用户名: 密码: 验证码:
关于水稻根负向光性机理的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻的种子根和不定根,以及由这些根上长出的分枝根都具有明显的负向光性生长运动的现象。为了探讨水稻根负向光性的机理,本研究以扬稻六号,大粒(三寸),汕优63,日本品种的日本晴四个水稻品种为材料,前2品种主要用于水培法观察水稻根的生长,汕优63主要用于水稻根负向光性中光受体的探讨,日本晴用于cpt1基因在水稻根负向光性中的作用的研究。我们进行了施加外源化学物质或激素等对水稻根负向光性影响的试验,探讨了水稻根的负向光性中的光受体、信号组分物质、IAA运输载体蛋白cpt1基因的表达。结果如下:
     1稻根的负向光倾斜生长是由于根尖弯曲部的受光侧细胞的生长量大于背光侧细胞的生长量所致。
     2蓝紫光能显著诱导稻根负向光性,而红光无效;根冠浸提液的吸收光谱在350 nm和450 nm各有一个吸收峰;根冠中有120 KD的光受体特征的蛋白条带。推测稻根负向光性的光受体可能为蓝光受体。
     3不同浓度的外源试剂处理在水稻根的负向光性中分别起着调节作用。Ca2+、IP3、G蛋白、LiCl、蔗糖对水稻根负向光性运动中的信号转导都具有正调节作用;质膜H+-ATPase的浓度和pH值的均衡有利于根的负向光性运动;而H2O2促进水稻次生根的弯曲和生长,且在低浓度处理下,也促进了水稻根的负向光性的弯曲度,但却抑制了种子根的弯曲和生长。
     4植物生长调节剂对水稻根的负向光性有不同的影响。(1)适当浓度的ABA,GA和乙烯利对水稻根的负向光性的作用都不明显,而CTK严重抑制水稻根的负向光性和生长量;(2)生长素溶液对根的负向光性生长有显著的影响。在0~100mg·L-1的浓度范围内,随着IAA的浓度提高对根的生长、负向光性和向重性反应的抑制程度加剧。(3)不定根在光照1. 5 h后,背光侧的IAA含量明显大于向光侧,种子根的生长方向既受光的调控也受外施的IAA的调控,根尖向贴有含IAA琼脂块的一侧弯曲生长。这些结果表明光引起根尖两侧IAA含量差异是导致根负向光性的原因。
     5本试验探讨了cpt1基因在水稻根负向光性中的作用。发现cpt1基因的表达量与0.001 mg·L-1的IAA、1 mg·L-1的CaCl2及其抑制剂1 mg·L-1的EDTA对稻根的负向光性的效应相一致。由此推测,cpt1基因可能作为IAA载体蛋白对水稻根的负向光性运动起促进作用。
From the rice root growth and curve in water culture, all the seminal roots, adventitious roots and their branched roots bent away from light. To properly study the mechanism of negative phototropism of rice root, four rice (Orysa sativa L.) varieties“Yaodaoliuhao”,“Sanlicun”(large panicle variety),“xianyou 63”(too many roots variety) and“Ribenqing”(Japonica) were used in this experiment“Yaodaoliuhao”,“Sanlicun”were used for the investigation of the rice root growth and curve in water culture,“xianyou 63”was used for the experiments of photoreceptor of negative phototropism of rice root, and“Ribenqing”(Japonica) was for the study of the effect of cpt1 gene on negative phototropism of rice root. Chemical reagent(such as CaCl2、EDTA)and hormones(IAA, TIBA, CTK, ABA,GA and ethephon)with different concentrations were applied to investigate their contribution on negative phototropism of rice root. Rurthermore, the photoreceptor, signal transduction elements and the express of cpt1 gene that encoded for IAA carrier protein during negative phototropism of rice root were invesgated, too. Some fruits were acquired after corresponding experiments as followed:
     1 The negative phototropic bending of the rice root was mainly due to the larger growth increment of root-tip cells of the irradiated side than that of the shaded side.
     2 The effect of light quality on phototropic bending could be induced prominently by blue/UV light, while not be induced by red or far-red light. Absorption spectrum of the extracted solution from rice cap had two peaks under 350nm and 450nm accordingly, and the molecular weight of the 120KD protein of the cap under unilateral light was larger than that under the dark. It suggested that the blue light receptor might be the photoreceptor might be the photoreceptor for the negative phototropism in rice root
     3 Ca2+, EDTA, EGTA, EB, inositol, LiCl, FC, Vanadate, CTX, PTX, H2O2, sucrose, pH with different concentrations were employed to investigate their effects on phototropic bending. From the results, Ca2+, IP3, LiCl, G protein and sucrose showed positive regulation for signal transduction during negative phototropism of rice roots; the negative phototropism of rice roots prefer proper concentration of H+-ATPase on plasma membrane and pH, or will be reversed; H2O2 had different effects on rice root for it had a positive regulation for rice lateral roots, while negative to rice primary roots. The present experiments suggested that many signal transduction during negative phototropism of rice (Oryza sativa L.) root should be attributed the coorperation of different signal transduction elements more than a single elements.
     4 Hormones with different concentrations were applied and it was found that they had different effects on negative phototropic bending. Results showed that (1) ABA, GA and ethephon had almost no effect on the negative phototropism of rice root, while CTK obviously inhibited the growth and negative phototropic bending of rice root. (2) The auxin (IAA) in the solution as a very prominent influencing factor, inhibited the growth, the negative phototropism and the gravitropism of rice root when the concentration of IAA increased. (3) The negative phototropic bending could be regulated by exogenous IAA as well as light, the root was induced to bend toward the site of the application, caused asymmetric growth of the root cells at the elongation zone and resulted in the bending growth. IAA concentration on the shaded side of adventitions root increased much greater 1. 5 h after the start of irradiation. The une qual lateral IAA distribution can be concluded to be the main cause for the negative phototropism of rice root.
     5 From the effect on the cpt1gene on the correlation of asymmetric distribution of IAA with negative phototropism of rice root we found that the negative phototropism of rice root was improved by 1 mg·L-1 CaCl2 and 0.001 mg·L-1 IAA after 24h light but constrained by 1 mg·L-1 EDTA, which is similar to the expression of cpt1 gene. It could be concluded that the asymmetric distribution of IAA was an important step on the negative phototropism of rice root, which probably be taken by CPT1 as a carrier of IAA.
引文
陈汝民. 1999a. 6-甲氧基-2-苯并唑啉酮(MBOA)分布不均匀是引起玉米胚芽鞘向光性运动的主要原因. 植物学报, 41: 296~300.
    陈汝民. 1999b. 6-甲氧基-2-苯并唑啉酮的一些生理作用.热带亚热带植物学报, 1: 70~76.
    陈汝民. 1998.玉米胚芽鞘向光性运动的一些特性.热带亚热带植物学报, 6 (4): 323~328.
    顾蕴洁,王忠,王维学. 2001.水稻根的背光性(简报).植物生理学通讯, 37(15) : 396~398.
    韩鹰,王忠,等. 2005.光照对水培风信子根系生长的影响.园艺学报, 01, 326~326.
    李建华,刘银谦,吕品,等. 2006. H2O2在黄瓜和绿豆下胚轴不定根形成中的作用.西北植物学报, 26(12) : 2506~2510.
    刘承宪. 1998.重力植物生理学.余叔文,汤章城主编,植物生理与分子生物学.北京,科学出版社, 824~836.
    刘玉军,赵南明. 2001.植物光敏素在玉米胚芽鞘不同类型向光性反应中的作用模式.植物学报, 43: 923~928.
    刘公社,伍建宏,张俊英,等. 2001.蓝光对萝卜向光性反应能力的调节.应用与环境生物学报, 43: 923~928.
    吕东,张骁,江静,安国勇,等, 2005. NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. Plant physiol. Mol. Biol., 31(1): 62~70.
    莫亿伟,王忠,钱善勤,等. 2004.生长素在水稻根负向光性反应中的作用.中国水稻科学, 18 (3): 245~248.
    倪为民,陈晓亚,许智宏,等. 2000.生长素极性运输研究进展.植物学报, 42: 221~228.
    孙大业,郭艳林,马力耕.1998.细胞信号转导.北京,科学出版社, 212~219.
    谭云,叶庆生. 2001.植物向光性的研究进展.亚热带植物科学, 30 : 64~68.
    汤菊香,赵航. 2003. K+和H2O2对老化棉花种子幼苗生长的影响.中国棉花, 30(2): 22~24.
    童哲,赵玉锦,王台,等. 2000.植物的光受体和光控发育研究.植物学报, 42 : 111~115.
    汪月霞,王忠,顾蕴藉. 2007a.蓝光受体下游信号转导组分的研究进展.生物学通报,1: 1~2.
    汪月霞,王忠,顾蕴藉,等. 2007b.钙离子在向光性和向重性反应的信号转导中的作用.安徽农业科学, 35(10): 2877~2878.
    汪月霞,王忠,索标,顾蕴洁,等. 2007.关于水稻根负向光性光受体的探讨.中国水稻科学, 21(2): 143~146.
    王金祥,严小龙,潘瑞炽. 2005. Relationship between adventitious root formation and plant hormones.植物生理学通讯, 41(2) : 133~142.
    王曼,王小菁. 2002.蓝光、紫外光的受体及其对CHS表达诱导的研究.植物学通报, 19: 265~271.
    王忠,莫亿伟,钱善勤,等, 2003.水稻根的负向光性及其影响因素.中国科学, 33:10~18.
    王忠,2000.植物的生长生理.王忠主编,植物生理学,北京,中国农业出版社,314~365.
    闫海芳,周波,李玉花. 2004.光受体及光信号转导.植物学通报, 21 (2): 235~246.
    周君莉,马力耕,孙大业. 1998. G蛋白和cGMP在光敏色素介导的尾穗苋苋红素合成中的作用.中国科学, 2(28): 143~147.
    Ahamad M. 1993. HY4 gene of a thaliuna encodes a protein with characteristics of a blue-light photoreceptor. Nature, 366: 162~166.
    Ahmad M, Cashmore A R. 1996. The pef mutants of Arabidopsis thaliana define lesions early in the phytochrome signaling pathway. Plant J., 10: 1103~1110.
    Ahmad M, Cashmore A R. 1997. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J., 11: 421~427.
    Ahmad M, Jarillo J A, Cashmore A R. 1998a. Chimerc proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell, 10: 197~208.
    Ahmad M, Grancher N, Heil M, et al. 2002. Action spectrum for cryptochrome-dependent hypocotyls growth inhibition in Arabidopsis. Plant Physiol., 129 : 774~785.
    Ahmad M, Jarillo J A, Smirnova O, et al. 1998b. Cryptochrome blue light photoreceptors of Arabidopsis implicated in phototropism. Nature, 392 : 720~723.
    Alan E P, Seong-Kim M, Stephanie M, et al. 2001. shl, a new set of Arabidopsis mutants with exaggerated developmental responses to available red, far red, and blue light. Plant Physiol., 127: 295-304.
    Alex E, Amanda G, Tinsley, et al. 2006. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. PNAS, 103: 236~241.
    Ang L H, Chattopadhyay S, Wei N, et al. 1998. Molecular interaction between COP1and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell, 1: 213~222.
    Anil V S and Rao K S. 2001. Calcium-mediated signal transduction in plants: A perspective on the role of Ca2+ and CDPKs during early plant development. J. Plant Physiol., 158: 1237~1256.
    Babourina O, Godfrey L, VoltchanskII K. 2004. Changes in Ion Fluxes During Phototropic Bending of Etiolated Oat Coleoptiles. Annu. Bot., 94: 187~194.
    Babourina O, Newman I and Shabala S. 2002. Blue-light-induced kinetics of H+ and Ca2+ fluxes in ctiolaterd wild-type and phototropin-mutant Arabidopsis seedlings. Proc. Antl. Acad. Sci. USA, 99: 2433~2438.
    Ballesteros M L, Bolle C, Lois L M,et al. 2001. LAF1, a MYB transcription activator for phytochrome a signaling. Gene Dev., 15: 2613~2625.
    Bauer D, Viczian A, Kircher S, et al. 2004. Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. The Plant Cell, 16: 1433~1445.
    Baum G, Long J C, Jenkins G I. 1999. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. PNAS, 96: 13554~13559.
    Blakeslee J J, Bandyopadhyay A, Peer W A, et al. 2004. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol., 134: 28~31.
    Blakeslee J J, Bandyopadhyay A, Lee O R. et al. 2007. Interactions among PIN-FORMED and P- glycoprotein auxin transporters in Arabidopsis. Plant Cell, 19: 131~147.
    Boccalandro H E, Rossi M C, Saijo Y, et al. 2004. Promotion of photomorphogenesis by COP1. Plant Mol. Biol., 56: 905~915.
    Briggs W R, Liscum E. 1997. The role of mutants in the search for the photoreceptor for phototropism in higher plants. Plant Cell Environ., 20: 768~772.
    Briggs W R, Olney M A. 2001. Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol., 25: 85~88.
    Briggs W R. 2006. Blue/UV-A receptors: Historical overview. In: E. Sch?fer, F. Nagy (eds) Photomorphogenesis in Plants and Bacteria (3rd edition,), Springer, Dordrecht, 171~197.
    Briggs W R. 2007. The LOV domain: a chromophore module servicing multiple photoreceptors. Biomed. Sci., 14(4): 499~504.
    Bright J, Desikan R ,Hancock J T,et al. 2006. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J., 45: 113~122.
    Bruinsma J, Hasegawa K. 1990. A new theory of theory of phototropism—its regulation by a light-induced gradient of auxin-inhibiting substrance. Physiol. Plant, 79: 700~704.
    Campbell T G, Liscum E. 2001. Plant photobiology: A thousand points of enlightenment from receptor structures to ecological adaptation. Plant Cell, 13: 1704~1710.
    Canamero·Nadia Bakrim·Jean-Pierre Bouly R C, Garay·Elizabeth E. Dudkin·Yvette H A, Ahmad M, et al. 2006. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta, 224: 995~1003.
    Cao D S, Lin Y, Cheng C L. 2000. Genetic interactions between the chlorate-resistanrt mutant cr88 and the photomorphogentic mutants cop1 and hy5. Plant Cell, 1 2: 199~210.
    Casal J J, Davis S J, Kirchenbauer D, et al. 2002. The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear location of the photoreceptor. Plant Physiol., 129: 1127~1137.
    Chandrakuntal K, Kumar P G, Laloraya M. 2004. Direct involvement of hydrogen peroxide in curvature of wheat coleoptile in blue-light-treated and dark-grown coleoptiles. Biochem. Biophys. Res. Commun., 4 (319): 1190~1196.
    Chaturvedi R, Shyam R, Sane P V. 1998. Steady state levels of D1protein and psbA thanscript during UV-B inactivation of photosystemⅡin wheat. Biochem. Mol. Biol. Int., 44: 925~932.
    Cholodny N. 1927. Wuchshormone und Tropismen bei den Pflanzen. Biol. Zent., 47: 604~626.
    Chen H, Zhang J, Neff M M, et al. 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci U S A, 105: 4495~4500.
    Chen Y L, Huang R F, Xiao Y M, et al. 2004a. Extracellular calmodulin induced stomatal closure is mediated by heterotrimeric G protein and H202. Plant Physiol., 136: 4096~4103.
    Chen M, Chory J, Fankhauser C. 2004b. Light signal transduction in higher plants. Annu. Rev. Genet., 38: 87~117.
    Christie J M, Reymond P, Powell G K, et al. 1998. Arabidopsis NPH1: A flavoprotein with the properties of a photoreceptor for phototropism. Science, 282: 1698~1701.
    Christie J M, Salomon M, Nozue K, et al. 1999. LOV(light, oxygen, or voltage)domains of the blue-light photoreceptor phototropin(nph1): Binding sites for the chromophore flavin monocleotide. Proc. Natl. Acad. Sci. USA, 96: 8779~8783.
    Christie J M. 2007. Phototropin blue-light receptors. Annu. Rev. Plant Biol., 58: 21~45.
    Clack T, Mathews S, Sharrock R A. 1994. The Phytochrome apoprotein family in Arabidopsis is encoded by five genes-The sequences and expression of phyD and phyE. Plant Mol. Biol., 25: 413~427.
    Colón-Carmona A, Chen D L, Yeh K C, et al. 2000. Aux/IAA proteins are phosphorylated by hytochrome in vitro. Plant Physiol., 124: 1728~1738.
    Datta S, Hettiarachchi G, Deng XW, et al. 2006. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell, 18: 70~84.
    Desnos T, Puente P, Whitelam G C, et al. 2001. FHY1: a phytochrome A-specific signal transducer. Gene Dev., 15: 2980~2990.
    Dong L, Wang L, Zhang Y, et al. 2006. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. Plant mol. Biolo., 60: 599~615.
    Ebrey T G. 2002. A new type of photoreceptor in Algae. Proc. Natl. Acad. Sci. USA, 99: 8463~8464. Estelle M. 2001. Transporters on the move. Nature, 413 : 372~375.
    Falciatore A, Bowler C. 2005. The evolution and function of blue and red light photoreceptors. Curr. Top. Dev. Biol., 68: 317~350.
    Fankhauser C, Yeh K C, Lagarias J C, et al. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science, 284: 1539~1541.
    Folta K M, Lieg E J, Purham T et al. 2003. Primary inhibition ofhypocotyl growth and phototropism depend differently on phototropin-mediated increases in cyptoplasmic calcium induced by blue light. Plant Physiol., 133: 1464~1470.
    Frechilla S, Zhu J, Talbott L D, et al. 1999. Stomata from npq1, a zeaxanthin-less Arabidopsis mutant lack a specific response to blue light. Plant Cell Physiol., 40 : 949~954.
    Friml J, Wisniewska J, Benkova E, et al. 2002. Lateral relocation of Auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415 : 806~809.
    Frohnmeyer H, Bowler C, Zhu J K, et al. 1998. Different roles for calcium and calmodulin in phytochrome and UV- regulated expression of chalcone synthase. Plant J., 19: 763~772.
    Furuya M. 1993. Phytochromes: their molecular species gene families, and functions. Annu. Rev. Plant Phys., 44 :617~645.
    Gallagher S, Short T W, Pratt L H et al. 1988. Light mediated changes in two proteins found associated with plasma membrane fractions from pea section. Proc. Natl. Acad. Sci. USA, 85: 8003~8007.
    Geldner N, Friml J, Stierhof Y D,et al. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413: 425~428. Genoud T, Millar A J, Nishizawa N,et al. 1998. An Arabidopsis mutant hypersensitive to red and far-red light signals. Plant Cell, 10: 889~904.
    Guo H W, Todd M, Hien D, et al. 2001. SUB1 an Arabidopsis Ca2+-Binding protein Involved in cryptochrome and phytochrome coaction. Science, 291: 487~490.
    Haga K, Iino M. 2006. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J. Exp. Bot., 57: 837~847.
    Haga K, Takano M, Neumann R, et al. 2005. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17, 103~107.
    Halliday K J, Hudson M, Ni M, et al. 1999. poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting Bhlh protein. Gene Dev., 96: 5832~5837.
    Harada A, Sakai T and Okada K. 2003. phot1 and phot2 mediate blue-light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl. Acad. Sci. USA, 100: 8583~8588.
    Harada A, Shimazaki K. 2007. Phototropins and Blue Light-dependent Calcium Signaling in HigherPlants. Photochem. Photobiol., 83: 102~111.
    Harmon A C. Gribskov M and Harper J F. 2000. CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci., 5: 154~159.
    Harper R M, Stowe-Evans E L, Luesse D R, et al. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 12: 757~770.
    Harper S M, Neil L C. 2003, Gardner K H. Structural basis of a phototropin light switch. Science, 133: 1417~1419.
    Harrison B R, Masson P H. 2008. ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J., 53: 380~392.
    Hasegawa K, Noguchi H, Iwagawa T, et al. 1986. Phototropism in Hypocotyls of Radish: Isolation and identification of growth inhibitors, cis-and trans-raphanusanin and raphanusamide involved in phototropism of radish hypocotyls. Plant Physiol., 81: 976~979.
    Hasngawa K, Togo S, Umshima Met al. 1992. An auxin-inhibiting substance from light一grown maize shoots. Photochem., 31: 3673~3676.
    Hasngawa T, Yamada K, Kosemura S, et al. 2001. Isolation and identification of a light—induced growth inhibitor in diffusates from blue light-illuminated oat (Avena sativa L.) coleoptile tips. plant Growt. Regul., 33(3): 175~179.
    Hasngawa T, Yamada K, Shigemori H, et al. 2002. Isolation and identification of a growth inhibitor from blue light—illuminated cress seedlings. Plant Growt. Regul., 37(1) : 45~47.
    He Q, Liu Y. 2005. Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev., 19(23): 2888~2899.
    Hemm M R, Rider S D, Ogas J, et al. 2004. Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J., 38: 765~778.
    Hoecker U, Quail P H. 2001. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J. Biol. Chem., 276: 38173~38178.
    Hoecker U, Xu Y, Quail P H. 1998. SPA1, A new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell, 10: 19~33.
    Holm M, Ma L G, Qu L J, et al. 2002. Two interacting bZIP protein are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Gene Dev., 16: 1247~1259.
    Huala E, Oeller P W, Liscum E, et a1. 1997. ArabMopsis NPH1: A protein kinase with a putative redox-sensingdomain. Science, 278: 212~213.
    Huang K, Beck C F. 2003. Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydononas reinhardtii. Proc. Natl. Acad. Sci. USA, 100(10): 6269~6274.
    Hudson M, Ringli C, Boylan M T, et al. 1999. The FAR1 locus encodes a novel nuclear protein specific to phytochrome a signaling. Gene Dev., 13: 2017~2027.
    Iino M. 1991. Mediation of tropism by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ., 14: 278~286.
    Iino M. 2006. Toward understanding the ecological function softropisms: interactions among and effects of light on tropisms. Curr. Opin. Plant Biol., 9: 89~93.
    Imaizumi T, Kadota A, Hasebe M, et al. 2002. Cryptochrome light signals, control development to suppress auxin sensitivity in the moss Physcomitrella patens. Plant Cell, 14: 373~386.
    Jabeena R, Yamadaa K, Shigemori H. 2006. Induction of ?-glucosidase activity in maize coleoptiles by blue light illumination. J. Plant Physiol., 5 (163): 538~545.
    Janoudi A, Konjevic D, Apel P, et al. 1992. Time threshold for second positive phototropism is decreased by a preirradiation with red light. Plant Physiol., 99: 1422~1425.
    Janoudi A, Poff K. 1990. A common fluence threshold for first positive phototropism and second phototropism in Arabidopsis thaliana. Plant Physiol., 94: 1605~1608.
    Jennie A, Jackson G I, Jenkins. 1995. Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta, 197: 233~239.
    John Z K, Kelley M M, Lisa A O, et al. 2002. Phototropism and Gravitropism in Lateral Roots of Arabidopsis. Plant Cell Physiol., 43(1):35~43.
    Kasahara M, Swartz T E, Olney M A, et al. 2002. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice and Chlamydomonasreinhardtii. Plant Physiol., 129: 762~773.
    Kataoka H. 1988. Negative phototropism in Vaucheria terrstris regulated by CalciumⅠ. Dependence on background blue light and external calcium concentration. Plant Cell Physiol., 29: 1323~1330.
    Kaufmam L S. 1993. Transduction of blue light signals. Plant Physiol., 102: 33~38.
    Kende H, Bradford K, Brummell D, et al. 2004. Nomenclature for members of the expansin superfamily of genes and proteins Plant Mol. Biol., 55: 311~314.
    Keiko U T, Timong W, Deng X W. 1998. Functional dissection of its three structural modules in light control of seeding development. The Embo. J., 17: 5577~5587.
    Kepinski S and Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 435(7041): 446~451.
    Kircher S, Wellmer F, Nick P, et al. 1999. Nuclear import of the parsley bZIP transcription factor CPRF2 is regulated by phytochrome photoreceptors. J. Cell Biol., 144: 201~211.
    Kim J, Shen Y, Han Y J, et al. 2004. Phytochrome phosphorylation modulates light signaling by influencing the protein–protein interaction. The Plant Cell, 16: 2629~2640.
    Kimura M, Kagawa T. 2006. Phototropin and light-signaling in phototropism. Cur.Opin. Plant Biol., 9: 503~508.
    Kinoshita T, Nishimura M and Shimazaki K I. 1995. Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell, 7: 1333~1342.
    Kiss J Z, Kelley M M, Lisa A O, et al. 2002. Phototropism and Gravitropism in Lateral Roots of Arabidopsis. Plant Cell Physiol., 43(1):35~43.
    Kiss J Z, Mullen J L, Correll M J, et al. 2003. Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol., 131: 1411~1417.
    Knieb E, Salomon M, Riidiger W. 2004. Tissue-specific and subcellular localization of phototropin determined by immuno-blotting. Planata, 218: 843~851.
    Lasceve G, Leymarie J, Olney M A, et al. 1999. Arabidopsis contains at least four independent blue light-activated signal transduction pathway. Plant Physiol., 120: 605~614.
    Lay H A, Sudip C, Ning W, et al. 1998. Molecular interaction between COP1 and Hy5defines a regulatory switch for light control of Arabidopsis development. Mol. Cell., 1: 213~222.
    Lin C. 2002. Blue light receptors and signal transduction. Plant Cell, Supplement, 207~225.
    Lin R C, Wang H Y. 2005. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol., 138: 949~964.
    Liscum E, Briggs W R. 1995. Mutation in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 7: 473~485.
    Liscum E, Hodgson D W, Campbell T J. 2003. Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol., 133: 1429~1436.
    Liu Y J, lion M. 1997. Phytochrome is required for the occurrence of time dependent phototropism in maize eoleoptiles. Plant Cell Environ., 20: 277~278.
    Liu Y J, Sui J L. 1998. Phytochrome and phototropism. J. Beijing Forestry University, 7: 28~48. Moller S G, Kim Y S, Kunkel T, et al. 2003. PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell, 15: 1111~1119.
    Molas M L, Kiss J Z, Correll M J. 2006. Gene profiling of the red light signalling pathways in roots. J. Exp. Bot., 57(12): 3217~29.
    Morris D. 2000. Transmembrane auxin carrier systems: Dynamic regulators of polar auxin transport. Plant Growt. Regul., 32: 161~172.
    Muday G K, Murphy A S. 2002. An emerging model of auxin transport regulation. Plant cell, 14: 293~299.
    Nagy F and Sch?fer E. 2002. Phytochrome control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol., 53: 329~355.
    Nagashima A, Suzuki G, Uehara Y, et al. 2008. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19 - dependent and a PGP19-independent manner. The Plant J., 53: 516~529.
    Neill S J, Desikan R, Clarke A, et al. 2002a. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant physiol., 128: 13~16.
    Neill S J, Desikan R, Clarke A, et al. 2002b. Hydrogen peroxide and nitric oxide as signaling molecules in plants. J.Exp.Bot., 53(372): 1237~1247.
    Ni M, Tepperman J M, Quail P H. 1998. PIF3, a phytochrome-interacting factor necessary for normal photo induced signal transduction, is a novel basic helix-loop-helix protein. Cell, 95 : 657~667.
    Nozue K, Kanegae T, Imaizumi T, et al. 1998. A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl. Acad. Sci. USA, 95: 15826~15830.
    Ohgishi M, Saji K, Okada K, et al. 2004. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl. Acad. Sci. USA, 101: 2223~2228.
    Okada K, Shimura Y. 1992. Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seeding. Aust. J. Plant Physiol., 19: 439~448.
    Okamoto H, Matsui M, Deng X W. 2002. Overexpression of the heterotrimeric G-protein-a-subunit enhances phytochrome-mediated inhibition of hypocothls elongation in Arabidopsis. Plant cell, 1639~1651.
    Ogura Y, Komatsu A , Zikihara K, et al. 2008. Blue light diminishes interaction of PAS/LOV proteins, putative blue light receptors in Arabidopsis thaliana, with their interacting partners. J. plant Res., 121(1): 97~105.
    Oyama T, Shimura Y, Okada K. 1997. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev., 11: 2983~2995.
    Palmer J M, Warpeha K M F, Briggs W R. 1996. Evidence that zeaxanthin is not the photoreceptor for phototropism in maize coleoptiles. Plant Physiol., 110: 1323~1328.
    Pepper A E, Seong-Kim M, Hebst S M, et al. 2001. shl, a new set of Arabidopsis mutants with exaggerated development response to available red, far-red, and blue-light. Plant Physiol., 127: 295~304. Poppe C, Sweere U, Helge D H, et al. 1998. The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant J., 16: 465~471. Quińones M A, Lu Z, Zeiger E. 1996. Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for the blue light-dependent stomatal opening and coleoptile. Proc. Natl. Acad. Sci. USA, 93: 2224~2228.
    Riemann M, Riemann, M and Takano M. 2008. Rice JASMONATE RESISTANT1 is involved in phytochrome and jasmonate signaling. Plant cell environ., 1~10.
    Sakamoto K, Briggs W R. 2002. Celluar and subcelluar localization of phototropin. Plant Cell, 14: 1723~1735.
    Sakai T, Kagawa T, Kasahara M, et al. 2001. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA, 98: 6969~6974.
    Saito K, Watahiki M K and Yamamoto K T. 2007. Differential expression of the auxin primary response gene MASSUGU2/IAA19 during tropic responses of Arabidopsis hypocothls. Physiol. Plant, 130: 148~156.
    Sauer M, Balla J, Luschnig C, et al. 2006. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev., 20: 2902~2911.
    Schaffer R, Ramsay N, Samach A, et al. 1998. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 93: 1219~1229.
    Shalitin D, Yang H, Mockler T C, et al. 2002. Regulation of Arabidopsis cryptochrome by blue-light -dependent phosphorylation. Nature, 417: 763~767.
    Sharrock R A, Quail P H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure evolution and differential expression of a plant regulatory photoreceptor family. Gene Dev., 3: 1745~1757.
    Shatn D, Yang H, Mockler T C, et a1. 2002. Regulation of Arabidopsis cryptochrome2 by blue light-dependent phosphorylation. Nature, 417: 763~767.
    Sineshchekov O A, Jung K, Spudich J L. 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomons reinhardtii. Proc. Natl. Acad. Sci. USA, 99: 8689~8694.
    Singh A, Selvi M T, Shrma R. 1999. Sunlight-induced anthocyanin pigmentation in maize vegetative tissue. J. Exp. Bot., 5 0: 1619~1625.
    Stanislav V, Liming Z, Fred D S. 2000. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol., 122: 453~461.
    Steinmann T, Geldner N, Grebe M, et al. 1999. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science, 286: 316~318.
    Stoelzle S, Kagawa T, Wada M. 2003. Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. PNAS, 100: 1456~1461.
    Stowe-Evans E L, Luesse D R, Liscum E. 2001. The enhancement of phototropin-induced phototropic curvature in Arabidopsis occurs via a photoreversible phytochrome A-dependent modulation of auxin responsiveness. Plant Physiol., 126: 826~834.
    Swart T E, Corchnoy S B, Christie J M, et a1. 2001. The photocycle of a falvin-binding domain of the blue light photoreceptor phototropin. J. Biol. Chem., 276: 3649~3650.
    Tatematsu K, Kumagai S, Muto H, et al. 2004. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell, 16: 379~393.
    Thimann K V. 1992. The cholodny-went“theory”. Plant Mol. Biol. Reporter, 2(10): 102~104.
    Torii K U, McNellis T W, Deng X W. 1998. Functional dissection of its three structural modules in light control of seeding development. Embo. J., 17: 5577~5587.
    Toyota M, Furuichi T, Tatsum H, et al. 2007. Gravity-induced calcium increases in Arabidopsis seedlings. Plant Physiol., Preview, 107:106450.
    Trewavas A. 2000. Signal perception and transduction. In Biochemistry & Molecular Biology of Plants. Buchanan B B, Gruissem W and Jones(eds.) R L, American Society of Plant Physiologists, Rockville, Maryland, USA, pp: 940~989.
    Vitha S, Zhao L, Sack F D. 2000. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol., 122: 453~461.
    Vysotskaya L B, Veselov S Y, Veselov D S, et al. 2007. Kudoyarova1 Immunohistological localization and quantification of IAA in studies of root growth regulation, Russ. J. Plant Physiol., 54(6): 827~832.
    Wagner D, Koloszvari M, Quail P H. 1996. The small spatially distinct regions of phytochrome B are required for efficient signaling rates. Plant Cell, 8: 859~871.
    Wang H. 2005. Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Curr. Top. Dev. Biol., 68: 227~261.
    Wang H Y and Deng X W. 2002. Arabidopsis FHY3 defines a key phytochrome A singnaling component directly interacting with its homologous partner FAR1. Embo. J., 21: 1339~1349.
    Wang H, Ma L G, Li J M, et al. 2001. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 294: 154~158.
    Wang Z, Gu Y J, Chen G et al. 2001. Negative phototropism of rice root. Chinese Rice Research Newsletter, 9(3): 9~11.
    Wang Z, Mo Y W, Qian S Q. 2002. Negative phototropism of rice root and its influencing factors.Sci. China (Ser C), 4: 485~496.
    Warpeha K M F, Hamm H E, Lasenick M M, et al. 1991. A blue-light-activated GTP-binding ptotein in the plasma membranes of etiolated peas. Proc. Natl. Acad. Sci, USA, 88: 8925~8929.
    Whippo C W, Hangarter R P. 2003. Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes. Plant Physiol., 132: 1499~1507.
    Whippo C W, Hangarter R P. 2005. A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Plant Physiol., 139: 448~457.
    Whippo C W and Hangarter R P. 2006. Phototropism: bending towards enlightenment. Plant Cell 18: 1110~1119.
    White P J, Broadley M R. 2003. Calcium in plants. Annu. Bot., 92: 487~511.
    Winslow R B, Margaret A O. 2001. Photoreceptors in plant photomorphogenesis to date, five phytochromes, two cryptochromes, one phototropin, and one super chrome. Plant Physiol., 125: 85~88.
    Yamaguchi R, Nakamura M, Mochizuki N, et al. 1999. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J. Cell Biol., 145: 437~445.
    Yamamoto Y Y, Deng X W, Matsui M. 2001. CIP4, a new COP1 target, is a nucleus-localized positive regulator of Arabidopsis. Plant Cell, 13: 399~411.
    Yang H Q, Tang R H, Cashmore A R. 2001. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell, 13: 2573~2587.
    Yang H Q, Wu Y J, Tang R H, et al. 2000. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell, 103: 815~827.
    Zhang X, Zhang L, Dong F, et al. 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol., 126: 1438~1448.
    Zhou D X, Kim Y J, Li Y F, et al. 1998. COP1b, an isoform of COP1 generated by alternative splicing,has a negative effect on COP1 function in regulating light-dependent seeding development in Arabidopsis. Mol Genet Genom., 257: 387~391.
    顾蕴洁,王忠,王维学,等. 2001.水稻根的负向光性.植物生理学通讯, 5 (37) : 396~398.
    林鸣,曹宗巽. 1996.黄瓜器官特异蛋白的研究.植物学报, 38 (7): 525~529.
    莫亿伟,王忠,钱善勤,等. 2004.生长素在水稻根负向光性反应中的作用.中国水稻科学, 18 (3): 245~248.
    Alan E P, Seong K M, Stephanie M H, et al. 2001. shl, a new set of Arabidopsis mutants with exaggerated developmental responses to available red, far red, and blue light. Plant Physiol., 127: 295~304.
    Briggs W R, Liscum E. 1997. The role of mutants in the search for the photoreceptor for phototropism in higher plants. Plant Cell Environ., 20: 768~772.
    Briggs W R, Olney M A. 2001. Photoreceptors in plant photomorphogenesis to date: five phytochromes, two cryptochromes, one phototropin, and one superchrome. Plant Physiol., 25: 85~88.
    Chandrakuntal K, Kumar P G, Laloraya M. 2004. Direct involvement of hydrogen peroxide in curvature of wheat coleoptile in blue-light-treated and dark-grown coleoptiles. Biochem. Biophys. Res. Commun., 4 (319): 1190~1196.
    Elke Knieb, Michael S, Riidiger W. 2004. Tissue-specific and subcellular localization of phototropin determined by immuno-blotting. planata, 218: 843~851,
    Huala E, Oeller P W, Liscum E, et a1. 1997. ArabMopsis NPH1: A protein kinase with a putative redox-sensingdomain. Science, 278: 212~213.
    Iino M. 2006. Toward understanding the ecological function softropisms: interactions among and effects of light on tropisms. Curr. Opin. Plant Biol., 9: 89~93.
    Jabeena R, Yamadaa K, Shigemori H. 2006. Induction of ?-glucosidase activity in maize coleoptiles by blue light illumination. J. Plant Physiol., 5 (163): 538~545.
    Juan C R, Luis E.G. 2001. Vara Purification and characterization of a probable light receptor with kinase activity from beet root plasma membranes. Planta, 213: 802~810.
    Kaufmam L S. 1993. Transduction of blue light signals. Plant Physiol., 102: 33~38.
    Kimura M, Kagawa T. 2006. Phototropin and light-signaling in phototropism. Curr. Opin. Plant Biol., 9: 1~6.
    Knieb E, Salomon M, Riidiger W. 2004. Tissue-specific and subcellular localization of phototropin determinedby immuno-blotting. planata, 218: 843~851.
    Lin C. 2000. Photoreceptors and regulation of flowering time. Plant Physiol., 123: 39~50.
    Liscum E, Briggs W R. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant cell, 7: 473~485.
    Mukougawa K, Kanamoto H, Kobayashi T. 2006. Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore in Escherichia coli. FEBS Lett., 5 (580): 1333~1338.
    Muleoa R, Morinib S. 2006. Light quality regulates shoot cluster growth and development of MM106 apple genotype in vitro culture. Sci. Hortic., 4 (25): 364~370.
    Okada K, Shimura Y. 1992. Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust. J. Plant Physiol., 19: 439~448.
    Ramaglia I S. 1999. 2-D protecome analysis protocols. Link A J. Methods in Molecular biology. Totowa: Humanna press, 112:99.
    Shatn D, Yang H, Mockler T C, et a1. 2002. Regulation of Arabidopsis cryptochrome2 by blue light-dependent phosphorylation. Nature, 417: 763~767.
    Swart T E, Corchnoy S B, Christie J M, et a1. 2001. The photocycle of a falvin-binding domain of the blue light photoreceptor phototropin. J Biol Chem., 276: 3649~3650.
    Wang Z, Gu Y J, Chen G, et al. 2001. Negative phototropism of rice root. Chinese Rice Res. News., 9 (3): 9~11.
    Wang Z, Mo Y W, Qian S Q, et al. 2002. Negative phototropism of rice root and its influencing factors. Sci. China C Life Sci., 45: 485~496.
    Whippo C W, Hangarter R P. 2005. A brassinosteroid-hypersensitive Mutant of BAK1 indicates that a convergence of Photomorphogenic and hormonal signaling modulates phototropism. Plant Physiol., 139: 448~457.
    Yu R C, Pan R C. 1997. Effects of blue light on the growth and levels of endogenous phytohormones. Acta Phytophysiol Sin., 23: 175~180.
    冯亮,刘良式. 1996. G蛋白与植物细胞信号转导.植物生理学通讯, (323): 215~223.
    李建华,刘银谦,吕品,等. 2006. H2O2在黄瓜和绿豆下胚轴不定根形成中的作用.西北植物学报, 26 (12): 2506~2510.
    孙铭明,靳硕,刘祥林,等. 2006.低等植物蓝光受体信号传导研究.遗传, 28(6): 754~760.
    汪月霞,王忠,顾蕴藉. 2007a.蓝光受体下游信号转导组分的研究进展.生物学通报, 1: 1~2.
    汪月霞,王忠,顾蕴藉,等. 2007b.钙离子在向光性和向重性反应的信号转导中的作用.安徽农业科学, 35(10): 2877~2878.
    Baum G, Long J C, Jenkins G I. 1999. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. PNAS, 96: 13554~13559
    Babourina O, Godfrey L, VoltchanskII K, 2004. Changes in Ion Fluxes During Phototropic Bending of Etiolated Oat Coleoptiles. Ann. Bot., 94: 187~194.
    Chandrakuntal K, Kumar P G, Laloraya M. 2004. Direct involvement of hydrogen peroxide in curvature of wheat coleoptile in blue-light-treated and dark-grown coleoptiles. Biochem. Biophy. Res. Comm., 4 (319): 1190~1196.
    Desikan R, Cheung M K, Bright J,et al. 2004. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J.Exp.Bot, 55(395): 205~212 .
    Desikan R, Griffiths R, Hancock J, et al. 2002. A new role for an old enzyme: nitrate reductase- mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopisis thaliana. Proc.Natl. Acad. Sci, 99: 16314~16318.
    Fankhauser C, Yeh K C, Lagarias J C, et al. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science, 284: 1539~1541.
    Frohnmeyer H, Bowler C, Zhu J K, et al. 1998. Different roles for calcium and calmodulin in phytochrome and UV- regulated expression of chalcone synthase. Plant J., 19: 763~772.
    Gilman G A. 1987. G protein: Transducers of receptor-generated signals. Annu. Rev. Biochem., 56: 615~649.
    Hanson J, Hanssen M, Wiese A, et al. 2008. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J., 53: 935~949.
    Harada A, Sakai T and Okada K. 2003. phot1 and phot2 mediate blue-light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc Natl Acad Sci USA, 100: 8583~8588.
    Harada A, Shimazaki K. 2007. Phototropins and Blue Light-dependent Calcium Signaling in Higher Plants. Photochem. Photobiol., 83: 102~111.
    De Grauwe L , Vandenbussche F and Van Der Straeten D. 2007. Signal crosstalk in the control of hypocotyl elongation in Arabidopsis. Plant Cell Monographs 6: 271~293.
    Liu H T, Gao F, Cui S J, et al. 2006. Primary evidence for involvement of IP3 in heat-shock signal transduction in Arabidopsis. Cell Res, 16: 394~400.
    Luan S, Kudla J, Rodriguez-Concepcion M, et al. 2002. CaM and CBLs: Calcium sensors for specific signal-response coupling in plants. Plant cell, 14 (suppl.): 389~400.
    Kinoshita T, Nishimura M and Shimazaki K I. 1995. Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell, 7: 1333~1342.
    Kimura M, Kagawa T. 2006. Phototropin and light-signaling inphototropism. Curr. Opin. Plant Biol., 9:1~6. Moller S G, Kim Y S, Kunkel T and Chua N H. 2003. PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell, 15: 1111~1119.
    Niittyla T, Fuglsang A T, Palmgren M G, et al. 2007. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell Proteomics, 6: 1711~1726.
    Neill S, Barros R, Bright J, et al. 2008. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot., 59: 165~176.
    Neill S J, Desikan R, Clarke A, et al. 2002. H ydrogen peroxide and nitric oxide sa signaling molecules inplants. J.Exp.Bot., 53(372): 1237~1247.
    Ni M, Tepperman J M, Quail P H. 1998. PIF3, a phytochrome-interacting factor necessary for normal photo induced signal transduction, is a novel basic helix-loop-helix protein. Cell, 95 : 657~667.
    Ni M, Tepperman J M and Quail P H. 1999. Binding of phytochrome B to its nuclear signaling partner PIF3 is reversibly induced by light. Nature, 400: 781~784.
    Peiz M, Murata Y, Benning G, et al. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 406: 731~734.
    Reymond P, Short T W, Briggs W R, et al. 1992. Light-induced phosphorulation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc. Natl. Acad. Sci., 89: 4718~4721.
    Roux S J, Steinebrunner I. 2007. Extracellular ATP: an unexpected role as a signaler in plants. Trends Plant Sci., 12: 522~527.
    Smeekens S. 2000. Suaar-induced signal transduction in plants. Annu.Rev. Plant Physiol. Plant Mol. Biol, 51: 49~81.
    Toyota M, Furuichi T, Tatsum H, et al. 2007. Gravity-induced calcium increases in Arabidopsis seedlings. Plant Physiol. Prev., 107:106450.
    Wang X, Yang P, Gao Q, et al. 2008. Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta, In press.
    Warpeha K M F, Hamm H E, Lasenick M M, et al.1991. A blue-light-activated GTP-binding ptotein in the plasma membranes of etiolated peas. Proc Natl Acad Sci, USA, 88: 8925~8929.
    Wensel T G, He F, Justine A. 2005. Purification, reconstitution on lipid vesicles, and assays of PDE6 and its Activator G Protein, transducin. Methods in Mol. Biol., 307: 289~313.
    Xia H J, Yang G. 2005. Inositol 1, 4, 5-trisphosphate 3-kinases: functions and regulations. Cell Res, 15: 83~91.
    Zhang X, Takemiya A, Kinoshita T, et al. 2007. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol., 48: 715~723.
    陈汝民.1999. Unequal distribution of methoxy benzox azolinone (MBOA) is the main reason for phototropism in maize coleoptiles. Acta Bot. Sin., 41: 296~300.
    莫亿伟,王忠,钱善勤, et al. 2004.生长素在水稻根负向光性反应中的作用.中国水稻科学, 18 (3) : 245~248.
    倪为民,陈小娅,许智宏, et al. 2000. Advance in study of polar auxin transport . Act Bot Sin (植物学报), 42: 221~228.
    钱善勤,王忠,袁秋华, et al. 2004.植物向光素.植物生理学通讯, 40 (5) : 617~622
    余让才,潘瑞炽. 1997. Effects of blue light on the growth and levels of endogenous phytohormones. Acta Phytophysiol. Sin., 23: 175~180.
    Behriger F J, Davies P J. 1992. Indole acid level after phytochrome mediated changes in the stem elongation rate of dark and light grown Pisum seedlings. Planta, 188: 85~89.
    Blakeslee J J, Bandyopadhyay A, Peer W A, et al. 2004. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol., 134: 28~30.
    Briggs W R, Olney M A.. 2001. Photoreceptors in plant photomorphogenesis to date ,five phytochromes , two cryptochromes , one phototropin , and one super chrome. Plant Physiol., 125: 85~88.
    Bruinsma J, Hasegawa K. 1990. A new theory of theory of phototropism—its regulation by a light~induced gradient of auxin-inhibiting substrance. Physiol. Plant, 79: 700~704.
    Estelle M. 2001. Transporters on the move. Nature, 413: 372~375.
    Gaba V, Black M. 1983. The control of cell growth by light . In : Shropshine W M. Encyclopedia of Plant Physiology. New series ,Vol 16A. Berlin : Springer Verlag, 358~342.
    Haga K, Takano M, Neumann R,et al. 2005. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 17: 103~107.
    Hasegawa K, Noguchi H, Iwagawa T, et al. 1986. Phototropism in Hypocotyls of RadishⅠ. Isolation and identification of growth inhibitors, cis- and trans-raphanusanin and raphanusamide involved in phototropism of radish hypocotyls. Plant Physiol., 81: 976~979.
    Hasngawa T, Yamada K, Kosemura S, et al. 2001. Isolation and identification of a light—induced growth inhibitor in diffusates from blue light-illuminated oat (Avena sativa L.) coleoptile tips. Plant Growt. Regul., 33 (3): 175~179.
    Hasngawa T, Yamada K, Shigemori H, et al. 2002. Isolation and identification of a growth inhibitor from blue light—illuminated cress seedlings. Plant Growt. Regul., 37(1): 45~47.
    Laju K. Paul A L, Janny L et al. 2006. Arabidopsis cytokinin-resistant mutant, cnr1, displays altered auxin responses and sugar sensitivity. Plant Mol. Biol., 62: 409~425.
    Iino M. 1990. Phototropism: mechanisms and ecological implication. Plant Cell Environ., 13: 633~651. Jabeena R, Yamadaa K, Shigemori H. 2006. Induction of ?-glucosidase activity in maize coleoptiles by blue light illumination. J. Plant Physiol., 5 (163): 538~545.
    Kaufmam L S. 1993. Transduction of blue light signals. Plant Physiol., 102: 33~38. Rashotte A M, Brady S R, Reed R C. 2000. Basipetal auxin transports is required for gravitropisms in roots of A rabidopsis. Plant Physiol., 122: 481~490.
    Vitha S, Zhao L, Sack F D. 2000. Interaction of root gravitropism and phototropism in A rabidopsis wild type and starchless mutants. Plant Physiol., 122: 453~461.
    Vysotskaya L B, Veselov S Y, Veselov D S, et al. 2007. Kudoyarova1 Immunohistological localization and quantification of IAA in studies of root growth regulation, Russ. J. Plant Physiol., 54(6): 827~832. Wang Z, Mo Y W, Qian S Q. 2002. Negative phototropism of rice root and its influencing factors. Sci. China (Ser. C), 4, 485~496.
    Young L M , Evans M L , Hertel R. 1990. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol., 92: 792~796.
    莫亿伟,王忠,钱善勤,等. 2004.生长素在水稻根负向光性反应中的作用.中国水稻科学, 18 (3): 245~248.
    顾蕴洁,王忠,王维学. 2001.水稻根的背光性(简报).植物生理学通讯, 37(15): 396~398.
    Baum G, Long J C, Jenkins G I, et al. 1999. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc. Natl. Acad. Sci. USA, 96: 13554~13559.
    Blakeslee J J, Bandyopadhyay A, Peer W A, et al. 2004. Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol., 134: 28~31.
    Boccalandro H E, Simone S N D, Bergmann-Honsberger A et al. 2008. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol., 146: 108~115.
    Christie J M. 2007. Phototropin Blue-Light Receptors. Annu Rev. Plant Biol., 58: 21~45.
    Coenen C, Bierfreund N, Luthen H, et al. 2002. Developmental regulation of H+-ATPase -dependent auxin responses in the diageotropica mutant of tomato (Lycopersicon esculentum). Physiol. Plantarum., 114: 461~471.
    Estelle M. 2001. Transporters on the move. Nature, 413: 372~375.
    Friml J, Wisniewska J, Benkova E, et al. 2002. Lateral relocation of Auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415: 806~809.
    Fankhauser C, Yeh K C, Lagarias J C, et al. 1999. PKS1, a substrate phosphorylated by phytochrome thatmodulates light signaling in Arabidopsis. Science, 284: 1539~1541.
    Geldner N, Friml J, Stierhof Y D, et al. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 413: 425~428.
    Haga K, Takano M, Neumann R, et al. 2005. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. The Plant Cell, 17: 103~115.
    Haga K, Iino M. 2006. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J. Exp. Bot., 57: 837~847.
    Harada A, Shimazaki K. 2007. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem. Photobiol., 83: 102~111.
    Harper R M, Stowe-Evans E L, Luesse D R, et al. 2000. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 12: 757~770.
    Iino M. 1991. Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ., 14: 279~286.
    Iino M. 2001. Phototropism in higher plants. In Photomovement: ESP Comprehensive Series in Photosciences, Vol. 1, D. Hader and M. Lebert, eds (Amsterdam: Elsevier), pp: 659~811.
    Iino M, Neumann R. 2000. Phototropism of rice seedlings: Characterization and mutant isolation. Plant Cell Physiol., 41 (suppl.): S56.
    Inoue S I, Kinoshita T, Matsumoto M, et al. 2008. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc. Natl. Acad. Sci. USA, 105: 5626~5631.
    Kang B, Grancher N, Koyffmann V, et al. 2008. Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in Arabidopsis thaliana. Planta, 227: 1091~1099.
    Khurana J P, Poff K L. 1989. Mutants of Arabidopsis thaliana with altered phototropism. Planta, 178: 400~406.
    Lariguet P, Schepens I, Hodgson D, et al. 2006. Phytochrome kinase substrate 1 is a phototropin 1 binding protein required for phototropism. Proc. Natl. Acad. Sci. USA, 103: 10134~10139.
    Li P, Wang Y, Qian Q, et al. 2007. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res., 17: 402~-410.
    Liscum E, Briggs W R. 1995. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell, 7: 473~485.
    Liscum E, Briggs W R. 1996. Mutants of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol., 112: 291~296.
    Motchoulski A, Liscum E. 1999. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science, 286: 961~964.
    Muday G K, Murphy A S. 2002. An emerging model of auxin transport regulation. Plant cell, 14: 293~299. Pedmale U V, Liscum E. 2007. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol. Chem., 282: 19992~20001.
    Sakai T, Kagawa T, Kasahara M, et al. 2001. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA, 98: 6969~6974.
    Sakai T, Wada T, Ishiguro S, et al. 2000. RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 12: 225~236.
    Tatematsu K, Kumagai S, Muto H, et al. 2004. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growthresponses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell, 16: 379~393. Tokutomi S, Matsuoka D, Zikihara K. 2008. Molecular structure and regulation of phototropin kinase by blue
    light. Biochimica. Biophysica. Acta., 1784: 133~142. Yoshihara T, Iino M. 2007. Identification of the gravitropism-related rice gene LAZY1 and elucidation of
    LAZY1-dependent and–independent gravity signaling pathways. Plant Cell Physiolmm., 48: 678~688. Wang Z, M YW Qian S Q. 2002. Negative phototropism of rice root and its influencing factors. Sci. in China (Series C), 4: 485~496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700