.桥梁断面气动导数识别的三自由度强迫振动法.[同济大学博士学位论文].上海:同济大学,2006,1-100.
    [137]牛华伟.气动导数识别的三自由度强迫振动法及颤振机理研究.[湖南大学博士学位论文].长沙:湖南大学,2007,1-180.
    [138]Davenport A G. The application of statistical concepts to the wind loading of structures. In:Proc of Institute of Cibil Engineerer,1961,19,449-472.
    [139]Davenport A G. The dependence of wind load upon meteorological parameters. In: Proceeding of the Tnternational Research Seminar on Wind Effects on Buildings and Structures. University of Toronto Press, Toronto,1968,19-82.
    [140]Scanlan R H. Indicial aerodynamic functions for bridges decks. Journal of the Engineering Mechanics, ASCE,1974,100:657-672.
    [141]Scanlan R H. Motion of suspended bridges spans under gusty wind. Journal of the Structural, ASCE,1977,103(9):1867-1883.
    [142]Scanlan R H. The action of flexible bridges under wind Ⅱ:buffeting theory. Journal of Sound and Vibration,1978,60(2):201-211.
    [143]Scanlan R H. Role of indicial functions in buffering analysis of bridges. Journal of Structure Engineering, ASCE,1984,110(7):1433-1446.
    [144]Scanlan R H. Amplitude and turbulence effects on bridge flutter derivatives. Journal of Structure Engineering,1997,123(2):232-236.
    [145]Tazaki T, Fukada J, Tanaka H, et al. Prevention of wind vibrations on H-sections in a Langer Bridge. Doboku Gijutsu(Civil Engineering),125(5):46-52.
    [146]Kubo Y. Sakurai K, Azuma S. Aerodynamic characteristics of H-shaped section cylinder in laminar and turbulent flows. Memoirs of the Kyushu Institute of Technology, Engineering,1980,10:1-14.
    [147]Yamaguchi T, Shiraki K, Umemura, et al. Vibration caused by Karman Vortes on bridge members and its countermeasures. In:Proceedings of the third International Conference on Wind Effects on Buildings and Structures. Tokyo, 1971,68-72.
    [148]Ruscheweyh H. Practical Experiences with wind-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics,1990,33(1-2):211-218.
    [149]Ruscheweyh H, Hortmanns M, Schnakenberg C. Vortex-excited vibrations and galloping of slender elements. Journal of Wind Engineering and Industrial Aerodynamics,1996,65:347-352.
    [150]European Committee for Standardisation, CEN. European prestandard ENV 1991-1, Eurocode 1. Actions on structure, part 4:Wind actons. CEN, Brussels, 2004,1-145.
    [151]Cigada A, Diana G, Falco M, et al. Vortex shedding and wake-induced vibrations in single and bundle cables. Journal of Wind Engineering and Industrial Aerodynamics,1997,72(1-3):253-263.
    [152]Anagnostopoulos P,Bearman W.Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J.of Fluids and Structures.
    [153]Sockel H, Watzinger J. Vibrations of two circular cylinders due to wind-excited interference effects. Journal of Wind Engineering and Industrial Aerodynamics, 1998,74-76:1029-1036.
    [154]Sumner D, Richards M D, Akosile O O. Two staggered circular cylinders of equal diameter in cross-flow. Journal of Fluids and Structures,2005,20:255-276.
    [155]Ting D S K, Wang D J, Price S J, et al. An experimental study on the fluidelastic forces for two staggered circular cylinders in cross-flow. Journal of Fluids and Structures,1998,12:259-294.
    [156]Tokoro S, Komatsu H, Nakasu M, et al. A study on wake-galloping employing full aeroelastic twin cable model. Journal of Wind Engineering and Industrial Aerodynamics,2000,88:247-261.
    [157]曹丰产,项海帆.低雷诺数下方柱和圆柱涡致振动的数值分析.同济大学学报.1998,26(4):382-386.
    [158]曹丰产,项海帆.圆柱非定常绕流及涡致振动的数值计算.水动力学研究与进展[J].2001,16(1):111-117.
    [159]李广望,任安禄,陈文曲.ALE方法求解圆柱的涡激振动.空气动力学报,2004,,22(3):283-288.
    [160]刘松,符松.纵向受迫振荡圆柱绕流问题的数值.计算物理.2001,18(2):157-162.
    [161]Anagnostopoulos P, Bearman P W. Response characteristics of a vortex-excited cylinder at low Reynolds numbers. J. of Fluids and Structures,1992,6:39-50.
    [162]李寿英,陈政清.斜拉桥拉索安装亮化灯具的风致稳定性研究.工程力学,2008,25(Sup.I):94-98.
    [163]贺德馨.风工程与工业空气动力学.国防工业出版社,北京,2006.
    [164]Raghunnathan R S, Kim H D, Setoguchi T. Aerodynamics of High-Speed Railway Train. Progress in Aerospace Sciences,2002,38(6):469-514.
    [165]Joseph A S. Aerodynamics of High-Speed Trains. Annual Review of Fluid Mechanics,2001,33(3):371-414.
    [166]李人宪,刘应清,翟婉明.高速磁悬浮列车纵向及垂向气动力数值分析.中国铁道科学,2004,25(1):8-12.
    [167]李人宪,赵晶,张曙,等.高速列车风对附近人体的气动作用影响.中国铁道科学,2007,28(5):98-104.
    [168]刘堂红,田红旗.磁悬浮列车明线交会横向振动分析.交通运输工程学报,2005,5(1):39-44.
    [169]毕海权,雷波,张卫华.高速磁悬浮列车交会压力波数值计算研究.空气动力学学报,2006,24(2):213-217.
    [170]骆建军,高波,王英学,等.高速列车穿越有竖井隧道流场的数值模拟.西南交通大学学报,2004,39(4):442-446.
    [171]赵晶,李人宪.高速列车进入隧道的气动作用数值模拟.西南交通大学学报,2009,44(1):96-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700