用户名: 密码: 验证码:
鄂尔多斯盆地风沙滩地区包气带水—地下水转化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地风沙滩地区能源丰富,水资源短缺,地下水是主要的供水水源。由于该区降雨稀少,蒸发强烈,生态环境脆弱,随着经济发展与能源开发,水资源供需与生态环境之间的矛盾日益尖锐,因而急需加强地下水资源开发与社会经济和生态环境协调发展的研究,其核心是研究降雨(蒸发)-包气带水-地下水转化机理,为经济发展和能源基地建设与开发提供水资源保障,为地下水资源可持续开发利用提供科学依据。
     本文以“降雨(蒸发)-包气带水-地下水”转化过程为主线,采用原位试验与室内物理模拟试验和数值模拟相结合研究方法,通过试验观测包气带中负压、含水率、温度和气压等状态变量,分析其变化规律及相关关系,构建水动力场、气动力场和温度场耦合模型,揭示包气带水分运移和界面的动力学过程,分析气体、温度在包气带中变化规律以及对水分运移的影响程度,探索包气带-地下水转化机理,定量模拟降雨(蒸发)-包气带水-地下水转化过程,为评价地下水资源量提供科学依据,丰富和发展地下水的理论和方法。
     本文在大量试验和理论探索的基础上,取得了以下主要结论:
     一、分析研究区的地下水循环规律,认为垂向交替模式是该区主要的循环模式,包气带是该循环模式补给与排泄的主要通道。该循环模式的主要补给源为大气降水,占总补给量96.01%;排泄以蒸发为主,占总排泄量62.56%;根据补给与排泄特征不同,将垂向交替模式划分为降水补给-地表水排泄、降水-地表水补给、降水补给-潜水蒸发和降水-田间灌溉补给四种转化模式。
     二、根据原位试验场综合剖面试验区的试验数据和数值模拟结果认为,包气带岩性不同,包气带水分运移规律不同。包气带岩性为风积沙时,对降雨入渗最为有利;包气带岩性为风化砂岩时,0.3m以上呈蒸发状态;包气带岩性颗粒较细时,对降雨入渗不利,地表土壤蒸发强烈。包气带岩性结构越复杂,降雨入渗机理越复杂;当包气带剖面为岩性为单一介质时,水分运移机理较简单。在当地气候条件下,对包气带起关键影响作用的是地面以下1m以内包气带岩性结构,入渗速率有风积沙>风化砂岩>砂质壤土,而表土蒸发潜力则相反。同时风积沙的持水能力弱,蒸发能力小,入渗速率快等特点,是本区地下水相对丰富的主要原因。
     三、通过室内物理模拟试验和包气带水汽热耦合模型分析温度对包气带水分运移规律和潜水蒸发规律的影响。揭示了干旱半干旱典型地区包气带水分迁移转化的动力学过程,建立了等温和非等温条件下包气带水分运移模型模拟水分转化的动力学过程。通过理论与试验分析表明,当地表温度超过25℃时,在研究包气带水分运移和地下水的蒸发排泄时忽略温度的影响将会产生较大的误差;确立了地表温度25℃作为温度影响包气带水分的阈值这一关键指标;确立了研究区在地下水位埋深小于70cm时,当降低地下水位时,在地表将会引起热岛效应这一命题。
     四、通过包气带水气二相砂槽模型试验和数值模拟分析气体在包气带中运移规律以及阻滞入渗水分机理。揭示了干旱半干旱地区降雨条件下包气带中气体对水分入渗的阻滞作用,主要表现为三个方面:1、入渗水分造成包气带中气体压力增加,导致非饱和渗透系数减少;2、增加入渗水分的响应时间。通过理论与实验模拟研究表明,当降雨量大于6mm/d时,在研究包气带水分运移和地下水补给时忽略气体的影响将会产生较大误差。确定了降雨量6mm/d作为气体影响包气带水分运移的阈值。3、包气带中气体在入渗水流推动下气压达到某一较大值将会冲破上覆水层由地表逃逸,气体主要以垂向运动为主。但气体随着湿润峰的推移向下运移至潜水面处,由于受到潜水面的阻滞作用,气体存在着明显的水平运移。根据试验和数值模拟结果,依据降雨条件下水气二相之间的驱替关系以及剖面气压的变化特征,将包气带中气体划分为三个区:气压稳定区I;气压变动区II;气压缓增区III。
     五、根据原位试验数据和室内物理模拟数据,分析土-气界面和土-水界面和地下水界面的动力学过程。确定了水面蒸发量、土面蒸发量以及其之间关系;分析水面蒸发与温度之间在升温期呈现线性关系,在降温期呈现正指数关系;
     六、包气带介质的特性参数测定,包括水分特征参数、热传导系数。设计了非等温等压包气带参数测定仪,测定试验介质的水分特征参数和饱和渗透系数。设计了“稳态法测定土壤介质的热传导率”实验方法,得到了介质热传导率随含水率的变化关系,建立了表示二者关系新的模型KT(θ)=KTs-KTs-KTr/α+(1-α)exp(βθ),模型中提出饱和热传导系数和残余热传导系数的概念,并对其可靠性、求解方法及敏感性进行了分析和验证。七、根据原位试验与数值模拟结果,分析降雨入渗系数与包气带厚度之间的关系,得到以下认识:(1)相同包气带厚度条件下降雨入渗系数从大到小的顺序为:风积沙>萨拉乌苏组>风化砂岩>砂质壤土;(2)当包气带岩性结构为上覆风积沙时,则有利于降雨入渗,故其降雨入渗系数较大,而当包气带岩性结为上覆砂质壤土时,降雨入渗系数较小,不利于水分入渗。研究潜水埋深的变化及岩性的不同对潜水蒸发排泄地下水的影响可知,随着埋深增大,潜水蒸发量减少,到达极限埋深则蒸发量趋近于零,区内几种岩性的极限埋深规律为壤土(1.6m)>淤泥质砂(1m)>风化砂岩(0.8m)>风积沙(0.5m)。
     八、完善地下水可再生性和地下水可再生资源的概念以及其内涵,分析了地下水可再生资源量的特征和影响因素;提出一新的思路评价地下水可再生性。基于地下水可再生资源量特征及影响因素,并根据鄂尔多斯盆地具体情况,建立了鄂尔多斯盆地地下水可再生性评价指标体系,以及评价方法的确定。根据地下水可再生资源量计算方法,计算出典型区苏北淖流域一般水文年的地下水可再生资源量为958.02万m3/a,95%频率年的地下水可再生资源量为896.63万m3/a。最后根据地下水可再生能力强弱绘制了鄂尔多斯盆地苏北淖流域地下水可再生性评价图。
The area of sand blown by wind in the Ordos Basin is rich in energy resources and short of water resources, where groundwater is the main water supply source. Since the rainfall is rare, the evaporation is intensive and the ecological environment is fragile, with the development of economic and energy, the contradiction between water supply and demand and ecological environment is Serious day and day. Hence, it is urgently needed to strengthen groundwater resource development and the research of social economic and ecological environment harmonious development, of which core is to study precipitation-vadose zone water-groundwater transformation mechanism. As a result, it provides water resource guarantee for economic development and the energy base construction and development, and a scientific basis for sustainable development and utilization of groundwater resource.
     In this paper, We employ the research methods which combine in-situ testing and physical simulation test and numerical simulation, the process of precipitation (evaporation)-vadose zone water-ground water" is the main study objective. The negative pressure, water content, temperature and pressure and other state variables in the vadose zone are observed by experiments, and the variation and correlation among them are analyzed. Then the hydrodynamic field, aerodynamic field and temperature field coupling model are built, the unsaturated soil water flow and interface dynamics are revealed, the gas and temperature variation of the unsaturated zone and the influence on moisture migration are analyzed, the vadose zone water-groundwater transformation mechanism is explored, and the precipitation (evaporation)-vadose zone water-groundwater conversion process is quantitatively simulated.
     Based on numbers of experiment and theory, the main conclusions are obtained as follows:
     1. According to the regular pattern of groundwater in study area, it is considered that the vertical alternate model is the main circulation pattern, and the vadose zone is the main channel of the supplies and excretion cyclic patterns. The main recharged source of this pattern is atmospheric precipitation, which is96.01%of the total recharge; Discharge is mainly evaporation, which is62.56%of the total excretion; According to different characteristics of supplies and excretion, the vertical alternate model is divided into four transformation models, which are precipitation supplies-surface water excretion, surface water supplies, precipitation recharge-diving evaporation and rainfall precipitation field irrigation supply.
     2. According to the text data and numerical simulation results of the comprehensive profile experimental site in situ test, it is considered that the moisture migration rule in vadose zone is different with the difference of vadose lithology. When the vadose lithology is wind-blown sand, it is of the most advantageous to precipitation infiltration; when the lithology of the vadose zone is weathered sandstone, more than0.3m is in evaporation state; when the lithology particles of the vadose zone is fine, it is adverse to precipitation infiltration, and surface soil evaporates strongly. The more complex vadose lithology structure is, the more complex precipitation mechanism is; when the profile lithology of the vadose zone is a single medium, the moisture migration mechanism is easier. In the local climate condition, it is the lithology structure of the vadose zone within the ground below lm that plays a key influence to the vadose zone, the infiltration rate is that wind-blown sand> sandy loam> weathered sandstone, while surface soil evaporation potential opposites. In the meanwhile, because the hold-water ability of wind-blown sand is weak, its evaporation capacity is small, its infiltration rate is fast and other features, the wind-blown sand is the main cause of relatively rich groundwater of this area.
     3. Through the indoor physical simulation experiment and the vapor heat coupling model the vadose zone, the influence of temperature on moisture migration regulation and phreatic water evaporation regulation is analyzed. It reveals the dynamic process of water content transformation in the typical area of arid and semi-arid area, and it builds the dynamic process of moisture transformation under isothermy and non-isothermal circumstances, which is simulated by vadose moisture migration model. According to the theoretical and experimental analysis, when the surface temperature is more than25℃, ignoring the influence of temperature will cause a greater error when researching the moisture migration of vadose zone and the evaporation and excretion of groundwater; It established the key indicator that surface temperature25℃as temperature affects vadose moisture threshold; It established a proposition that, in the research area, when groundwater depth is less than70cm, with lowering groundwater level decreased, heat island effect would be caused in the surface.
     4. Through the vadose hydrosphere two-phase sand slot model test and numerical simulation, it analyzes gas migration regularity in the vadose zone and block infiltration moisture mechanism. Hence, it reveals the arid and semi-arid area rainfall condition vadose for water infiltration of gas block function, which mainly performs as two aspects:1) infiltration moisture causes the increase of vadose gas pressure, which causes the reduction of unsaturated permeability; and2) it increases the response time of infiltration moisture. According to the theoretical and experimental simulation study, when precipitation is more than6mm/d, ignoring the influence of gas will cause a greater error when researching the moisture migration of vadose zone and groundwater supply. The precipitation6mm/d is determined as the threshold which gases affect moisture migration in vodase zone. At the same time, vadose gas flow in infiltration under pressure to push a larger value will break by overlying water surface, the gas main to escape the vertical movement primarily. But gas with the passage of moist peak migration to face downward dive in the block due to diving role, gas exist obvious level migration. According to the test and numerical simulation results, based on rainfall condition of water between two phase multi-gas relations and the pressure changes features of profile, the gas in vadose is divided into three areas:Ⅰ steady area; Ⅱ gas pressure changing area; and Ⅲ gas pressure slow-increasing area.
     5. According to the in-situ test data and indoor physical simulation data, it analyzes soil-air interface and soil-water interface and groundwater kinetic process of the interface. The relationship between water evaporation and soil surface evaporation is determined the water evaporation temperature and the analysis of present in warming period between linear relation in cooling period, positively index;
     6. The medium characteristic parameters in the Vadose zone determination includes moisture feature parameters and heat conduction coefficient. we designs a nonisothermal pressure vadose parameters of medium to determine the tester, water characteristic parameters and Saturated hydraulic conductivity (Ks). We designs the determination of soil media state of heat conductivity "experiment method, obtained the medium heat conductivity with moisture content, established the relation between new model said elationship KT(θ)=KTs(?),which saturated Heat conductivity and put forward the concept of residual Heat conductivity, and its reliability and sensitivity, solving method is analyzed and verified.
     7. According to the in-situ test and numerical simulation results, we analyzes precipitation infiltration coefficient and thickness in vadose zone, and get the following conclusions:(1) under the same thickness conditions in vadose zone precipitation coefficient from big to small orders:wind-blown sand>salawusu group> weathered sandstone> sandy loam; and (2) when the lithology structure in vadose zone for wind-blown sand overlying, be helpful for precipitation, therefore its rainfall infiltration coefficient, and when vadose lithology overlying sandy loam knot, precipitation infiltration coefficient is lesser, against water infiltration. Study the buried depth of the change and scuba diving lithology of different groundwater evaporation excretion of the influence of the buried depth, along with depth increased, phreatic water vaporization decreases, reached the limit buried depth is evaporation close to zero, the limits of several lithology buried depth rule for loam (1.6m)> mucky sand (lm)> weathered sandstone (0.8m)> wind-blown sand (0.5m).
     8. Completing renewability and groundwater renewable resource concept and its connotation, this paper analyzes the groundwater renewable resource characteristics and influencing factors; and put forward a new evaluation of groundwater reproducibility. Based on renewable resources characteristics of groundwater and the influential factors, and according to the specific situation in Ordos Basin, this paper establishes the groundwater of Ordos Basin renewability evaluation index system, and identifies evaluation method. According to the calculation method of renewable resources of groundwater, calculating the renewable resources for groundwater of general water year in the typical area of Subei River Basin is958.02million m3/a, and95%frequency years of groundwater renewable resources is896.63million m3/a. Finally, according to the groundwater renewable ability, it draws the evaluation map of groundwater renewability of Subei River Basin in northern Ordos Basin.
引文
[1]Youngs E.G. Development in the physics of infiltration [J]. Soil Sci Soc Am.J.1995,59:307-313;
    [2]Grismer M E. Orang M N. Clausitzer V, et al. Effect of air compression and counterflow on infiltration into soils[J]. J Irrig Drain Eng,1994,120:775-795;
    [3]Wang Z. Feyen J. Nielsen D R, et al. Two-phase flow infiltration equations accounting for air entrapment effect [J]. Water Resour Res,1997,33:2759-2767;
    [4]Wang Z. Feyen J. Van Genuchter M T. air entrapment effect on infiltration rate and flow instability [J]. Water Resour Res,1998,34:213-222;
    [5]李援农.恒定土壤空气压力对入渗的影响[J].西北农业大学学报,1995,3:138—142;
    [6]李援农.土壤入渗过程中空气压力变化规律的研究[J].西北农业大学学报,1995,6:72—75;
    [7]Johns S, Selker etc. Green and Ampt infiltration into soil of variable Pore Size with Depth [J]. Water Resour Res,1999,35 (5):1685-1688;
    [8]Shlomo P, Neuman. Wetting Front Pressure Head in the Infiltration Model of Green and Ampt [J]. Water Resour Res,1976,12 (3):564-566;
    [9]Mein, R. G., and Larson, C. L. Modeling infiltration during steady rain [J]. Water Resour. Res.,1973, 9(2):384-394; d Drain. Div., ASCE,
    [10]Morel-seytoux H J, Khanji J. Derivation of equation of infiltration [J]. Water Resour Res,1974,10: 795-800;
    [11]Bernadiner M G. A capillary microstructure of the wetting front [J]. Transport in porous media.1998, 30:251-265;
    [12]weir G J, Kissling W M. The influence of airflow on the vertical infiltration of water into soil [J].Water Resour Res,1992,28:2765-2772;
    [13]wang Z, Feyen J, Nielsen D R, Van Genuchten M T. Air entrapment effects on infiltration rate and flow instability [J]. Water Resour Res.,1998,100:333-340;
    [14]Crismer M E, Orang M N, Clausitzer V, Kinney K. Effects of air compression and counterflow on infiltration into soil [J]. Irrig. Drain. Eng.,1994,120:775-795;
    [15]Touma J, Vauclin M. Experimental and numerical analysis of two-phase infiltration in a partially saturated soil [J]. Transport in porous media.1996,1:27-55;
    [16]Pinder Georage F, Linda M Abriola. On the simulation of nonaqueous phase organic compounds in the subsurface [J]. Water Resour Res,1986,22(9):109S-119S;
    [17]Sleep B E, Sykes J F. Modeling the transport of volatile organics in variably saturated media [J] Water Resour Res,1989,25(1):81-92;
    [18]Celia Michael A, Philip Binning. A mass conservative numerical solution for two-phase flow in porous media with application to unsaturated flow[J]. Water Resour. Res.,1992,28(10):2819-2828;
    [19]陈家军,彭胜,王金生等,非饱和带水气二相流动参数确定实验研究[J]。水科学进展,2001,4:467~471:
    [20]孙冬梅,朱岳明等.降雨过程中的水气二相流模型研究[J]。水利学报,2007,2:150~156;
    [21]Hanks R.J et.al, Evaporation of water from soils as influenced by drying with wind and radiation. Soil Sci. Soc. Am. Proc. Vol.31, No.5,1967, pp.593-599;
    [22]易福华,王升。温度梯度下土壤水分运动理论的际应用[J].江苏农业科学,1998(6):45—47;
    [23]杨金忠,蔡树英.土壤中水、汽、热运动的耦合模型和蒸发模拟[J].武汉水利电力学院学 报,1989,4:35-44;
    [24]左强,王数Hanks蒸发试验的模拟与分析[J].水利学报,1995,7:16-21;
    [25]Chung. S. R, R. Horton. Soil heat and water flow with a partial surface mulch[J]. Water Resources Research.1987,23(12):2175-2186;
    [26]Cass A, Campbell G S, Jones T L. Enhancement of thermal water vapor diffusion in soil [J]. Soil Sci.Soc.Am.J.1984,48:25-32;
    [27]Cahill A T, Parlange M B. On water vapor transport in field soild [J]. Water Resour.Res. 1998,34(4):731-739;
    [28]Parlange M B,Cahill A T,Nielsen D R,et al. Review of heat and water movement in field Soils [J]. Soil&Tillage Research.1998,47:5-10;
    [29]YAMANAKA T, TAKEDA A, SHIMADA J. Evaporation beneath thsoil surface:some observational evidence and numerical experiment[J]. Hydro 1. Process,1998.12:2193-2203;
    [30]YAMANAKA T, YONETANIT. Dynamicsofevaporation zonein dsandy soils[J]. Journal of Hydrology,1999,217:135-148;
    [31]KONDO J, SAIGUSA N, SATO T A. pararneterization of evaporationfrom bare soil surfaces [J]. J.Appl. Meteor.1990,29:385-389;
    [32]Newman G P,Wilson G W.Heat and mass transfer in unsaturated soils during freezing[J]. Canadian Geotechnical Journal,1997(34);63-70;
    [33]Harland R L.Analysis of coupled heat fluid transport in partially frozen soil[J]. Water Resources Research.1973,9(5):1314-1323;
    [34]隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅰ.数学模型[J].地理学报,1992,47(1):74-79;
    [35]康绍忠,刘晓明,张国瑜.作物覆盖条件下的水热运移的模拟研究[J].水利学报,1993,3:11-17;
    [36]孙景生,陈玉民,康绍中等.夏玉米田水热耦合运移的数值模拟[J].灌溉排水,1995,14(3):24-29;
    [37]康绍忠,刘晓明,高新科等.土壤-植物-大气连续体水分传输的计算机模拟[J].水利学报,1992,3:1-12;
    [38]隋红建,曾德超,陈发祖.不同覆盖条件对土壤水热分布影响的计算机模拟:Ⅱ.有限元分析及应用[J].地理学报,1992,47(2):181-187;
    [39]任理,张瑜芳,沈荣开.条带覆盖下土壤水热动态的田间试验与模型建立[J].水利学报,1998,2:1-9;
    [40]张一平,白锦鳞等.温度对土壤水势影响的研究[J].土壤学报,1990,27(4):454-458;
    [41]闵安成.旱地土壤水分热力学函数及气态水吸附扩散特性初探[D].杨凌:西北农业大学,1990:11-40;
    [42]张一平,白锦鳞,张君常等.土壤水分热力学研究[J].西北农业大学学报,1990,18(3):43-50;
    [43]张一平,白锦鳞,张君常等.温度对土壤水势的影响及土壤水分热力学函数的研究[A].中国土壤学会第六次全国会议代表大会暨1987年学术年会论文集[C],1987:22-23;
    [44]王国栋,张一平,张君常等.土壤水势温度滞后效应的研究[J].水土保持研究,1996,3(3):125-130;
    [45]Hopmans J W,Dane J H.Temperature dependence of soil hydraulic properties[J]. Soil. Sci.Soc.Am.J.1986,50:4-9;
    [46]Hopmans J Wand Dane, J H. Temperature dependence of siol retention curves[J]. Soil. Sci.Soc.Am.J.1986,50:562-567;
    [47]Nimmo J. R.,Miller. E. E.Temperature dependence of isothermal moisture vs. potential characteristics of soil[J]. Soil. Sci.Soc.Am.J.1986,50:1105-1113;
    [48]Kolaian. J. H.,Low,P. F.Thermodynamic properties of water in suspensions of Montmorillonite[J]. Cla-ys and clay Minerals,1962,9:71-84;
    [49]王文科等.鄂尔多斯盆地沙漠高原区降雨入渗补给地下水研究报告[R],2007;
    [50]侯莉莉.蒸发条件下包气带水热运移模拟研究[D],长安大学,2009;
    [51]赵贵章、王文科等,干旱半干旱地区包气带热参数模型研究[J],水文地质工程地质,2009(5):107~110:
    [52]杨建峰.地下水-土壤水-大气水界面水分转化研究综述[J]。水科学进展,1999,10(2):183-189;
    [53]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J]。水科学进展,1999,10(3):251-259;
    [54]段华平,卞新民,谢小立等.农田水循环:地表-大气界面水分传输研究进展[J].中国农业气象,2003,24(1):36-40;
    [55]刘昌明.土壤-植被-大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):366-373;
    [56]Thornthwaite C W. An approach towards a rational classification of climate [J]. Geographical Review, 1948,38:55-94;
    [57]Blaney H F, Criddle W O. Determining water requirement in irrigated areas from climatological and irrigation data [M]. washington,D.C.:Soil Conservation Service,1950;
    [58]linacre E T. A simple formula for estimating evaporation rates in various climates using temperature data alone [J]. Agricultural Meteorology,1977,18:409-424;
    [59]康绍忠,刘晓明,熊运章.土壤-植-大气连续体水分传输理论及其应用.北京:水利电力出版社,1994.122~137;
    [60]Ben-Asher,J., A.D. Mattmas and A.W. Warrick.1983. Assessment of evaporation from bare soil by infrared thermometry. Soil Sci Soc. Am.J.47:185-191;
    [61]Makkink G F. Testing the Penman formula by means of lysimeters [J]. J. Inst. Water Engineers, 1975,11 (3):277-288;
    [62]Jensen M E, Haise H R. Estimating evapotranspiration from solar radiation [J]. J. Irrig. and Drain. Div.,ASCE,1963.89:15-41;
    .[63] Hargreaves G H, Allen R G. History and evaluation of Hangreaves evapotranspiration equation[J]. Journal of Irrigation and Drainage Engineering,2003,129(1):53-63;
    [64]Bowenls.The ration of heat losses by conduction and evaporation from any water surface. Phys Rev, 1926,27:779-798;
    [65]Thornthwait C W,A Holzman.Report of the commutation on transpiration and evaporation. Transactions of the American Geophysical Union,1944,25:683-693;
    [66]Monteith J L.Environment control of plant growth.in:L T Evaus,ed.Aeademic press,New York, 1963:95-112;
    [67]Swinbank W C.Eddy transport in the lower at moisture.Division of meteorological physics.CSIRO, Melbourne,Technical Paper,2,1955;
    [68]莫兴国.区域蒸发研究综述.水科学进展.1996,7(2):180~185;
    [69]Chanzy A, L Bruckler. Significance of soil surface moisture with respect to daily bare soil evaporation [J]. Water Resources Research.1993,29(4):1113-1125;
    [70]Wu J, R Zhang, J Yang. Analysis of rainfall-recharge relationships[J]. Journal of Hydrology.1996,177: 143-160
    [71]Rose CW, Stern W R, Drummond J E. etermination of hydraulic conductivity as a function of depth and water content for soil in situ [J]. Australia Journal of Soil Research,1965,3:129.
    [72]Watson K K. An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous material [J]. Water Resources Research,1966,2:709-715.
    [73]Wind G P. Capillary conductivity data estimated by a simple method[C]//Rijtema P E, WassinkH, ed. Water in the unsaturated zone. IASH Gentbrugge/UNESCO Paris,1968:1812191.
    [74]Bouma J, Belmans C, Dekker LW, et al. Assessing the suitability of soils with macropores for subsurface liquid waste disposal [J]. Journal of Environment Quality,1983,12:305-311.
    [75]Kool J B, Parker J C, van Genuchten MTh. Determining soil hydraulic properties for one-step outflow experiments by parameter estimation:I, Theory and numerical studies[J]. Soil Science Society of America Journal,1985,49:134821354.
    [76]Parker J C, Kool J B, van Genuchten M Th. Determining soil hydraulic properties for one-step out flow experiments by parameter estimation:Ⅱ Experimental studies[J]. Soil Science Society of America Journal,1985,49:135421359.
    [77]Dirken C. Unsaturated hydraulic conductivity[C]//Smith K A,Mullins C E. Soil Analysis:Physical Methods.New York:Marcel Dekker,1991:209-269.
    [78]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [79]黄冠华,沈荣开.大尺度非饱和土壤水分运动的随机模型及有效参数的结构分析[J].水利学报,1997,(11):39-48.
    [80]黄元仿,李韵珠.土壤水力性质的估算一土壤转换函数[J].土壤学报,2002,39(4):517-523.
    [81]Tyler S W, Wheatcraft S W. Fractal processes in soil water retention [J]. Water Resources Research, 1990,26(5):1047-1054.
    [82]黄冠华.土壤水力特性空间变异的实验研究进展[J].水科学进展,1999,10 (4):450-457.
    [83]Clausnitzer V, Hopmans J W, Nielsen D R. Simultaneous scaling of soil water retention and hydraulic conductivity curve[J]. Water Resources Research,1992,28(1):19-31.
    [84]Warrick A W, Mullen G J, Nielsen D R. Scaling field measured soil hydraulic properties using a similar media concept[J]. Water Resource Research,1977,13:355-362
    [85]Warrick A W, Hussen A A. Scaling of Richards'equation for infiltration and drainage [J]. Soil Sci. Soc Am J,1993,57:15-18
    [86]Mantoglou A. A theoretical approach for modeling unsaturated flow in spatially variable soil: effective flow models in finite domains and nonsationarity [J]. Water Resources Research,1992,28(1):251-267
    [87]Mantoglou A, Gelhar L W. Stochastic modeling of Large-scale transient flow system [J]. Water Resources Research,1987,23(1):37-67
    [88]Russo D, Bouton M. Statistical analysis of spatial variability in unsaturated flow parameters [J]. Water Resources Research,1992,28(7):1911-1925
    [89]王文焰,王全九,张建丰等.甘肃秦王川地区土壤水分运动参数及其相关性[J].水土保持学报,2002,16(3):110-113
    [90]Wosten J H M, Van Genuchten M T. Using texture and other properties to predict the unsaturated soil hydraulic function [J]. Soil Soc Am J,1988,52:1762-1770
    [91]朱安宁.封丘土壤水力学性质及其土壤传递函数的研究[D].江苏南京:南京农业大学,2000.
    [92]Rawls J R, Pachepsky Y A. Using field top-graphic descriptors to estimate water retention [J]. Soil Science,2002,167(7):423-435
    [93]Tyler S W, Wheatcraft S W. Fractal scaling of soil particle-size distributions:analysis and limitations [J]. Soil Soc Am J,1992,56:362-369
    [94]杨培玲,罗远培,石元春.用颗粒的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):896-899
    [95]Kravchenco Alexandra, Zhang Rendou. Estimating the soil water retention from particle-size distributions and water retention scaling [J]. Soil Science,1998,163(3):171-179
    [96]Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention scaling [J]. Soil Soc Am J,1989,53(4):987-996
    [97]Arya L M, Leij F J, Van Genuchten M T, e t a 1. Scaling Parameter to predict the soil water characteristic from particle-size distribution data [J]. Soil Soc Am J.1999,63:510-519.
    [98]詹卫华,黄冠华.土壤水力特性分形特征研究进展[J].水科学进展,2000,11(4):457-462
    [99]贾宏伟,康绍忠,张富仓.土壤水力学特征参数空间变异的研究方法评述[J].西北农林科技大学学报:自然科学版,2004,32:97-102.
    [100]Williams R D, Ahuja L R. Evaluation of similar-media scaling and a one-parameter model for estimating the soil water characteristic [J]. European Journal of Soil Science,1992,43 (2):237-248.
    [101]Gregson K, Hector D J, Mcgowan M. A one-parameter model for the soil water characteristic [J]. European Journal of Soil Science,1987,38 (3):483-486.
    [102]Timlin D J, Williams R D, Ahuja L R, et al. Simple parametric methods to estimate soil water retention and hydraulic conductivity [J]. Developments in Soil Science,2004,30:71-93.
    [103]Poulsen T G, Moldrup P, I versen B V, et al. Three region Campbell model for unsaturated hydraulic conductivity in undisturbed soil [J]. Soil Science Society of American Journal,2002,66:744-752.
    [104]朱学愚,钱孝星。地下水水文学[M],中国环境科学出版社,北京,2005.8:P25;
    [105]B. P. Van Haveren and R. W. Brown.1972. The properties and behavior of water in the soil-plant-atmosphere continuum. In Psychrometry in water relations research. p.1-27;
    [106]JA Tindall, JR Kunkel, DE Anderson。Unsaturated zone hydrology for scientsts and Engineers. Prentice-Hall,Inc., New Jersey,1999;
    [107]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社.2006:170-179
    [108]薛禹群、谢春红,地下水流数值模拟[M],北京:科学出版社,2007
    [109]周星魁,王忠科,蔡强国.植被和坡度影响入渗过程的试验研究[J].山西水土保持科技,1996(6):10-13.
    [110]袁建平,雷廷武,郭索彦,等.黄土丘陵区小流域土壤入渗速率空间变异性[J].水利学报,2001(1):88-92.
    [111]袁建平,张素丽,张春燕,等.黄土丘陵区小流域土壤稳定入渗速率空间变异[J].土壤学报,2001,38(4):579-593.
    [112]蒋定生,黄国俊.地面坡度对降雨入渗影响的模拟试验[J].土壤侵蚀与水土保持学报,1989.
    [113]康绍忠,张书函,聂光锄,等.内蒙古放包小流域上壤人渗分布规律的研究[J].土壤侵蚀与水土保持学报,1996,2(2):38-46.
    [114]许昆.降水量与地下水补给量的关系分析[J].地下水2004,26(4):272—-274.
    [115]范继汤.确定次降雨入渗补给时段和补给量的研究E3].水资源研究,2002,23(2):3-6.
    [116]新疆农业大学.新疆平原区大气降水、灌溉水、土壤水与地下水水量转化关系试验研究[M].新疆科技卫生出版社,2002.
    [117]Philip JR. Thetheory of infiltration:the influence of the initial moisture content. Soil Sci. Soc. Am.J.,1958,84:329-339.
    [118]冯锦萍,樊贵盛.土壤水分入渗年变化特性的试验研究[J].太原理工大学学报,2003,34(1):16-19
    [119]王全九,叶海燕,史晓南等.土壤初始含水量对微咸水入渗特征影响[J].水土保持学报,2004,18(1):51—53.
    [120]黄金廷,鄂尔多斯盆地沙漠高原区降雨入渗补给地下水研究[D]。长安大学硕士论文,长安大学,2006.6;
    [121]何渊,鄂尔多斯盆地沙漠高原区湖泊和潜水面蒸发能力研究[D]。长安大学硕士论文,长安大学,2006.6;
    [122]周金龙,董新光,王斌.新疆平原区降水入渗补给地下水研究[J].西北水资源与水工程,2002,13(4): 10-14
    [123]万力,曹文炳,周训.包气带中温度变化对水分分布影响的实验研究[J].水文地质工程地质,2004,3:25-28;
    [124]Milly P C D. Moisture and heat transport in hystertic,inhomogeneous porous media:a matric head-based formulation and a numerical[J]. Water Resour Res.,1982,18(3):489-498;
    [125]Milly P C D. A simulation analysis of thermal effects on evaporation from soil[J]. Water Resour Res.,1984,20(8):1087-1098;
    [126]张富仓,张一平,张君常.温度对土壤水分保持影响的研究[J].土壤学报,1997,34(2):160-169;
    [127]同延安.土壤-植物-大气连续体中水运移理论与方法[M].西安:陕西科技出版社,1989.82-83;
    [128]姚贤良,程云生,等.土壤物理学[M].北京:农业出版社,1986;
    [129]Hopmans J W, Dane J H. Temperature dependence of soil water retention curves[J]. Soil Sci Soc Am J,1986,50:562-567;
    [130]刘思春、白锦鳞、张一平等.温度梯度对非饱和土壤水分运动的影响.西北农业大学学报,1994,22(1):44-49;
    [131]康绍忠,梁银丽.旱区水-土-作物关系及其最优调控原理[M].北京:中国农业出版社,1996.;
    [132]冯宝平,张建丰,汪志荣等.温度对土壤水分运动影响的研究,灌溉排水,2001,20(1):46-49;
    [133]汪志荣,张建丰,王文焰等.温度影响下土壤水分运动模型[J].水利学报,2002,10:46-50
    [134]唐海行、苏逸深、刘炳熬.土壤包气带中气体对入渗水流运动影响的试验研究。水科学进展,1995,6(4):263-269;
    [135]唐海行、苏逸深.考虑气压势影响的降雨入渗数值模拟研究。1996,7(1):8-13;
    [136]梁爱民、邵龙潭。土壤中空气对土结构和入渗过程的影响。水科学进展,1995,20(4):502-506;
    [137]Bouwer H. Rapid filed measurements of air entry value and hydraulic of conductivity of soil as significant parameters in system analysis. Water Resource Research.1996,2(4):729-738;
    [138]Morel-Seytoux H J,Khanji J.Derivation of an equation of infiltration[J]. Water Resource Research.1974,10(4):795-800;
    [139]王国梁,刘国彬,周生路.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J],自然资源学报,2005,18(5):529-535.
    [140]胡顺军,田长彦,宋郁东,等.裸地与柽柳生长条件下潜水蒸发计算模型[J].科学通报,2006,50(S 1):36-41.
    [141]程先军.有作物生长影响和无作物时潜水蒸发关系的研究[J].水利学报,1993 6:37-42.
    [142]BABAJIMOPOULOS C,PANORAS A, GEORGOUSSIS H,etal. Contribution to irrigation from shallow water table under field conditions [J]. Agricultural Water Management,2007,(92) 3:205-210.
    [143]毛晓敏,雷志栋,尚松浩,等.作物生长条件下潜水蒸发估算的蒸发面下降折算法[J].灌溉排水,1999,18(2):26-29.
    [144]闫华,周顺新.作物生长条件下潜水蒸发的数值模拟研究[J].中国农村水利水电,2002,(9):15-18.
    [145]张光辉,费宇红,申建梅等,降水补给地下水过程中包气带变化对入渗的影响[J]。水利学报,2007,38(5):611-617:
    [146]张建山、李哲.陕北沙漠滩地降雨入渗机理试验研究[J].地下水,1997,19(2):84-85
    [147]内蒙古自治区地矿局104水文地质工程地质队,等.陕甘宁内蒙古白垩系自流水盆地地下水资源评价报告限],1986
    [148]谢渊,王剑,江新胜,等.鄂尔多斯盆地下白垩统含水层储水岩石特征与介质结构研究[J].水文地质工程地质,2005,(2):11-19
    [149]侯光才,张茂省等.鄂尔多斯盆地地下水勘查研究[M]一北京:地质出版社,2008.6
    [150]Topp G C, Davis J L, Annan A P. Measurement of soil water content using time-domain reflectrometry(TDR);A field e-valuation. Soil Sci Soc Am J,1985(49):19-24;
    [151]李云良.降雨条件下非饱和带水-气二相流模拟研究[D],长安大学硕士论文,长安大学,2010:
    [152]Gardner W R, Hilleld, Ben Yammin Y. Post irrigation of soil water:II. Simultaneous redistribution and evaporation [J]. Water Resources.1970b,6:1148-1153
    [153]Brooks R H, Corey A T. Hydraulic properties of porous media[M]. Colorado State University, Fort Collins, Colorado,1964.27-28
    [154]Campbell G S. A simple method for determining unsaturated conductivity from moisture retention data [J]. Soil Science,1974,117:311-314
    [155]Van Genuchten, R. Predicting the hydraulic conductivity of unsaturated soils[J]. Soil Sci. Soc. Am.Proc.1980,44:892-898
    [156]Russo D. Determining soil hydraulic properties by parameter estimation:on the selection of a model for the hydraulic properties [J]. Water Resources.1988,24:453-459
    [157]张济世,陈仁生等.物理水文学[M].郑州:黄河水利出版社,2007:56-79
    [158]雷志栋,杨诗秀,谢森传.土壤水动力学[M],北京:清华大学出版社,1988:68-69
    [159]雄顺贵等,土壤基础学[M],北京:中国农业大学出版社,2001
    [160]段征强,赵军,宋德坤.土壤热导率测试系统研究[J].煤气与热力,2006,26(11):45-47
    [161]Campbell G S. Soil Physics with BASIC [M]. Amsterdam:Elsevier,1985:193-199
    [162]赵贵章,王文科,侯莉莉等.干旱半干旱地区包气带土壤热参数模型研究.[J]水文地质工程地质,2009,107~115
    [163]Oak M J, Baker L E, Thomas D, etal.Three-Phase Relative Permeability of Bereas and stone[J]. Journal of Petroleum Technology,1990,42(8):1054-1061
    [164]MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media [J].Water Resour Res,1976,12 (3):513-522
    [165]J.贝尔著(李竞生,陈崇希译).多孔介质流体动力学[M].北京:中国建筑工业出版社,1983,P402
    [166]Buckingham, E. Contributions to our knowledge of the aeration of soils[J]. Soils Bull,1904,25: 5-52;
    [167]Joel Massmann, Daniel Farrier. Effects of Atmospheric Pressure on Gas transport in the Vadose Zone[J]. Water Resour Res,1992,28 (3):777-791;
    [168]Gee G W, D Hillel. Groundwater recharge in arid regions:Review and critique of estimation methods. Hydrological Processes.1988,2:255-266
    [169]左大康.我国农田蒸发测定方法和蒸发规律研究的近期进展.农田蒸发研究.北京:气象出版社.1991.1~4;
    [170]Pruitt W O, D L Morgan, FJ Lourence. Momentum and mass transfer in the surface boundary layer [J]. Quart J Roy Meteor,1973,99:370-386
    [171]Penman H L. Natural evaporation from open water, bare soil, and grass[J]. Poy. Soc.A.,1948, 193:120-145;
    [172]雷志栋,杨诗秀,谢森传.田间土壤水量平衡与定位通量法的应用.水利学报.1988,5:1~7
    [173]李宝庆,杨克定.零通量面法应用问题的探讨.水利学报.1991,3:41~47
    [174]Youngs E G Infiltration measurements-A review. Hydrological Processes,1991,5:309-320
    [175]刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M]。北京:科学出版社,1999:P104
    [176]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社.1988]
    [177]Monteith J I. Environmental contral of growth(L T Evants, ed.)[J]. Academic Press, New York, 1963,95-112
    [178]高桥浩一郎.从月平均气温、月降水量来推算蒸发量的公式.天气(日本),1979,26(12):29-32;
    [179]韩锦萍.包气带水分运移特征研究[D].长安大学硕士学位论文,长安大学,2005
    [180]M. TH. van Genuchten,et al. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water,Heat,and Multiple Solutes in Variably-Saturated Media[J]. U.S SALINITY LABORATORY,1998:10-90
    [181]张蔚榛.地下水与土壤水动力学.北京:中国水利水电出版社,1996.9
    [182]Scanlon, B., K. Keese, R.C. Reedy, J. Simunek and B.J. Andraski. Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing(0-90 kyr):Field measurements,modeling and uncertainties[J]. Water Resour. Res.2003,39:1179, doi:10.1029/2002 WR001604;
    [183]Saito,H., J. Simunek and B.P. Mohanty.2006. Numerical analysis of coupled water, vapor and heat transport in the vadose zone[J]. Vadose Zone J.5:784-800.
    [184]Bachmann J, Horton R, G-rant S A,et al. Temperature dependence of water retention curves for wettable and water repellent soils[J]. Soil Sci Soc Am.J,2002,66:44-52;
    [185]王文科、李俊亭等.鄂尔多斯盆地白垩系潜水面降水入渗补给强度与蒸发强度试验研究报告[R].西安:长安大学环境科学与工程学院,2006.12
    [186]周金龙,虎胆.吐马尔白,董新光等.新疆平原大气降水、灌溉水、土壤水与地下水水量转化关系试验研究[M].新疆:新疆科技卫生出版社(K),2001,P73;
    [187]张人权.地下水资源特性及其合理开发利用[J].水文地质工程地质,2006,1:1-5
    [188]Sandra L.Postel. Human appropriation of renewable flesh water. Science,1996, Vol.271. P275
    [189]杨志峰,沈珍遥,李春辉等.黄河流域水资源可再生性基本理论与评价[M].郑州:黄河水利出版社,2005,10-11
    [190]王文科,王雁林,段磊等.关中盆地地下水环境演化与可再生维持途径[M].郑州:黄河水利出版社,2006,151-152
    [191]乔晓英.准噶尔盆地南缘地下水环境演化及其可再生性研究[D].长安大学:长安大学博士论文,2008,110-113
    [192]张光辉,王金哲.海河流域中东部平原深层地下水补给与释水机制探讨一兼论深层地下水资源可利用性[J].水文,2002,22 3:5-9
    [193]陈望和等.河北地下水[M].北京:地震出版社,1999
    [194]郭永海,沈照理,钟佐等.从地面沉降论河北平原深层地下水资源属性及合理评价[J].地球科学1995,(20)4:415-420
    [195]杨广元,冯润田等.浩勒报吉水源地供水水文地质勘探报告[R].内蒙古自治区:内蒙古自治区第二水文地质工程地质勘查院,2010.1
    [196]侯克复。环境系统工程[M].北京:北京理工大学出版社,1992:25-32
    [197]喻锋、李小兵等.皇甫川流域土地利用变化与生态安全评价[J].地理学报报,2006,61(6):645-653
    [198]李瑛.鄂尔多斯湖盆高原地下水与植被生态关系研究[D].长安大学:长安大学硕士论文,2009,9-12
    [199]李苏南等。西藏高原生态安全评价方法与应用一以西藏自治区曲松县为例[J].水土保持研究,2005,12(6):142-145
    [200]武吉华.自然资源评价基础[M].北京:北京师范大学出版社,1999.215-221
    [201]池志淼、戴怡新、郝向麟.我国区域生态环境质量评价方法探讨[J].北京林业管理干部学院学报,2006年第二期:43-46
    [202]I.D.Peggs and R.Thiel. Selecting a geomembrane material[J], intematlonal conference on geosynetics,1998,1:381-384
    [203]李俊亭.包气带水分运移的若干问题(讲稿),长安大学,2004
    [204]侯光才等.鄂尔多斯盆地地下水勘查报告[R].西安:中国地质调查局西安地质调查中心,2006
    [205]乔青、高吉喜等.生态脆弱性综合评价方法与应用[J]环境科学研究,2008,21(5):117-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700