用户名: 密码: 验证码:
牡丹花器官发育相关基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹(Paeonia suffruticosa)是中国十大传统名花之一,也是我国的候选国花,具有极高的观赏价值。利用基因工程技术培育花卉新品种,是世界花卉育种的研究热点之一。迄今为止,尽管许多植物的花器官发育相关基因已被分离和克隆,但是关于牡丹的研究鲜有报道。
     本研究以牡丹品种‘赵粉’为试材,通过同源克隆的办法,采用RT-PCR和RACE技术,分别从其萼片、花瓣、雄蕊和心皮中成功分离了牡丹PsAP1、PsAP2、PsPI、PsMADS1、PsMADS9、PsAG和PsMADS5这7个花器官形成相关基因的cDNA全长,并通过相对荧光定量PCR的方法,对这些基因在不同器官及花芽分化过程中的时空表达模式进行了分析。同时,分别构建了这7个基因的正义和反义植物表达载体,转化拟南芥和烟草,经过RT-PCR后,得到部分阳性植株,并对其表型初步进行初步观察。主要研究结果如下:
     1.根据已知基因的保守序列设计并引物,采用RT-PCR和RACE相结合的方法,首次从牡丹品种‘赵粉’的萼片、花瓣、雄蕊和心皮中成功获得了7个花器官发育相关基因的cDNA全长,分别命名为PsAP1(GenBank登录号:HM143943)、PsAP2(GenBank登录号: HQ222889)、PsPI(GenBank登录号: HQ878444)、PsMADS1(GenBank登录号: HQ222890)、PsMADS9(GenBank登录号: HQ902183)、PsAG(GenBank登录号: HQ222891)和PsMADS5(GenBank登录号: HQ449569)。序列分析表明,除了PsAP2外,其余6个基因均含有MADS结构域和植物所特有的K结构域,属于MADS-box基因家族。
     2.采用相对荧光定量的方法对7个基因在牡丹不同器官中的表达差异进行分析发现,不同的基因在不同的器官中有不同的表达模式,具有一定的组织特异性。其中PsAP1主要在花瓣、萼片和心皮中表达,根和茎中几乎没有表达。PsAP2在各个器官中均有表达,在花瓣中最高。PsPI主要在花瓣和雄蕊中表达,其他器官几乎没有表达。PsMADS1和PsMADS1主要在花瓣、雄蕊和心皮中表达,其他器官几乎没有表达。PsAG主要在雄蕊和心皮中表达,根和萼片中几乎没有表达。PsMADS5在各个器官中均有表达,心皮中表达量最高。
     采用相对荧光定量的方法对这7个基因在牡丹花芽分化过程中的表达差异进行分析,结果表明:不同的基因在花芽分化过程中有不同的变化趋势。其中PsAP1在花芽分化前期表达最高,后期表达最低。PsAP2在花芽分化中期表达最高,初期表达最低。PsPI、PsMADS1和PsMADS5在花芽分化过程中的相对表达量均为中期表达最高,初期表达最低。PsMADS9在花芽分化后期表达最高,初期表达最低。PsAG在花芽分化末期表达最高,初期表达最低。
     3.成功构建了PsAP1、PsAP2、PsPI、PsMADS1、PsMADS9、PsAG和PsMADS5的正义和反义植物表达载体,采用花序侵染法和叶盘转化法转化拟南芥和烟草,经基因组PCR检测,初步得到部分阳性植株。
     4.将PsAP1基因在拟南芥和烟草中超表达,通过对转基因植株表型观察发现,转基因拟南芥和烟草都能够提前开花。初步表明PsAP1基因可能对花期调控具有重要的作用。将PsAG基因在拟南芥中超表达,转基因拟南芥植株与野生型相比,叶片变小,花发育不正常,甚至出现畸形。将PsAG基因在烟草中超表达,转基因烟草,与野生型相比,花型变小,推测PsAG基因可能参与花发育。
Tree peony (Paeonia suffruticosa) is a very popular traditional famous flower and candiate national flower .It has high ornamental value. Molecular breeding has been one of the hotspots in flower type modification. Till now, although many genes and cDNA clones for genes about floral development have been isolated and well characterized, little information, if any, is available concerning molecular aspect of floral organ development in tree peony.
     In this study, we firstly isolated the full length cDNA clones encoding PsAP1, PsAP2, PsPI, PsMADS1, PsMADS5, PsAG and PsMADS5 from sepals, petals, stamens and carpels of tree peony cultivar‘Zhao Fen’using RT-PCR and RACE, then, studied their expression patterns in different organs and stages using relative real-time PCR. Meanwhile, in order to validate the function of genes, the sense and antisense plant expression vectors of the seven genes were constructed and transformed into tobacco NC89, respectively. The main results were as follows:
     1. Using degenerated primers derived from conserved sequences of previously cloned genes, 7 genes involved in floral organ development were first obtained from sepals, petals, stamens and carpels of tree peony cultivar‘Zhao Fen’by RT-PCR and RACE, and were named PsAP1 (GenBank No.HM14393), PsAP2 (GenBank No. HQ222889), PsPI(GenBank No.HQ878444),PsMADS1(GenBank No.HQ222890),PsMADS9 (GenBank No.HQ902183), PsAG(GenBank No.HQ222891) and PsMADS5(GenBank No.HQ449569), respectively. Sequence analysis showed that these genes all had MADS domains and the plant specific K domains,belonged to MADS-box gene family except PsAP2.
     2. The expressions of these seven genes were detected in different organs of tree peony by using relative real-time PCR. The results showed that different genes had different expression patterns and tissue specicity. PsAP1 mainly expressed in petals,sepals and carpels,but hardly expressed in roots and stems. PsAP2 expressed in all the organs,hinghest in petals. PsPI mainly expressed in petals and stamens, hardly expressed in any other organs. PsMADS1 and PsAMDS9 mainly expressed in petals stamens and carprls, hardly expressed in any other organs. PsAG mainly expressed in stamens and carpels, hardly expressed in roots and sepals. PsMADS5 expressed in all the organs, hinghest in petals.
     The expressions of these seven genes were detected in different stages of tree peony by using relative real-time PCR. The results indicated that different genes had different expression patterns. PsAP1 were expressioned at the highest level at prophase and the lowest level at anaphase in the process of flower bud differentiation. PsAP2 were expressioned at the highest level at prophase and the lowest level at the initial stage in the process of flower bud differentiation. PsPI PsMADS1 and PsMADS5 were all expressioned at the highest level at metaphase and the lowest level at the initial stage in the process of flower bud differentiation. PsMADS9 were expressioned at the highest level at anaphase and the lowest level at the initial stage in the process of flower bud differentiation. PsAG were expressioned at the highest level at terminal stage and the lowest level at the initial stage in the process of flower bud differentiation.
     3 The sense and antisense plant expression vectors of these seven genes(PsAP1,PsAP2, PsPI,PsMADS1,PsMADS9,PsAG,PsMADS5) were constructed and transformed into Arabidopsis thaliana and Nicotiana tabacum via Agrobacterium tumefaciens-mediated flower-dipping and leaf disk transformation method, respectively. Parts of transformed plants were obtained after genomic PCR detection.
     4. Over expression of PsAP1 in transgenic Arabidopsis thaliana and Nicotiana tabacum both resulted early flowering. It indicated preliminarily that PsAP1 plays an essential role in the regulation and control of flowering time.
     Over expression of PsAG in transgenic Arabidopsis thaliana, the transgenic plants appeared smaller leaves and abnormal flowers compared with wild type Arabidopsis thaliana. Over expression of PsAG in transgenic Nicotiana tabacum, the transgenic plants showed smaller flowers compared with wild type Nicotiana tabacum. It preliminarily indicated that PsAG may be related to flower development.
引文
安利忻,刘荣维,陈章良.花分生组织决定基因AP1转化矮牵牛的研究.植物学报,2001,43 (1) : 63 - 66
    蔡小钿,王金发.植物MADS盒基因的功能和调节机理.植物生理学通讯, 2000, 36: 277-28l
    蔡晔.花生MADS-box基因保守序列的克隆与分析.福建农林大学硕士论文. 2009
    崔荣峰,孟征.花同源异型MADS-box基因在被子植物中的功能保守性和多样性.植物学通报,2007,24(1):31-41.
    丛楠,程治军,万建民.控制花器官发育的ABCDE模型.农业生物技术科学. 2007, 23(7): 124-128
    陈端芬.中国水仙花型花色发育基因(NTMADS1、NTMADS3、NTPDS1和NTPZDS1)的克隆与转化,中国林业科学研究院.博士论文, 2008
    丁燕,韩振海,许雪峰,等.柿花发育相关的MADS-box基因克隆与表达.园艺学报,2007,34(1):39 -42
    樊春媛,印敬明,王冰,等.马铃薯StAP1基因的分子克隆与表达分析.植物生理学通讯,2010, 46(9):933-938
    高志民,陈段芬,彭镇华.中国水仙NtMADS3基因全长的克隆与表达分析.北京林业大学学报, 2009, 31(2):96-101
    高志民,郑波,彭镇华.毛竹PeMADS1基因的克隆及转化拟南芥初步研究.林业科学, 2010, 46(2):37-41
    郭滨,陈东红,戴薇,等.蝴蝶兰花发育相关基因pPI9的克隆与表达分析.复旦学报, 2006, 45(3):277-282
    郭爽,马宁,杨文才,等.辣椒花器官发育MADS-box基因的克隆与表达分析.园艺学报, 2010, 37(10):1591–1597
    李贵生,孟征,孔宏智,等.ABC模型与花进化研究.科学通报, 2003, 48(23):2415-2421
    李少锋,苏晓华,张冰玉,等.林木基因克隆研究进展.植物学报, 2011, 46(1):79-107
    李文卿.风信子HoSEP1基因的分离及超标达植株的表型分析.西南农业大学硕士论文. 2005
    林伯年,刘春铃,徐昌杰,等.柑桔MADS盒APETALA1同源DNA片段克隆.园艺学报, 2001, 28 (2) : 167-169
    刘道凤.腊梅(Chimonanthus praecox(L.)Link)CpMADS1 (MADS盒基因)的结构和功能初步.西南农业大学硕士论文. 2008
    刘良式.植物分子遗传学.北京:科学出版社, 1997:353-45l
    刘菊华,徐碧玉,张静,等.MADS-box转录因子的相互作用以及对果实发育和成熟的调控.遗传, 2010, 32(9): 893-902
    刘建武,刘宁,孙卉,等.颈卵器植物MADS-box基因的研究进展.植物学通报, 2002, 19:l50-l55
    刘建武,孙成华,刘宁.花器官决定的ABC模型和四因子模型.植物学通报, 2004, 21(3):346-351
    刘涛,李晓贤,徐平珍,等.板栗MADS-box蛋白基因(CmMADS3)的克隆和表达分析.云南植物研究, 2006, 28:295-299
    刘月学,胡桂兵,林顺权,等.普通琵琶和栎叶琵琶APETALA1同源基因的克隆和序列分析,福建农林大学学报, 2006, 35(2): 173-176
    刘志雄,王莹,吕小蒙,等.日本晚樱花器官特征基因CLAP1的克隆与分析表达.园艺学报, 2010, 37(4): 649-654
    龙茹.草原龙胆C∕D类MADS-box基因克隆与表达分析.东北林业大学硕士论文. 2008
    罗聪,何新华,陈虎,等.芒果AP1同源基因的克隆及其生物信息学分析,基因组学与应用生物学, 2009, 28(5):851-858
    吕晋慧,吴月亮,孙磊,等. AP1基因转化地被菊品种‘玉人面’的研究.林业科学, 2007,43(9):128-132
    马辉,张智俊,罗淑萍.植物MADS-box基因研究进展.生物技术通报, 2006(6): 14-18
    孟丽,周琳,张明姝,等.一种有效的花瓣总RNA的提取方法.生物技术, 2006, 16(1): 38-40
    孟征,许智宏.高等植物的同源异型基因.植物生理学通讯, 1997, 33:233-239
    彭书明.苦瓜(Momordica charantia)两种MADS-box基因的克隆及其功能研究.四川农业大学博士论文, 2006
    山红艳.三叶木通花发育相关基因的结构、功能和进化研究.博士论文, 2006
    宿红艳,李全梓,李兴国,等.风信子HoMADS2基因的克隆及表达分析.遗传学报, 2005, 32 (11): 1191-1198
    宿红艳,周盛梅,王磊,等.草莓APETALA2同源基因的克隆及表达分析.西北植物学报, 2005, 25(10): 1937–1942.
    宋长年,房经贵,王晨,等.基于EST库的枳APETALA2基因cDNA克隆及其表达分析.园艺学报, 2009, 36 (6): 799–806.
    王力娜,范术丽,宋美珍,等.植物MADS-box基因的研究进展.生物技术通报, 2010, 8: 12-19
    王力先,王永飞.被子植物花发育的ABC模型研究进展.安徽农学通报, 2007, 13(8): 49-5l
    王莲英.中国牡丹品种图志. 1997.北京:中国林业出版社
    王冬梅,张志毅,安新民,等.毛白杨AP3同源基因(PtAP3)的克隆及其在烟草中的正反义转化初报.林业科学, 2005, 41: 35-42.
    王正加,黄有军,夏国华,等.山核桃APETALA1同源基因的克隆与序列分析.浙江林学院学报, 2008, 25 (4) : 427- 430
    魏志刚,魏继承,杨传平,等.白桦MADS基因的克隆及序列分析.东北林业大学学报, 2007, 35(1): 1-3
    闻可心,刘雪梅. AP2功能基因在植物花发育中的重要作用.生物技术通报, 2010, 2:1-7
    徐雷,宋伟杰,王利琳.豌豆AGAMOUS同源基因功能的初步研究.科学通报, 2009, 54: 3207-3212
    徐启江.草原龙胆花器官MADS-box基因克隆与表达分析.东北林业大学博士论文, 2007
    徐勇.桃花发育相关MADS-box基因研究.首都师范大学博士论文, 2007
    许智宏,刘春明.植物发育的分子机理.北京:科学出版社, 1998, 39-53
    许智宏.植物发育与生殖的研究:进展和展望.植物学报, 1999, 41: 909-920
    杨满业,赵茂俊,徐莺,等.苦瓜MADS盒基因的克隆和表达研究.北京林业大学学报, 2004, 4:31-35.
    杨郁文,张保龙,等.花分生组织决定基因APETALA1转化油菜.江苏农业学报, 2007, 23(6): 564-567
    尹静,任春林,詹亚光,等.可用于实时荧光定量PCR标准化的白桦内参基因.植物生理学通讯,2010,46(10): 1061-1066
    袁涛,赵孝之,李丰刚,等.牡丹, 2004北京:中国林业出版社
    曾英,胡金勇,李志坚等.植物MADS盒基因与花器官的进化发育.植物生理学通讯, 2001,37: 281-287
    张冰玉,苏晓华,周祥明.林木花发育基因的调控.植物学通报, 2008, 25 (4):476-482
    张浩,郭滨,李敏,等.蝴蝶兰PhAP3基因的表达特性研究.复旦学报, 2010, 49(1):16-20
    张君诚,宋育红,陈夜江,等. MADS-box基因在植物胚珠发育中的作用.种子, 2008, 27(5): 13-16
    张宪省,马小杰,郭海新.胚珠发育的分子基础,植物学通报, 1998, 15(3): l-5
    张伟媚,陈善娜.花器官发育的ABC模型.云南大学学报(自然科学版), 2001, 23:102-105
    张云,刘青林.植物花发育的分子机理研究进展.植物学通报, 2003, 20: 589-601
    张则婷,李学宝.MADS-box基因在植物发育中的功能.植物生理学通讯, 2007, 43(2):218-222
    赵奇,王台,魏小弟等. AP2基因在高等植物花器官发育中的作用概述.热带农业科学, 2005, 25(3): 50–56.
    郑亚东,郭余龙,陈旭,等.GhMADS3基因组成型表达对矮牵牛花形和花色的影响.园艺学报, 2007, 34(4): 985-990
    周蕾,高峰.花器官形成的基因调控.广西植物, 2005, 25(6):71-583
    周琳,王雁,彭镇华等.牡丹查耳酮合酶基因Ps-CHS1的克隆及其组织特异性表达.园艺学报, 2010, 37(8):1295–1302
    周盛梅,宿红艳,王磊,等.苹果apetala2同源基因的克隆和转化研究.园艺学报, 2006, 33(2):239–243
    宗成文.葡萄花发育相关基因的克隆与表达特性分析,南京农业大学博士论文, 2006
    Ana Berbel, Cristina Navarro, Cristina Ferrándiz, et al. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Plant Physiology, 2005, 139:174-185
    Angenent G C, Franken J, Busscher M, et al.A novel class of MADS box genes is involved in ovule development in Petunia.Plant Cel1, 1995,7:l569-l582
    Angenent G C, Colombo L.Molecular control of ovule development. Trends in Plant Science, 1996, 1: 228-232
    Aukerman M J,Sakai H J. Regulation of flowering time and floral organ identity of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 2003, 15(11): 2730–2741
    APG. An ordinal classification for the families of flowering plants. Ann Mo Bot Gard, 1998, 85:531-553.
    APG. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc, 2003, 141: 399-436.
    Benedito V A, Visser P B, Tuyi J M, et al. Ectopic expression of LLAG1, an AGAMOU Shomologue from lily (Lilium longiflorum Thunb.) causes foral homeotic modifications in Arabidopsis. Journal of Experimental Botany, 2004, 55(41): 1391-1399
    Benlloch R, Roque E, Ferrándiz C, et al. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Plant J, 2009, 60(1): 102–111
    Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol, 2003, 29: 464-489
    Berbel A, Navarro C, Ferrandiz C, et al. Analysis of PEAM4,the pea AP1 functional homologue,supports a model for AP1-like genes controlling both floral mesristem and floral organ identity in different plant species. Plant J, 2001, 25: 441-451
    Bowrnan J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell, 1991, 3(8): 749-758
    Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis.Development, 1991, 112(1): l-20
    Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. Plant Cell, 1989, l (l): 37-52
    Bowman J L, Alvarez J, Weigel D, et al. Control of flower development in Arabidopsis thaliana by APETALA1and interacting genes. Development, 1993, 119(3):721-743
    Bowman J L, Meyerowitz E M. Genetic control of pattern formation during flower development in Arabidopsis. Symp Soc Exp Biol, 1991, 45:89-115
    Borner R,Kampmann G,Chandler J,et al. A MADS domain gene involved in the transition to flowering in Aiabidopsis. Plant J, 2000, 24: 591-599
    Carpenter R, Coen E S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Development, 1990, 4: 1483-1493.
    Chelsky D, Ralph R, Jonak G. Sequence requirements for synthenic peptide mediated translocation to the nucleus. Mol Cell Bio, 1989, l9: 2487-2492
    Christine M, Robert E, Paul H, et al. B-class MADS-box genes in Trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta, 2008, 227:741-753
    Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development. Nature, 1991, 353: 31-37
    Colombo L,Franken J,Koetje E, et al. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 1995, 7(11):1859-1868
    Danilo D, Fernando H, Shiliang Zhang. Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana. Dev Genes Evol, 2006, 216: 19–28
    Diaz-Riquelme J, Lijavetzky D, JoséM, et al. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology, 2009, 149 (1) : 354-369
    Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 2004, 14: 1935-1940
    Egea-Cortines M,Saedler H,Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J, l999, 18: 5370-5379
    Elena M,Kramer. Molecular evolution of the petal and stamen identity genes,APETALA3 and PISTILLATA,after petal loss in the Piperales. Molecular Phylogenetics and Evolution, 2007, 44: 598-609
    Elo A,Lemmetyinen J,Turunen M L,et al. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plantarum, 2001, 112:95-103
    Eileen P, Ying Y, Thomas J. Conserved C-Terminal Motifs of the Arabidopsis Proteins APETALA3 and PISTILLATA Are Dispensable for Floral Organ Identity Function. Plant Physiology, 2007, 145:1495-1505
    Fernando D D,Zhang S. Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana. Dev Genes Evol, 2006, 2 (16):19-28
    Ferrandiz C, Liljegren S J, Yanofsky M F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science,2000,289(5478): 436–438
    Ferrario S, Shchennikova A V, Franken J, et al. Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol, 2006, 140(3): 890–898
    Filipecki M K, Sommer H, Malepszy S. The MADS-box gene CUS1 is expressed during cucumber somatic embryogenesis. Plant Sci, 1997, 125:63–74.
    Gao X M, Xia Y M, Li Q J. Isolation of two putative homologues of PISILLATA and AGAMOUS from Alpinia oblongifolia(Zingiberaceae) and characterization of their expression. Plant Science, 2006, 170: 674-684
    Gil H J, Pistón F, Martín A, et al. Comparative genomic analysis and expression of the APETALA2-like genes from barely, wheat and barely-wheat amphiploids. BMC Plant Biology, 2009, 9: 66-78.
    Guo Y L, Zhu Q L, Zheng S Y, et al. Cloning of a MADS box gene(GhMADS3) from Cotton and analysis of its homeotic role in transgenic tobacco. Journal of Genetics and Genomics, 2007, 34(6): 527-535
    Gustafson B C, Savidge B, Yanofsky M F. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell, 1994: 76(1): 131–143
    Hartmann U, Hohmann S, Nettesheim K, et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J, 2000, 21(4): 351-360
    Huang H, Tudor M, Weiss C A, et al. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol Biol, 1995, 28: 549-567
    Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001, 4:525-529.
    Ito Y, Kitagawa M, Ihashi N, et al. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J, 2008, 55(2): 212–223
    Jang S, An K, Lee S, et al. Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol, 2002, 43(1): 230-238
    Jofuku K D, Boer B G , Montagu M V, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6 (9): 1211-1225.
    Jofuku K D, Omidyar P K, Gee Z, et al. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc NatlAcad Sci USA, 2005, 102 (8): 3117-3122.
    Kamer E M, Su H J, Wu C C, et al. A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolution Biology, 2006, 6: 30-35
    Kaufmann K, Mui?o J M, Jauregui R, et al. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol, 2009, 7(4): 854–875.
    Kim S, Koh J, Ma H, et al. Sequence and expression studies of A-, B-, and E-class MADS-box homologues in Eupomatia (Eupomatiaceae): support for the bracteate origin of the calyptra. Int J Plant Sci, 2005, 166: 185-198
    Kim S, Soltis P S, Wall K, et al. Phylogeny and domain evolution in the APETALA2-like gene family. MolBiolEvol, 2005, 23: 107-120
    Koornneef M,Blankestjhn-De Vries H,Hanhart C. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effeetive in the Landsberg erecta wild-type. Plant J, 1994, 6: 911-919
    Kotilainen M, Elomaa P, Uimari A, et al.GRCD1, an AGL2-like MADS-box gene participates in the C function during stamen development in Gerbera hybrida.Plant Cell,2000, 12: l893-1902
    Krizek B A, Fletcher J C. Molecular mechanisms of flower development:An armchair guide. Nature Reviews Genetics, 2005, 6: 688–698
    Ku A T, Huang Y S, Wang Y S, et al. IbMADS1 (Ipomoea batatas MADS-box 1 gene) is involved in tuberous root initiation in sweet potato (Ipomoea batatas). Ann Bot,2008,102(1): 57–67
    Kyozua J, Harcourt R, Peacock W J,et al. Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol, 1997, 35: 573-584
    Lemmetyinen J, Hassinen M,Elo A,et al. Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant, 2004, 121: 149-162
    LiljegrenS J, Ditta G S, Eshed Y, et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404: 766-770
    Li Q Z, Li X G, Zhang X S, et al. Isolation and Expression of HAP2, A Homolog of AP2 in Hyacinthus orientalis. Developmental and Reproductive Biology, 10(1):69-75.
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods, 2001, 25:402-408
    Lv S H, Du X Q, Lu W L, et al. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Evolution& Development, 2007, 9(1): 92-104
    Maes T, Van de Steene N, Zethof J, et al. Petunia AP2-like genes and their role in flower and seed development. Plant Cell, 2001, 13: 229-244
    Mara C D, Irish V F. Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis. Plant Physiol, 2008, 147(2): 707-718
    Messenguy F, Dubois E. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene, 2003, 316: 1-21.
    Michaels S D, Ditta G, Gustafson-Brown C, et al. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J, 2003, 33: 867-874
    Moyle R, Fairbairn D J, Ripi J, et al. Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot, 2005, 56(409): 101–112
    Nilsson L, Carlsbecker A, Sundas L A, et al. APETALA2 like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta, 2007, 225: 589–602
    Nobuhiro Kotoda, Masato Wada, Shinnosuke Kusaba, et al. Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Science, 2002, 162: 679-687
    Ohto M, Fischer R, Goldberg R B, et al. Control of seed mass by APETALA2. ProcNatlAcad Sci USA, 2005, 102 (8): 3123–3128
    Parenicova L, Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell, 2003, 15(7): 1538-1551
    Pelaz S, Ditta G S, Baumann E, et al.B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203
    Pelaz S, Gustafson-Brown C, Kohalmi S E, et al. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J, 2001, 26: 385-394
    Poupin M J, Federici F, Medina C, et al. Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene, 2007, 404(12): 10–24
    Rigola D, Pe ME, Fabrizio C, et al. CaMADS1, a MADS box gene expressed in the carpel of hazelnut. Plant Mol Biol, 1998, 38:1147-1160.
    Schneitz K. The molecular and genetic control of ovule development.Curr Opin Plant Bio1, 1999, 2: l3-l7 Schwarz-Sommer Z, Huijser P, Nacken W, et al. Genetic control of flower development by homeotic genes in Antirrhinum majus.Science, 1990, 250: 931-936
    Shanhua Lū, Xiaoqiu Dua, Wenliang Lua, et al. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions. Evolution & Development, 2007, 9:92–104
    Sheppard L A, Brunner A M, Krutovskii K V, et al. A DEFICIENS homolog from the dioecious tree blackcottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiol, 2000, 124:627-640
    Soltis D E, Ma H, Frohlich M W, et al. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. TRENDS in Plant Science, 2007,12(8):358-367
    Southerton S G, Strauss S H, Olive M R, et al. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol, 1998, 37: 897-910
    Sun H F, Meng Y P, Cao Q F, et al. Molecular Cloning and Expression Analysis of a SQUA/AP1Homologue in Chinese Jujube (Ziziphus jujube Mill.).Plant Mol Biol Rep, 2009, 27: 534–541
    Sung S K, Moon Y H, Chung J E, et al . Characterization of MADS box genes from hot pepper. Mol Cells, 2001, 11(3):352-359
    Tadege M, Sheldon C C, Helliwell C A, et al. Control of flowering time by FLC orthologues in Brassica papus. Plant J, 2001, 5 (28):545-553
    Tang Meifang, Li Guisheng, Chen Mingsheng. The Phylogeny and Expression Pattern of APETALA2-like Genes in Rice. Journal of Genetics and Genomics, 2007, 34(10): 930–93
    Tetty Chaidamsari, Samanhudi, Herti Sugiarti, et al. Isolation and characterization of an AGAMOUS homologue from cocoa. Plant Scinece, 2006, 5: 968-975
    Theissen G. Development of floral organ identity:stories from the MADS house.Curr Opin Plant Bio1, 2001, 4: 75-85
    Theissen G, Saedler H. Floral quartets. Nature, 2001, 409: 469-47l
    Theissen G, Becker A, Rosa A D, et al. A short history of MADS-box genes in plants. Plant Mol Bio1, 2000, 42: l15-149
    Theissen Q, Strater T, Fischer A, et al. Structural characterization, chromosomal localization and phylogenetic evolution of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 1995, 156:155-166
    Tomohiko Kato, Takashi Hibino. Isolation and expression analysis of AGAMOUS-like genes from Eucalyptus grandis. Plant Biotechnology, 2009, 26: 121–124
    Tzeng T Y, Chen H Y, Yang C H. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiology, 2002, 130:1827-1836
    Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3 (7): 34-37
    Weigel D, Nilsson O. Developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495 - 500
    Zahn L M, Leebens-Mack J H, Arrington J M, et al. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub and neofunctionalization events. Evolution & Development, 2006, 8(1): 30-45
    Zahn L M, Kong H, Leebens-Mack J H, et al. The evolution of the SEPALLATA subfamily of MADS-box genes:a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 2005, 169: 2209-2223
    Zhang L, Xu Y, Ma R C. Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica), Joural of genetics and genomics, 2008, 35: 365?372
    Zhang W H, Xiang Q Y, Thomas D T, et al. Molecular evolution of PISTILLATA-like genes in the dogwood genus Cornus(Cornaceae). Molecular Phylogenetics and Evolution, 2008, 47: 175-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700