用户名: 密码: 验证码:
桥梁结构气动导数识别的理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动导数是描述桥梁结构气动性能的重要参数。桥梁抗风研究的精细化,对桥梁结构气动导数的识别精度提出了更高的要求。如何准确有效地获得气动导数,已成为桥梁抗风研究的重要课题之一。本文针对这个问题进行了深入的理论和试验研究,主要研究内容与成果如下:
     1.在ILS法的基础上,本文提出了系统矩阵识别的分段扩阶最小二乘迭代算法(Subsection Extended Order Iterative Least Square Algorithm,简称SEO-ILS法)。SEO-ILS法能利用节段模型风洞试验的自由振动信号,直接识别系统矩阵,同时可得到复模态参数和实模态参数,可为自由振动法识别气动导数提供一种比较可靠的手段。
     2.对节段模型风振试验的信号预处理技术进行了研究。采用小波的信号分解和重构技术,先去除实测信号的高频噪声,再做无相位失真的低通滤波。无偏心节段模型参数的仿真识别表明,本文对信号的预处理技术能有效地提高识别精度。
     3.应用拉格朗日方程,建立了风洞中弹性悬挂的二自由度桥梁节段模型质心的竖向和扭转运动方程。所建立竖向和扭转运动方程,不仅考虑了质量中心与弹性中心的偏移,而且考虑了质量中心与竖向阻尼力中心的偏移,使桥梁节段模型振动的数学模型更加完善。
     4.给出了利用SEO-ILS法识别气动导数的方法。通过平板气动导数的识别结果与理论解的对比,验证了SEO-ILS法识别气动导数的可靠性。桥梁节段模型风洞试验表明,SEO-ILS法的识别精度高,重复性和稳定性好。对于有偏心的桥梁结构,考虑偏心影响有助于气动导数识别精度的进一步提高。
     5.探讨了几种比较典型的桥梁断面的气动导数特性。通过改变SEO-ILS法识别平板模型气动导数时的计算参数,对其识别精度和气动导数的变异性进行了尝试性研究。研究结果表明,SEO-ILS法识别气动导数稳定可靠,无量纲风速较高时气动导数识别的变异系数小。
Aerodynamic derivatives are important parameters to characterize the aerodynamic property of bridge structures. Refined research concerning bridge wind-resistant analysis needs better identification precision in the aerodynamic derivatives of bridge deck. So how to obtain these parameters accurately and effectively is one of main concerns in wind-resistant study of long-span bridges. Motivated with this necessity, this dissertation focuses on theoretical and experimental approaches to the identification of aerodynamic derivatives. The main contents are as following:
     1. Based on Iterative Least Square (ILS) method, the Subsection Extended Order Iterative Least Square algorithm (SEO-ILS) for system identification in time domain is presented firstly. The SEO-ILS algorithm is able to directly identify system matrix from free vibration data of bridge deck sectional model via wind tunnel test. By using the SEO-ILS algorithm, complex and real mode parameters may also be obtained simultaneously. The numerical simulation results indicate that the proposed method performs comparably with the traditional ILS method in identifying stiffness coefficients while provides better performance in identifying damping coefficients. The SEO-ILS algorithm is finally applied to identify the stiffness and damping matrix of an elastically-suspended sectional model by using the wind tunnel testing data.
     2. The measurement noise in wind tunnel testing data is detrimental to achieve a better identification results. A technique based on wavelet technique and low-pass filter is examined to preprocess measurement data and eliminate the measurement noise in data. High-frequency noise is firstly eliminated from the testing data by using the wavelet reconstruction and decomposition technique, and a zero-phase low-pass filter is then applied to the reconstructed data. The numerical results show that the noise-elimination method effectively improves the identified accuracy when performed in conjunction with the SEO-ILS algorithm.
     3. The equations of motion for bridge deck section model elastically suspended in wind tunnel are formulated about mass center of the system using the Lagrangian approach, accommodating both the elasticity eccentricity and damping eccentricity in the formulation. With this formulation, the SEO-ILS algorithm is applied in the state space for direct identification of the system matrix from free vibration data of section model obtained from wind tunnel testing. This formulation complements the existing theory concerning the basic formulation of bridge flutter derivatives identification to consider the unexpected eccentricities in model testing.
     4. The SEO-ILS algorithm is applied to identify aerodynamic derivatives by using wind tunnel testing data. A thin plate model was tested in wind tunnel and the eight aerodynamic derivatives were estimated by SEO-ILS algorithm. The reliability and effectiveness of SEO-ILS method are demonstrated by comparing the experimentally obtained aerodynamic derivatives of thin plate with theoretical values. The test of bridge deck sections model in wind tunnel indicate that parameter identification of the SEO-ILS method has higher precision, stability and repeatability are better as well as. Considering eccentricities influence for bridge deck is shown to improve the identification precisions of aerodynamic derivatives.
     5. Aerodynamic derivatives characteristic of bridges both streamlined and bluff decks were discussed thoroughly. Identification precisions and variability of aerodynamic derivatives were investigated by changing hyper-parameters of SEO-ILS algorithm. The results indicate that obtained aerodynamic derivatives by SEO-ILS method are stability and reliability, and variability of aerodynamic derivatives are very small at higher reduced wind speed.
引文
[1] 项海帆等著. 现代桥梁抗风理论与实践. 北京: 人民交通出版社, 2005, 1-152
    [2] 项海帆. 结构风工程研究的现状和展望. 振动工程学报, 1997, 10 (3): 258-263
    [3] 项海帆. 21 世纪世界桥梁工程的展望. 土木工程学报, 2000, 33 (3): 1-6
    [4] 项海帆. 进入 21 世纪的桥梁风工程研究. 同济大学学报, 2002, 30 (5) :529-532
    [5] 项海帆, 陈艾荣. 特大跨度桥梁抗风研究的新进展,土木工程学报, 2003, 36 (4): 1-8
    [6] 葛耀君, 项海帆. 大跨度桥梁风工致振动控制程研究. 见: 全国结构风工程实验技术研讨会, 湖南长沙, 2004: 6-13
    [7] 程进, 江见鲸, 肖汝诚, 项海帆. 风对桥梁结构稳定性的影响及其对策. 自然灾害学报, 2002, 11 (1): 81-84
    [8] 项海帆. 桥梁风工程研究的未来. 见: 第十二届全国结构风工程学术会议论文集, 陕西西安, 2005: 1-3
    [9] 项海帆, 葛耀君. 悬索梁跨径的空气动力极限. 土木工程学报, 2005, 38 (1): 60-70
    [10] 李国豪主编. 桥梁结构稳定与振动(修订版). 北京: 中国铁道出版社, 1996, 1-188
    [11] 埃米尔·希缪, 罗伯特·H·斯坎伦著. 风对结构的作用—风工程导论. 刘尚培, 项海帆, 谢霁明译. 上海: 同济大学出版社, 1992, 100-208
    [12] 陈政清编著. 桥梁风工程. 北京: 人民交通出版社, 2005, 1-186
    [13] Boonyapinyo V, Yamada H, Miyata T. Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges. Journal of Structural Engineering, ASCE, 1994, 120 (2): 486-506
    [14] 方明山, 项海帆, 肖汝诚. 超大跨径桥梁结构中的特殊力学问题. 重庆交通学院学报, 1998, 17 (4): 5-9
    [15] 方明山, 项海帆, 肖汝诚. 超大跨径悬索桥空气静力非线性行为研究. 重庆交通学院学报, 1999, 18 (2): 1-7
    [16] 程进, 肖汝诚, 项海帆. 大跨度桥梁非线性静风稳定性全过程分析. 同济大学学报, 2000, 28 (6): 717-720
    [17] 张志田. 大跨度桥梁非线性抖振及其对风致稳定性影响的研究: [同济大学博士学位论文]. 上海: 同济大学, 2004, 1-80
    [18] 张志田, 葛耀君. 基于正交异性壳单元的悬索桥非线性静风稳定性分析. 中国公路学报, 2004, 17 (4): 64-69
    [19] 张志田, 葛耀君. 大跨度桥梁非线性静风稳定精细化分析. 见: 第十六届全国桥梁学术会议论文集(下), 北京: 人民交通出版社, 2004, 541-548
    [20] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析: [同济大学博士学位论文]. 上海: 同济大学, 2001, 10-90
    [21] 于向东.大跨桥梁的颤振导数识别的强迫振动法研究: [中南大学博士学位论文]. 湖南长沙: 中南大学, 2002, 1-60
    [22] Theodorson T. General theory of aerodynamic instability and the mechanism of flutter. NACA Report No.496, US National Advisory Committee for Aeronautics, Langley, VA, 1935, 1-68
    [23] Fung Y C. A Introduction to the theory of aeroelasticity. New York: Dover Publications, Inc, 1993: 160-245
    [24] Bleich F. Dynamic instability of truss-stiffened suspension bridges under wind action. Proc. ASCE, 1948, 74 (7): 1269-1314
    [25] Bleich F. Dynamic instability of truss-stiffened suspension bridges under wind action. 1949, Trans. ASCE114: 1177-1232.
    [26] Kl?ppel K, Thield F. Modell ver suche in wind kanal zur bemessng von brucken gegen die gefahr winderregter schwingungen. Stahlbau, 20 (12), 1967, 20-89
    [27] Van der Put. Rigidity of structures against aerodynamic forces. IABSE, 1976, 15-98
    [28] Scanlan R H, Sabzevari A. A suspension bridge flutter revisited. ASCE National Meeting on Structural Engineering, Seattle, pre-print No. 468, 1967, 23-87
    [29] Scanlan R H, Sabzevari A. Experimental aerodynamic coefficients in the analytical study of suspension bridge flutter. Journal of Mechanical Engineering Science, 11 (3), 1969, 12-96
    [30] Scanlan R H, Tomko J J. Airfoil and bridge deck flutter derivatives. Journal of Engineering Mechanics Division, 1971, ASCE 97 (EM6): 1717-1737
    [31] Huston D R. The effects of upstream gusting on the aeroelastic behavior of long suspended-span bridges: [PhD dissertation]. Princeton: Princeton University, 1986, 1-109
    [32] 张若雪. 桥梁结构气动导数识别的理论和试验研究: [同济大学博士学位论文]. 上海: 同济大学, 1998, 1-112
    [33] Sarker P P, Jones N P, Scanlan R H. System identification of aeroelastic parameters of flexible bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41-44: 1243-1254
    [34] Sarker P P. New-identification methed applied to the response of flexible bridges to wind: [PhD dissertation]. Baltimore: Johns Hopkins University, 1992, 1-200
    [35] Sarkar P P, Jones N P, Scanlan R H. Identification of aeroelastic parameters of flexible bridges. Journal of Engineering Mechanics, ASCE, 1994, 120 (8): 1718-1741
    [36] Jones N P, Jain A, Scanlan R H. Multi-mode aerodynamic analysis of long-span bridges. Proceeding of Structure Congress, ASCE, Atlanta, Georgia, April, 1994
    [37] Scanlan R H, Beliveau J G, Budlong K S. Indicial aerodynamic functions for bridge decks. Journal of Engineering Mechanics Division, 1974, ASCE 100 (EM4): 657-672
    [38] Scanlan R H. Role of indicial functions in buffeting analysis of bridges. Journal of Structural Engineering, 1984, 110 (7): 1433-1446
    [39] Wagner H. Ueber die entstehung des dynamischen auftriebes yon tragflugeln. Zeitschrift fuer Angewandte Mathematik und Mechanik, 1925, 5: 17-35
    [40] 杨永昕. 大跨度桥梁二维颤振机理及其应用研究: [同济大学博士学位论文]. 上海: 同济大学, 2002, 1-110
    [41] Scanlan R H. The action of flexible bridges under wind. Ⅰ: flutter theory. Journal of Sound and Vibration, 1978, 60 (2): 187-199
    [42] Agar T J A. Aerodynamic flutter analysis of suspension bridges by a modal technique. Journal of Engineering Structures 1989, 11: 75-82
    [43] Agar T J A. Dynamic instability of suspension bridges. Computers & Structures, 1991, 41 (6): 1321-1328
    [44] Beith J G. A practical engineering method for the flutter analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77-78: 357-366
    [45] Namini A, Albrecht P, Bosch H. Finite element-based flutter analysis of cable-suspended bridges. Journal of Structural Engineering, ASCE, 1992, 118 (6): 1509-1526
    [46] 程韶红. 大跨度桥梁的三维颤振有限元分析: [同济大学硕士学位论文]. 上海: 同济大学, 1993, 1-56
    [47] 张新军. 大跨度桥梁三维非线性颤振分析: [同济大学博士学位论文]. 上海: 同济大学, 2000, 1-99
    [48] Lin Y K, Yang J N. Multimode bridge response to wind excitations. Journal of Engineering Mechanics, ASCE , 1983, 109 (2): 586-603
    [49] Tanaka H, Yamamura N, Tatsumi M. Coupled mode flutter analysis using flutter derivatives. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42:1279-1290
    [50] Jain A, Jones N P, Scanlan R H. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structural Engineering, ASCE, 1996, 122(7): 716-725
    [51] Jain A, Jones N P, Scanlan R H. Coupled aeroelastic and aerodynamic response analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60: 69-80
    [52] Miyata T, Yamada H. Coupled flutter estimate of a suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33: 341-348
    [53] Miyata T, Yamada H. On a application of the direct flutter FEM analysis for long-span bridges. In: Proceedings of the 9th International Con£erence on Wind Engineering, New Delhi, India, 1995: 1033-1041
    [54] Dung N N, Miyata T, Yamada H, et al. Flutter responses in long span bridges with wind induced displacement by the mode tracing method. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 78&79: 367-379
    [55] Ge Y J, Tanaka H. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86: 123-153
    [56] 曾宪武, 韩大建. 大跨度桥梁多模态耦合颤振二分法全自动搜索.土木工程学报, 2005, l38 (6): 41-46
    [57] 谢霁明, 项海帆. 桥梁三维颤振分析的状态空间法. 同济大学学报, l985, 13(3): 1-13
    [58] Xie J M, Xiang H F. State-space method for 3-D flutter analysis of bridge structures, In: Proceedings of Asia Pacific Symposium on Wind Engineering, 1985, New Delhi India: 269-276
    [59] 丁泉顺, 陈艾荣, 项海帆. 大跨度桥梁多模态颤振的自动分析. 土木工程学报, 2002, 35 (4): 52-58
    [60] Quanshun Ding, Airong Chen, Haifan Xiang. A state space method for coupled flutter analysis of long-span bridges. Structural Engineering and Mechanics, 2002, 14 (4): 491-504
    [61] Quanshun Ding, Airong Chen, Haifan Xiang.Coupled flutter analysis of long-span bridges by multimode and full-order approaches. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 1981-1993
    [62] 陈政清. 桥梁颤振临界风速上下限预测与多模态参与效应. 结构风工程新进展及应用. 上海: 同济大学出版社, 1993: 197-203
    [63] Chen Z Q, Agar T J A. Finite Element-based flutter analysis of cable-suspendedbridges. Journal of Structural Engineering, ASCE (ST), 1994, 120 (3): 1044-1046
    [64] 陈政清. 桥梁颤振临界状态的三维分析与机理研究. 见: 斜拉桥国际学术会议论文集. 上海, 1994: 302-306 Chen Z Q. The three dimensional analysis of behavior investigation on the critical flutter state of bridges. In: Proceedings of the International Symposium on Cable-Stayed Bridges. Shanghai China, 1994: 302-306
    [65] 华旭刚, 陈政清. 桥梁风致颤振临界状态的全域自动搜索法. 工程力学学报, 2002, 19 (2): 68-72
    [66] Bucher C G, Y K Lin. Stochastic stability of bridges considering coupled modes. Journal of Engineering Mechanics Division, 1988, ASCE, 114 (EM12): 2055-2071
    [67] Bucher C G, Y K Lin. Stochastic stability of bridges considering coupled modes. Journal of Engineering Mechanics Division, 1989, ASCE, 115 (EM2): 384-400
    [68] Y K Lin, Q C Li. New stochastic theory for bridge stability in turbulent flow. Journal of Engineering Mechanics Division, 1993, ASCE, 119 (1): 113-127
    [69] Q C Li, Y K Lin. New stochastic theory for bridge stability in turbulent flow. Journal of Engineering Mechanics Division, 1995, ASCE, 121 (1): 102-116
    [70] Xinzhong Chen, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, 2000, ASCE, 126 (1): 7-16
    [71] Xinzhong Chen, Matsumoto M, Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, 2000, ASCE, 126 (1): 17-26
    [72] Xinzhong Chen, Kareem A. Nonlinear aerodynamic analysis of bridges under turbulent winds: the new frontier bridge aerodynamics. Advance in structural dynamics. 2000, l1: 475-482
    [73] Xinzhong Chen, Kareem A, Matsumoto M., Multimode coupled flutter and buffeting analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 649-664
    [74] Xinzhong Chen, Kareem A. Nonlinear respons analysis of long-span bridges under turbulent winds. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 1335-1350
    [75] Xinzhong Chen, Kareem A. Aerodynamic analysis of bridges under multi-correlated winds: integrated state-space approach, Journal of Engineering Mechanics Division, 2001, ASCE, 127 (11): 1124-1134
    [76] Xinzhong Chen, Kareem A. New frontiers in aerodynamic tailoring of long spanbridges: an advanced analysis framework. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 1511–1528
    [77] 曹映泓. 大跨度桥梁非线性颤振和抖振时程分析: [同济大学博士论文]. 上海: 同济大学,1999, 1-102
    [78] Scanlan R H, Lin W H. Effects of turbulence on bridge flutter derivatives. Journal of Engineering Mechanics Division, 1987, ASCE, 104 (EM4): 719-733
    [79] Scanlan R H, Jones N P. Aeroelastic analysis of cable-stayed bridges. Journal of Structural Engineering, 1990, ASCE, 116 (2): 229-297
    [80] Scanlan R H. Amplitude and turbulence effects on bridge flutter derivatives. Journal of Structural Engineering, 1997, 123 (2): 232-236.
    [81] Y K Lin. Motion of suspension bridges in turbulent wind. Journal of Engineering Mechanics Division, 1979. ASCE, 105 (6): 921-933
    [82] Y K Lin, Ariaratnam S T. Stability of bridge motion in turbulent wind. Journal of Structural Mechanics, 1980, 108 (1): 1-15
    [83] Y K Lin, Yang J N. Multi-mode bridge response to wind excitation. Journal of Engineering Mechanics Division, 1983, ASCE, 109 (2): 586-603
    [84] Y K Lin, Q C Li, Su T C. Application of a new wind turbulence model in predicting motion stability of wind-excited long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 507-516
    [85] 葛耀君, 项海帆. 桥梁结构颤振稳定的概率性评价.同济大学学报, 2001,29 (1): 70-74
    [86] 项海帆, 林志兴, 鲍卫刚等. 公路桥梁抗风设计指南. 北京: 人民交通出版社, 1996, 1-56
    [87] Iwamoto M, Fujino Y. A probabilistic study of torsional flutter of suspension bridge under fluctuating wind. In: Proceedings of the Fourth International Conference on Structural Safety and Reliability. 1985
    [88] Ostenfeld-Rosenthal P, Madsen H O, Larsen A. Probabilistic flutter criteria for long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41&44: 1265-1276.
    [89] Ianenti A, Zasso A. Probabilistic approach to the identification of the flutter instability conditions, an application to the long span suspension bridge case. Prepared for the Ninth ICWE, New Delhi, 1995.
    [90] Y J Ge, H F Xiang, Tanaka H. Application of a reliability analysis model to bridge flutter under extreme winds. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86: 155-167
    [91] 葛耀君, 项海帆, Tanaka H. 随机风荷载作用下的桥梁颤振可靠性分析. 土木工程学报, 2003, 36 (6): 42-46
    [92] 葛耀君, 周峥, 项海帆. 基于改进一次二阶距法的桥梁颤振可靠性评. 结构工程师, 2006, 22 (2): 46-51
    [93] 葛耀君, 项海帆, H. Tanaka. 桥梁颤振的随即有限元分析.土木工程学报, 1999, 32 (4): 27-32
    [94] 周峥. 大跨桥梁颤振可靠性理论及其四水准方法: [同济大学博士论文]. 上海: 同济大学, 2005, 1-85
    [95] Tanaka H, Davenport A G. Response of taut strip models to turbulent wind. JEMD, ASCE, 1982, 108 (EM1): 33-49
    [96] Larsen A, Walther J H. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67&68: 253-265
    [97] 曹丰产. 桥梁断面的气动导数和颤振临界风速的数值计算. 空气动力学学报. 2000, 18(1): 26-33
    [98] 曹丰产. 桥梁气动弹性问题的数值计算: [同济大学博士学位论文]. 上海: 同济大学, l999, 1-118
    [99] 祝志文. 桥梁风效应的数值方法及应用: [中南大学博士学位论文]. 湖南长沙:中南大学, 2002, 1-36
    [100] Iwamoto M, Fujino Y. Identification of flutter derivatives of bridge deck from free vibration data. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54&55: 55-63
    [101] Jakobsen J B, Hansen E H. Determination of the aerodynamic derivatives by a system identification method. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57: 295-305
    [102] Zasso·A. Flutter derivatives: Advantages of a new representation convention. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60: 35-47
    [103] Poulsen N K, Damsgaard A, Reinhold T A. Determination of flutter derivatives for the Great Belt Bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41: 153-164
    [104] 陈政清, 胡建华. 桥梁颤振导数识别的时域法与频域法对比研究. 工程力学, 2005, 22 (6): 127-133
    [105] Kumarasena T, et al. Recent observations in bridge deck aeroelasticity. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40: 225-247
    [106] Shinozuka M. Identification of linear structural dynamic system. Journal ofEngineering Mechanics, 1982, 108 (6): 1371-1390
    [107] Yamada H, Ichikawa H. Measurement of aerodynamics coefficients by extended Kalman filter algorithm. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42: 1255-1263
    [108] Ibrahim S R, Mikulcik E C. The experimental determinaiton of vibration parameters from time responses. The shock & vibration bulletion , 1976, 46 (5): 187-196
    [109] Ibrahim S R, Mikulcik E C. A methed for the direct identification of vibration parameters from the free response . The shock & vibration bulletion , 1977, 47 (4): 196-200
    [110] Brownjohn J M W, Jakobsen J B. Strategies for aero-elastic parameter identification from bridge deck free vibration data. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 1113-1136
    [111] Gu Ming, Zhang Ruoxue, Xiang Haifan. Identification of flutter and bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84 (2): 151-162.
    [112] 丁泉顺, 陈艾荣, 项海帆. 桥梁断面气动导数识别的修正最小二乘法. 同济大学学报, 2001, 29 (1): 25 -29
    [113] 李永乐, 廖海黎, 强士中. 桥梁断面颤振导数识别的加权整体最小二乘法. 土木工程学报, 2004, 37 (3): 80-84
    [114] Yongle Li, Haili Liao, Shizhong Qiang. Weighting ensemble least-square method for flutter derivatives of bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 713-721
    [115] 黄方林, 陈政清. 桥梁颤振导数识别的一种方法. 机械强度, 2002, 24 (2): 206-208
    [116] 黄方林, 陈政清. 桥梁颤振气动导数识别的迭代法. 振动与冲击, 2002, 21 (2): 64-67
    [117] 蔡金狮. 动力学系统辩识与建模. 北京: 国防工业出版社, 1991: 270-295
    [118] Singh L, Jones N P, Scanlan R H, et. al.. Simultaneous identification of 3-D aeroelastic parameters, In: Proceedings of Ninth International Conference on Wind Engineering, New Delhi, India, 1995
    [119] Singh L, Jones N P, Scanlan R H., et. al. Identification of lateral flutter derivatives of bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60 : 81-89
    [120] Singh L.Experimentaldetermination of aeroelastic and aerodynamic parameters of long -span bridges: [PhD dissertation]. Baltimore: Johns Hopkins University, 1997
    [121] 陈艾荣, 项海帆, 何宪飞, 丁泉顺. 桥梁断面 18 个颤振导数自由振动识别. 同济大学学报, 2002, 30 (5): 544-550
    [122] Airong Cheng, Xianfei He, Haifan Xiang. Identification of 18 flutter derivatives of bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 2007-2022
    [123] Chowdhury A G, Sarkar P P. Identification of eighteen flutter derivatives. In: Proceedings 11th Wind Engineering, San Diago, 2003
    [124] Chowdhury A G, Sarkar PP. Identification of eighteen flutter derivatives[J]. Wind and Structures, 2004, 7 (3): 187-202
    [125] Sarkar P P, Chowdhury A.G, Gardner T B. A novel elastic suspension system for wind tunnel section model studies. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92: 23-40
    [126] 赵林. 风场模式数值模拟与大跨桥梁抖振概率评价: [同济大学博士学位论文]. 上海: 同济大学, 2003, 11-56
    [127] Tanaka H. Vibrations of bluff-sectional structures under wind action, In: Proceedings of the Third International Conference on Wind Effects on Buildings and Structures, Tokyo, 1971: 889-910
    [128] Otsuki Y, Washizu K, Tomizawa H, Ohya A. A note on the aeroelastic instability of a prismatic bar with square section. Journal of Sound and Vibration, 1974, 34 (2): 233-248
    [129] Matsumoto M, KobayashiY, Shirato H. The Influence of aerodynamic derivatives on flutter. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60: 227-239
    [130] Matsumoto M., Kazuhiro A. Role of coupled derivatives on flutter instabilities. Wind and Structures, 1998, l1 (2): 175-181
    [131] Matsumoto M, et al. Grating effect on flutter instability. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 289-299
    [132] Matsumoto M, et al. Flutter stabilization and heaving-branch flutter. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 1487-1497
    [133] Matsumoto M, et al, On the flutter characteristics of separated two box girders. Wind and Structures, 2004, 7 (4 ): 281-291
    [134] Q C Li. Measuring flutter derivatives for bridge sectional models in water channel. Journal of Engineering Mechanics, ASCE, 1995, 121 (1): 90-101
    [135] 陈政清, 于向东. 大跨桥梁颤振自激力的强迫振动法研究. 土木工程学报, 2002, 35 (5): 34-41
    [136] 陈政清. 颤振导数强迫振动识别的时程法与误差分析. 见: 第十一届全国结构风工程学术会议论文集, 海南三亚,2003: 183-188
    [137] 顾明, 张若雪, 项海帆. 紊流风场中桥梁气动导数的识别. 同济大学学报, 28 (2): 134-137
    [138] 王利娟, 林志兴. 紊流对桥梁颤振特性影响的实验研究. 同济大学学报, 2001, 29 (4): 385-390
    [139] 陈航, 顾明. 紊流风场中桥梁气动导数的识别. 同济大学学报, 2002, 30 (5): 639-642
    [140] 陈航. 紊流场桥梁气动参数识别的理论和试验研究: [同济大学博士学位论文]. 上海: 同济大学, 2002, 1-59
    [141] Xian-rong Qin, Ming Gu. Determination of flutter derivatives by stochastic subspace identification technique. Wind and Structures, 2004, l7 (3): 173-186
    [142] Gu Mu, Qin X R. Direct identification of flutter derivatives and aerodynamic admittances of bridge decks. Engineering Structures, 2004, 26 (14): 2161-2172
    [143] 秦仙荣, 顾明. 紊流风场中桥梁气动导数识别的随机方法. 土木工程学报, 2005, 38 (4): 73-77.,
    [144] 祝志文, 顾明. 基于自由振动响应识别颤振导数的特征系统实现算法. 振动与冲击, 2006, 25(5): 28-31
    [145] Diana G, Resta F, Zasso A, et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92: 441-462
    [146] Caracoglia L, Jones N P. Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck sections. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 371-402
    [147] Caracoglia L, Jones N P. A methodology for the experimental extraction of indicial functions for streamlined and bluff deck sections. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91: 609-636
    [148] Barre C, Barnaud G. High Reynolds number simulation techniques and their application to shaped structures model test. Journal of Wind Engineering and Industrial Aerodynamics, 1995: 145-157
    [149] Schewe G, Larsen A. Reynolds number effects in the flow around a bluff bridge deck cross section. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 829-838
    [150] Larose G L, Larsen S V, Larsen A, et al. Sectional model experiments at high Reynolds number for the deck of a 1018m span cable-stayed bridge, Journal of WindEngineering and Industrial Aerodynamics, 2003, 95
    [151] Matsuda K, Cooper K R, Tanaka H, et al. An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89
    [152] 李加武, 林志兴, 项海帆. 典型桥梁断面静气动力系数雷诺数效应研究. 见: 第十一届全国结构风工程学术会议论文集, 海南三亚, 2003
    [153] 林志兴, 金挺, 李加武. 桥梁断面气动特性的雷诺数效应研究. 见: 2004 全国结构风工程实验技术研讨会论文集, 湖南长沙, 2004: 35-42
    [154] 林志兴, 金挺. 扁平箱梁桥梁断面斯特罗哈数的雷诺数效应研究. 见: 第十二届全国结构风工程学术会议论文集, 陕西西安, 2005, 58-62
    [155] 刘延柱, 陈文良, 陈立群. 振动力学. 北京: 高等教育出版社, 1998
    [156] 周传荣, 赵淳生. 机械振动参数识别及其应用. 北京: 科学出版社, 1989
    [157] 欧进萍. 结构振动控制——主动、半主动和智能控制. 北京: 科学出版社, 2003
    [158] 桂国庆, 何玉敖. 非比例阻尼结构体系的动力分析方法. 同济大学学报, 1994, 22 (4): 505-510
    [159] 李杰. 随机结构系统—分析与建模 北京: 科学出版社, 1996
    [160] 王士宏, 周思永. 控制理论基础. 北京: 北京理工大学出版社, 2002
    [161] 张桂明, 张明照, 戚红雨. 应用 MATLAB 语言处理数字信号与数字图象. 北京: 科学出版社, 2001
    [162] R W 克拉夫, 彭津著. 结构动力学. 王光远等译. 北京: 科学出版社,1983
    [163] Imai H, Yun C B. Maruyama O, et al. Fundamentals of system identification in structural dynamics. Probabilistic Engineering Mechanics, 1989, 4 (4): 211-220
    [164] Ibrahim S R,et al. A time domain modal vibration test technique. The Shoch and Vibration Bulletin. 1973, 43: 21-37
    [165] Ibrahim S R. Double least squares approach for use in structural modal identification. AIAA. 1986, 24 (3): 499-503
    [166] Ibrahim S R. An approach for reducing computation requirements in modal identification. AIAA, 1986, 24 (10): 1725-1727
    [167] Juang J N, Pappa R S. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of guidance Control and Dynamics, 1985, 8 (5): 620-627
    [168] 廖伯瑜, 周新民, 尹志宏著. 现代机械动力学及其工程应用. 北京: 机械工业出版社, 2004
    [169] 傅志方. 振动模态分析与参数识别. 北京: 机械工业出版社, 1990
    [170] 陈政清, 牛华伟, 禹见达. 桥梁节段模型风洞试验三自由度悬挂系统. 2004全国结构风工程实验技术研讨会论文集, 湖南长沙, 2004: 1-5
    [171] 陈亚勇. MATLAB 信号处理详解. 北京: 人民邮电出版社, 2002
    [172] 胡昌华, 李国华, 刘涛等编. 基于 MATLAB 6.X 的系统分析与设计. 西安:西安电子科技大学出版社, 2004
    [173] Mallat S 著. 信号处理的小波导引. 杨力华, 戴道清, 黄文良等译. 北京: 机械工业出版社, 2002
    [174] 何旭辉. 南京长江大桥结构健康监测及其关键技术研究: [中南大学博士学位论文]. 湖南长沙: 中南大学, 2004
    [175] 飞思科技产品研发中心编著. 小波分析理论与 MATLAB7 实现. 北京: 电子工业出版社, 2005
    [176] Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. On PAMI, 1989, PAMI-11 (7): 674-693
    [177] Farge M. Wavelet transform and their application to turbulence. Annual, Rev Fluid Mech., 1992, 24: 523-531.
    [178] Kurtis Gurley, Ahsan Kareem., Application of wavelet transform in earthquake, wind and ocean Engineering Structures, 1999, 24: 149-167
    [179] 孙延奎编著. 小波分析及其应用. 北京: 机械工业出版, 2005
    [180] 卢文祥, 杜润生. 机械工程测试?信息?信号分析. 湖北武汉: 华中理工大学出版社, 1990
    [181] John H, Mathews, Kurtis D, Fink S. 数值方法(MATLAB 版). 陈渝, 周璐, 钱方等译. 北京: 电子工业出版社, 2002
    [182] 顾明, 张若雪, 项海帆. 桥梁气动导数的识别及模型参数对气动导数的影响. 振动工程学报, 1997, 10 (4): 421-425
    [183] 刘志文等. 平胜大桥抗风性能试验研究. 湖南大学风工程试验研究中心. 技术报告,编号 HDWE-2005-002,2005
    [184] 张志田等. 吉茶高速公路矮寨大桥悬索桥抗风性能试验研究. 湖南大学风工程试验研究中心. 技术报告,编号 HDWE-2006-009,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700