用户名: 密码: 验证码:
桥梁断面气动导数识别的三自由度强迫振动法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动导数是描述主梁断面气动性能的重要参数,在大跨度桥梁颤振和抖振分析过程中起着至关重要的作用。气动导数一般通过节段模型风洞试验获得。按照振动驱动机制不同,节段模型试验方法可分为自由振动法和强迫振动法两大类。与自由振动法相比,强迫振动法具有响应信号的信噪比大,气动导数识别结果离散度小,精度高,对应折减风速范围宽等优点。但由于所需试验设备复杂、一次性投资大等原因,强迫振动法一直没有得到深入的研究,目前还处于两自由度水平,识别理论还不完善,识别结果也不太理想。鉴于这种状况,本文从识别理论和试验技术两个方面对强迫振动法进行了深入的研究,主要内容如下:
     开发研制了节段模型三自由度耦合强迫振动装置,该装置既可使节段模型沿竖向、侧向或扭转方向作可控的单自由度简谐强迫振动,又可沿任意两个或三个方向作可控的两自由度或三自由度耦合强迫振动。
     将分状态强迫振动频域法从竖弯和扭转两个自由度的水平拓展到了竖弯、扭转和侧弯三个自由度的水平,首次实现了用三自由度分状态强迫振动频域法对18个气动导数的识别。提出了三自由度耦合状态强迫振动频域法。通过使节段模型沿竖向、侧向和扭转方向作不同频率的耦合振动,仅需一次试验就可获得所有18个气动导数。发现了节段模型实际强迫振动频率与预设频率之间的小量偏差是降低频域法识别精度的主要原因之一,为此对试验技术进行了相应的改进,在对超长预试验振动信号进行精确频率分析的基础上,对模型振动频率进行微调,达到有效降低上述频率偏差的目的,从而使频域法的气动导数识别精度得到了明显提高。
     在对加速度时程信号进行数值积分求解速度和位移时程的问题上,提出了确定初始速度和初始位移的新方法,并集合样条函数积分、椭圆数字滤波,双向滤波技术等数字信号处理技术,建立了一个可以得到精确可靠的速度和位移时程信号的处理方法,避免了目前利用振动参数生成速度和位移信号所带来的误差。通过对动荷载成分的研究,提出了全新的高精度自激力时程获取方法,为建立完善的强迫振动时域气动导数识别方法奠定了基础。该方法摒弃了之前将特定风速与零风速下节段模型所受动荷载按对应相位简单相减得到自激力时
As a kind of important parameters describing the aerodynamic properties of bridge decks, aerodynamic derivatives are essential and exert a great role in predicting the flutter and buffeting performances of long-span bridges. In practice, the aerodynamic derivatives are often obtained via wind-tunnel tests of sectional model. According to different driving ways of vibration, the sectional model test methods can be classified into two major categories, i.e. free-vibration method and forced-vibration method. Compared to the free-vibration method, the forced-vibration method is regarded to have the following advantages: low noise level, low spread and high precision of identified results, and wide range of reduced wind speed. However, the forced-vibration method still remains at 2-DOF level because of the complication and high cost of the relevant test equipments, and the identified results based on the current theory and testing technique are not satisfied. In this connection, both the identification theory and testing technique of forced-vibration method are investigated comprehensively in this study. The major contents of the research are as follows:
    A new 3-DOF forced-vibration device has been developed for the identification of aerodynamic derivatives of bridge decks. Using this device, the sectional model can be forced to make a controllable 1-DOF harmonic oscillation in any one of the vertical, lateral and torsional directions, or a controllable 2-DOF or 3-DOF coupled harmonic oscillation in any two or three directions.
    The current frequency-domain method of state-by-state forced-vibration for the identification of aerodynamic derivatives is extended from 2-DOF (vertical and torsional directions) to 3-DOF (vertical, lateral and torsional directions). All the 18 aerodynamic derivatives can then be identified using the extended method. A frequency-domain method of 3-DOF coupled forced-vibration is proposed for first time for the identification of aerodynamic derivatives. By setting different vibration frequencies for the vertical, lateral and torsional vibration components respectively,
引文
[1] Agar, T. J. A. (1989). "Aerodynamic flutter analysis of suspension bridges by a modal technique." Engrg. Struct., 75-82.
    [2] Beith, J. G. A. (1998). "A practical engineering method for the flutter analysis of long-span bridges." J. Wind Engrg. Ind. Aerodyn, 77-78, 357-366.
    [3] Beliveau, J. G.. (1973). "Suspension Bridge Aeroelasticity Nonlinear Least Squares Technique for System Identification." PhD. Dissertation, Princeton University.
    [4] Belloli, M., Bocciolone, M., Resta, F., and Tosi, A. (2003). "Forced and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 115-122.
    [5] Bergmann, D., Kaiser, U., and Wagner, S. (2003). "Determination of flutter derivatives using the forced oscillation method with a stochastical white noise excitation." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 261-268.
    [6] Bienkiewicz, B., Sullivan, P. P., and Cermak, J. E. (1985). "Turbulence effects on aerodynamics of H-type bridge section model." Proceedings of the Fifth US National Conference on Wind Engineering, Lubbock, TX, pp. 4A-9-4A-16.
    [7] Bleich, F. (1948). "Dynamic instability of truss-stiffened suspension bridge under wind action." Proc. ASCE, 74(8).
    [8] Bocciolone, M. (1991). "Wind measurements on the Humber Bridge and numerical simulations." Proc. Eight ICWE, London, Canada.
    [9] Bogunovic, J., Jakobsen, E., and Hjonh-Hansen, E. (1995). "Determination of the aerodynamic derivatives by a system identification method." Journal of Wind Engineering and Industrial Aerodynamics, 57, 295-305.
    [10] Bratt, J. B., and Scruton, C. (1938). "Measurement of pitching moment derivatives for an aerofoil oscillating about the half-chord axis." British Aeronautical Research Council, R. & M., No. 1921, Nov..
    [11] Bratt, J. B., and Wight, K. D. (1946). "The effects of mean incidence, amplitude of oscillation, profile, and aspect ratio on pitching moment derivatives." British Aeronautical Research Council, R. & M., No. 2064, June.
    [12] Brito, J. L. V., and Riera, J. D. (2000). "A novel experimental approach for the determination of aerodynamic coefficients for aeroelastic instability studies." Journal of Wind Engineering and Industrial Aerodynamics, 84: 289-305.
    [13] Brito, J. L. V., and Riera, J. D. (1995). "Aerodynamic instability of cylindrical bluff bodies in non-homogeneous flow.", J. WindEng. Ind. Aerodyn., 57: 81-96.
    [14] Brownjohn, J. M. W., and Jakobsen, J. B. (2001). "Strategies for aeroelastic parameter identification from bridge deck free vibration data." Journal of Wind Engrg. and Industrial Aerodynamics, 89(13), 1113-1136.
    [15] Bucher, C. G., and Lin Y. K. (1988a). "Effect of spanwise correlation of turbulence field on the motion stability of long-span bridges." J. Fluid & Structs., 2,437-451.
    [16] Bucher, C. G., and Lin Y. K. (1988b). "Stochastic stability of bridges considering coupled modes: Ⅰ." J. Engrg. Mech., ASCE, 2, 2055-2071.
    [17] Bucher, C. G., and Lin Y. K. (1989). "Stochastic stability of bridges considering coupled modes: Ⅱ." J. Engrg. Mech., ASCE, 2, 384-400.
    [18] Cermak, J. E., Bienkiewicz, B., Peterka, J. and Scanlan, R. H. (1979). "Active turbulence generator for study of bridge aerodynamics." EMD Specialty Conference, ASCE, Austin, Texas.
    [19] Chen, A., He, X., and Xiang, H. (2002). "Identification of 18 flutter derivatives of bridge decks." Journal of Wind Engineering and Industrial Aerodynamics, 90, 2007-2022.
    [20] Chen, C. H. (2003). "Determination of flutter derivatives via a neural network approach." Journal of Sound and Vibration, 263, 797-813.
    [21] Chen, X. Z., Matsumoto, M., and Kareem, A. (2000). "Aerodynamic coupling effects on flutter and buffecting of bridges." Journal of Engineering Mechanics, ASCE, 126(1), 17-26.
    [22] Chen, Z. Q. (1994). "The three dimension analysis and behaviors investigation on the critical flutter state of bridges." Int. Sysp. On Cable-stayed bridges, Shanghai.
    [23] Choudhury, A. G., and Sarkar, P. P. (2004). "Identification of eighteen flutter derivatives of an airfoil and a bridge deck." Wind and Structures, 7(3), 187-202.
    [24] Cigada, A., Falco, M., and Zasso, A. (1999). "Development of a new system to measure aerodynamic forces on section models." Proceedings of Wind Engineering into the 21st Century, Larsen, Larose & Livesey (eds), Balkema, Rotterdam.
    [25] Curami, A., and Zasso, A. (1993). "Extensive identification of bridge deck aeroelastic coefficients, average angle of attack, Reynolds number and other parameter effects." Proc., APSOWE Ⅲ, Hong Kong.
    [26] Davenport, A. G. (1972). "The use of taut strip models in the perdiction of the response of long span bridges to turbulent wind." Proc. of the Symp. on Flow Induced Vibrations, Paper A2, Karlsruhe, Springer.
    [27] Davenport, A. G., Isyumov, N., Fader, D. J., and Bowen, C. F. P. (1969). "A study of wind action on a suspension bridge during erection and completion." BLWT-3-1969, The University of Western Ontario, London, Canada.
    [28] Davenport, A. G., Isyumov, N., and Miyata, T. (1971). "The experimental determination of the response of suspension bridges to turbulent wind." Proc. of the Third Int. Conf on Wind Effects on Buffeting and Structures, Saicon Co. Ltd., Tokyo, Japan.
    [29] Davenport, A. G., and King, J. P. C. (1982). "The incorporation of dynamic wind loads into the design specifications for long-span bridges." Proc., ACSE Fall Convention and Structures Congress, at New Orleans, La.
    [30] Davenport, A. G., King, J. P. C., and Larose, G. L. (1992). "Taut strip model tests. Aerodynamics of Large Bridges." A. Larsen (ed.), Balkema, Rotterdam, 113-124.
    [31] Davenport, A. G., and Tanaka, H. (1974). "Aerodynamic study of taut strip models in turbulent boundary layer." BLWT report NO. 1-74, University of Western Ontario, London, Canada, Jan..
    [32] Diana, G., Cheli, F., and Rest, F. (1995). "Time domain aeroelastic force identification on bridge decks." Proceedings of 9ICWE, New Delhi, India, 938-949.
    [33] Diana, G., Cheli, F., Zasso, A., Collina, A., and Brownjohn, J. (1992). "Suspension bridge parameter identification in full scale test." Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 165-176.
    [34] Diana, G., Falso, M., and Gasparetto, M. (1977). "On the flutter instability of a suspension bridge using the finite element method." 77DET 140, ASME 6th Vibration Conf., Chicago.
    [35] Diana, G., Larose, G., Damsgaard, A., Falso, M., and Cigada, A. (1993). "Comparison between wind tunnel test on a full aeroelastic model of the proposed Messina Bridge and numerical results." Proc., APSOWE Ⅲ, Hong Kong.
    [36] Diana, G., Zasso, A., Resta, F., and Rocchi, D. (2003). "Effects of the yaw angle on the flutter derivatives and vortex shedding of the Messina multi-box girder deck section." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 139-146.
    [37] Ding, Q., and Lee, P. K. K. (2000). "Computer simulation of buffeting actions of suspension bridges under turbulent wind." Comput. Struct., Vol. 76, 787-797.
    [38] Dung, N. N., Miyata, T., and Yamada, H. (1998). "Flutter responses in long span bridges with wind induced displacement by the mode tracing method." J. Wind Eng. Ind. Aerodyn., 78&79, 367-379.
    [39] Dyrbye, C., and Hansen, S. O. (1997). Wind loads on structures. Wiley, Chichester, England.
    [40] Falco, M., Curami, A., and Zasso, A. (1992). "Nonlinear effects in sectional model aeroelastic parameters identification." Journal of Wind Engineering and Industrial Aerodynamics, 42, 1321-1332.
    [41] Fung, Y. C. (1969). An introduction to the theory of aeroelasticity. Dover, New York.
    [42] Gan Chowdhury, A., and Sarkar, P. P. (2003). "Identification of eighteen flutter derivatives." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 365-372.
    [43] Ge, Y. J., and Tanaka, H. (2000). "Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches." J. WindEng. Ind. Aerodyn., 86, 123-153.
    [44] Grillaud, G., Bourcier, P., Barre, C., and Flamand, O. (1997). "Wind action on the Vasco Da Gama cable stayed bridge." Proc., 2 EACWE, Genova, Italy. 1449-1456.
    [45] Gu, M., Zhang, R., and Xiang, H. (2000). "Identification of flutter derivatives of bridge decks." J. Wind Eng. Ind. Aerodyn., 84, 151-162.
    [46] Gu, M., Zhang, R., and Xiang, H. (2001). "Parametric study on flutter derivatives of bridge decks." Journal of Engineering Structures, 23, 1607-1613.
    [47] Hac, A., and Spanos, P. D. (1990). "Time domain method for parameter system identification." J. Vibration and Acoustics, ASME, 112(3), 281-287.
    [48] Halfman, R. L. (1951). "Experimental aerodynamic derivatives ofa sinusoidally oscillating airfoil in two-dimensional flow." Supersedes NACA TN 2465.
    [49] Halfman, R. L. (1952). "Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in two dimensional flow." NACA Technical Report 1108.
    [50] Hjorth-Hansen, E. (1992). "Section model tests." Proc., Int. Syrup. on Aerodynamics of Large Bridges, Balkema, Rotterdam, The Netherlands, 95-112.
    [51] Holmes, J. D. (1995). "Methods of fluctuating pressure measurements in wind engineering, Davenport Sixtieth Anniversary: A State of Art in Wind Engineering." Proc. Ninth International Conference on Wind Engineering, New Delhi.
    [52] Homma, Y., Maruta, E., Kanda, M., and Ueda, K. (1995). "Study on development of hybrid vibration method, Part 1: Elimination of inertia force by forced vibration." J. of Wind Engineering of Japan, 63, 109-112. (written in Japanese)
    [53] Honshu-Shikoku Bridge Authority (HSBA) (1992). "Report of working group on wind tunnel testing." March, Honshu-Shikoku Bridge Authority (in Japanese).
    [54] Hoshiya, H., and Saitoh, E. (1984). "Structural identification by extended Kalman filter." J. Eng. Mech., ASCE, 110(12), 1757-1779.
    [55] Huston, D. R. (1986). "The effects of upstream gusting on the aeroelastic behaviour of long suspended-span bridges." PhD. Dissertation, Princeton University, Princeton, N. J., May.
    [56] Huston, D. R. (1987). "Flutter derivatives extracted from fourteen generic deck sections of Bridges and Transmission line structures." (L. Tall, Ed.) Proc. ASCE Structures Congress, Orlando, Florida, August, 281-291.
    [57] Ibrahim S. R. (1977). "The use of random decrement technique for identification of structural modes of vibration." J. Spacecraft and Rockets, 14(11), 696-700.
    [58] Ibrahim, S. R., (1978). "Modal confidence factor in vibration testing." Journal of Spacecraft and Rockets, 15(5).
    [59] Ibrahim, S. R., and Mikulcik, E. C. (1973). "A time domain modal vibration test technique." The Shock and Vibration Bulletin, 43(4), 21-37.
    [60] Ibrahim, S. R., and Mikulcik, E. C. (1976). "The experimental determination of vibration parameters from time responses." The Shock and Vibration Bulletin, 46(5), 187-196.
    [61] Ibrahim, S. R., and Mikulcik, E. C. (1977). "A method for the direct identification of vibration parameters from the free response." The Shock and Vibration Bulletin, 47(4), 183-198.
    [62] Imai, K., Yun, C. B., Maruyama, O., and Shinozuka, M. (1989). "Fundamentals of system identification in structural dynamics." Probabilistic Engrg. Mech., 4(4), 162-173.
    [63] Irwin, P. A. (1992). "Full aeroelastic model test." Proc., Int, Syrup. on Aerodynamics of Large Bridges, Balkema, Rotterdam, The Netherlands, 125-135.
    [64] Irwin, P. A. (1998). "The role of wind tunnel modelling in the prediction of wind effects on bridges." Bridge Aerodynamics, Larsen & Esdahl (eds), Balkema, Rotterdam, 99-117.
    [65] Iwamoto, M., and Fujino, Y. (1995). "Identification of flutter derivatives of bridge deck from free vibration data." J. Wind Eng. Ind. Aerodyn., 54/55, 55-63.
    [66] Jain, A. (1997). "Multi-mode aeroelastic an aerodynamic analysis of long-span bridges." PhD thesis, Johns Hopkins University, Baltimore.
    [67] Jain, A., Jones, N. P., and Scanlan, R, H. (1996a). "Coupled flutter and buffeting analysis of long-span bridges." J. of Structural Engineering, ASCE, 122(7), 716-725.
    [68] Jain, A., Jones, N. P., and Scanlan, R. H. (1996b). "Coupled aeroelastic and aerodynamic response analysis of long span bridges." J. Wind Eng. Ind. Aerodyn., 60,81-89.
    [69] Jakobsen, J. B. (1995). "Fluctuating wind load and response of a line-like engineering structure with emphasis on motion-induced wind forces." NTH. 62, Department of Structural Engineering, Norwegian Institute of Technology, University of Trondheim, Norway.
    [70] Jakobsen, J. B., and Hjorth-Hansen, E. (1995). "Determination of the aerodynamic derivatives by system identification method." J. Wind Eng. Ind. Aerodyn., 57, 295-305.
    [71] Jakobsen, J. B., Savage, M. G., and Larose, G. L. (2003). "Aerodynamic derivatives from the buffeting response of a flat plate model with stabilizing winglets." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 673-680.
    [72] Jensen, A. G. (1997). "Fluid dynamic derivatives: Marine and wind engineering approaches." Journal of wind engineering and industrial aerodynamics, 69-71,777-793.
    [73] Jensen, A. G., and Hoffer, R. (1998). "Flat plate flutter derivatives-an alternative formlation." Journal of Wind Engineering and Industrial Aerodynamics, 74-78, 859-869.
    [74] Jensen, A. G., and Nielsen, F. G. (1995). "A forced motion mechanism for the investigation of aerodynamic loads on structures moving in an air flow." Proc. 9th ICWE, New Delhi, India.
    [75] Jones, N. P., Scanlan, R. H., Jain, A., and Katsuchi, H. (1998). "Advances (and chanllenges) in the prediction of long-span bridge response in wind." Bridge Aerodynamcis, Larsen & Esdahl, Balkema, Rotterdam, ISBN 90 54 10 96 10, 59-85.
    [76] Jones, N. P., Scanlan, R. H., Sarkar, P. P., and Singh, L. (1995). "The effect of section model details on aeroelastic parameters." Journal of wind engineering and industrial aerodynamics, 54-55, 45-53.
    [77] Jones, N. P., Singh, R. H., and Lorendeaux, O. (1995). "A force balance for measurement of 3-D aeroelastic parameters." Prco., Structures Congress, ASCE.
    [78] Jones, R. T. (1940). "The unsteady lift on a wing of finite aspect ratio." NACA Report 681, U. S. National Adversary Committee for Aeronautics, Langley, Va.
    [79] Jurado, J. A., and Hernandez, S. (2000). "Theories of aerodynamic forces on decks of long span bridges." Journal of Bridge Engineering, ASCE, 5(1): 8-13.
    [80] Karman, T., and Dann, L. (1949). " Wind tunnel investigations carried out at the California Institute of reference to the Tacoma Narrows Bridge." Bull. Of University Washington Eng. Exp. Station, No. 116, Part Ⅰ.
    [81] King, J. P. C., Larose, G. L., and Davenport, A. G. (1991). "A study of wind effects for the Storebelt Bridge-tender design." BLWT-SS31-1991, The University of Western Ontario, London, Canada.
    [82] King, J. P. C., Vickery, P. J., and Davenport, A. G.. (1985). "A study of wind effects for the Cochrane Bridge Replacement - Steel and Concrete Alternates." BLWT-SS29-1985, The University of Western Ontario, London, Canada.
    [83] Kumarasena, T. (1989). "Wind response prediction of long-span bridges." PhD thesis, The Johns Hopkins University, Baltimore, Md, USA.
    [84] Larose, G. L., Davenport, A. G., and King, J. P. C. (1991). "Wind effects on long span bridges: Consistency of wind tunnel results." Proc. 8th Int. Conf on Wind Engineering, University of Western Ontario, London, Canada, July.
    [85] Larsen, A. (1999). "A 1999 view on aeroelastic stability - A driving force in bridge aerdynamics." Proc., Wind Engineering into the 21st century, Balkema, Rotterdam, 55-66.
    [86] Larsen, A. (2003). "Aerodynamic derivatives from simulated indicial functions." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 941-948.
    [87] Larsen, A., and Walther, J. H. (1998). "Discrete vortex simulation of flow around five generic bridge deck sections." J. WindEng. Ind. Aerody., 77&78, 591-602.
    [88] Li, Q. C. (1995). "Measuring flutter derivatives for bridge sectional models in water channel." J. Engrg. Mech., ASCE, 121 (1), 90-102.
    [89] Liao, Hai-li, and Xi Shao-zhong (1997). "A method for identification of aerodynamic derivatives from free vibration data." Solari G. Proc. 2Nd EACWE. Genova: SGE, 1593-1600.
    [90] Lin, Y. K. (1979). "Motion of suspension bridges in turbulent wind." J. Engrg. Mech. Div., ASCE, 105(6).
    [91] Lin, Y. K., and Ariaratnam, S. T. (1980). "Stability of bridge motion in turbulent winds." J. Struct. Mech., 8(1), 1-15.
    [92] Loiseau, H., and Szechenyi, E. (1974). "Etude du comportement aeroelatique du tablier d'un pont a haubans." C.R. desjournees AFPC, ONEAR, Chatillon, France, Apr..
    [93] Matsumoto, M. (1999). "Flutter classification of bridge girders." International Symposium on Wind and Structures for the 21st century, 26-28 January, Cheju, Korea. 39-79.
    [94] Matsumoto, M., and Abe, K. (1998). "Role of coupled derivatives on flutter instabilities." J. of Wind Engrg. Ind. Aerodyn., 1 (2).
    [95] Matsumoto, M., Kobayashi, Y., and Shirato, H. (1996). "The influence of aerodynamic derivatives on flutter." J. of Wind Engrg. Ind. Aerodyn., 60.
    [96] Matsumoto, M., Niihara, Y., Kobayashi, Y., Shirato, H., and Hamasaki, H. (1995). "Flutter mechanism and its stabilization of bluff bodies." Proc. 9th ICWE, New Delhi, 827-838.
    [97] Matsumoto, M., Shiraishi, N., Shirato, H., Shigetaka, K., and Niihara, Y. (1993). "Aerodynamic derivatives of coupled/hybrid flutter of fundamental structural sections." Journal of Wind Engineering and Industrial Aerodynamics, 49, 575-584.
    [98] Matsumoto, M., Yabutani, T., Chen, X., and Yoshizumi, F. (1997). "Flutter stabilization of long span bridges." Proceedings of the Seventh International Conference on Structural and Reliability, ICCOSSA 97, Kyoto, Japan.
    [99] Matsumoto, M., Yoshizumi, F., Yabutani, T., Abe, K., and Nakajima, N. (1999). "Flutter stabilization and heaving-branch flutter." J. of Wind Engrg. Ind. Aerodyn., 83.
    [100] Miyata, T., and Yamada, H. (1995). "On a application of the direct flutter FEM analysis for long-span bridges." Proc. 9th Int. Conf on Wind Engineering, New Delhi, India, 1033-1041.
    [101] Miyata, T., Yokoyama, K., Yasuda, M., and Hikami, Y. (1992). "Akashi Kaikyo Bridge: wind effects and full model wind tunnel tests." Proc., Aerodynamics of Large Bridges, Balkema, Rotterdam.
    [102] Morishima, H., and Inoue, H. (1999). "The unsteady aerodynamic force measurement system with forced oscillation of large amplitude." J. of Wind Engineering of Japan, 78, 95-97. (written in Japanese)
    [103] Nagao, F., Utsunomiya, H., Noda, M., Kanda, M., Ikeuchi, A., and Kanaumi, N. (2000). "Effects of experimental conditions on aerodynamic derivatives of fundamental bluff bodies." Proceedings of the Fourth International Colloquium on Bluff Aerodynamics and Applications, 2000.
    [104] Namini, A., and Albrecht, P. (1992). "Finite element-based flutter analysis of cable-suspended bridges." J. Struct. Engrg., ASCE, 118(6), 1509-1526.
    [105] Noda, M., Utsunomiya., H., Nagao, F., Kanda, M., and Shiraihi, N. (2003). "Effects of oscillation amplitude on aerodynamic derivatives." J. IndAerodyn., 91(1-2), 101-111.
    [106] Okubo, T., and Narita, N. (1974). "An comparative study of aerodynamic forces acting on cable-stayed bridge girders." Proceedings of the U. S.-Japan Research Seminar on Wind Effects on Structures, Kyoto, September, Paper 28, 271-283.
    [107] Okubo, T., Narita, N., and Yokoyama, K (1975). "Some approaches for improving wind stability of cable-stayed girder bridges." Proceedings of the Fourth International Conference on Wind Effects, London, United Kingdom, Sept., 241-249.
    [108] Pappa, R. S. (1983). "Close-mode identification performance of the ITD algorithm." Proc. AIAA/ASME/ ASCE/ASH 24th Structures, Structural Dynamics and Materials Conference, Lake Tahoe, Nevada, USA, 193-205.
    [109] Persson, A. J., and Siebert, C. M. (1982). "The aerodynamic stability of the preposed Western-Scheldt Suspension Bridge." Proceedings Int Conf on Flow Induced Vibrations, Reading, England, BHRA Fluid Engineering.
    [110] Pi, Y. L., and Mickleborough, N. C. (1989). "Model identification of vibrating structures using ARMA method." Journal of Engineering Mechanics, ASCE, 115(10): 2232-2250.
    [111] Poulsen, N. K., Damsgaard, A., and Reinhold, A. (1992). "Determination of flutter derivatives for the Great Belt Bridge." Journal of Wind Engrg. and Industrial Aerody., 41, 153-164.
    [112] Qin, X. R., and Gu, M. (2004). "Determination of flutter derivatives by stochastic subspace identification technique." Wind and Structures, 7(3), 173-186.
    [113] Reed, R. E. (1979). "Analytical aspects of randomdec analysis." AIAA/ASME/ASCE/AHS, 20th SDM Conference, 404-409.
    [114] Roberts, J. B., and Surry, D. (1973). "Coherence of grid-generated turbulence." Journal of the engineering mechanics division, ASCE, 99(6): 1227-1245.
    [115] Rosenbaum, R., and Scanlan, R. H. (1948). "A note on flight flutter testing." Journal of Aeronautical Science, June.
    [116] Sarkar, P. P. (1992). "New identification methods applied to the response of flexible bridges to wind." Ph.D. dissertation. Jones Hopkins University. Baltimore.
    [117] Sarkar, P. P., Gan Chowdhury, A., and Gardner, T. B. (2004). "A novel elastic suspension system for wind tunnel section model studies." J. Wind Eng. Ind. Aerod., 92, 23-40.
    [118] Sarkar, P. P., Jones, N. P., and Scanlan, R. H. (1992). "System identification for estimation of flutter derivatives." J. Wind Eng. Ind. Aerodyn., 42, 1243-1254.
    [119] Sarkar, P. P., Jones, N. P., and Scanlan, R. H. (1994). "Identification of aeroelastic parameters of flexible bridges." J. Eng. Mech., ASCE, 120(8), 1718-1742.
    [120] Sarkar, P. P., Jones, N. P., and Scanlan, R. H. (). "A comparative study of the aeroelastic behavior of the three flexible bridges and a thin aerofoil." Proc. Of 7th U.S. Nat. Conf on Wind Engrg., Wind Engrg. Res. Council.
    [121] Scanlan, R. H. (1975). "Theory of the wind analysis of long-span bridges based on data obtainable from section model tests." Proceedings of the Fourth International Conference on Wind Effects, London, United Kingdom, Sept., 259-269.
    [122] Scanlan, R. H. (1978a). "The action of flexible bridges under wind, Ⅰ: flutter theory." Journal of Sound and Vibration, 60(2), 187-199.
    [123] Scanlan, R. H. (1978b). "The action of flexible bridges under wind, Ⅱ: buffeting theory." Journal of Sound and Vibration, 60(2), 201-211.
    [124] Scanlan, R. H. (1981). "State-of-the-art methods for calculating flutter, vortex induced, and buffeting response of bridge structures." Federal Highway Administration Report FHWA/RD-80/050, Washington, D.C., Apr..
    [125] Scanlan, R. H. (1983). "Aeroelastic simulation of bridges." J. ofStruct. Engrg., ASCE, 109(12), 2829-2837.
    [126] Scanlan, R. H. (1984). "Role of indicial funtions in buffeting analysis of bridges." J. Struct. Engrg., ASCE, 110(7), 1433-1446.
    [127] Scanlan, R. H. (1987). "Interpreting aerodynamic modes of cable-stayed bridges." Journal of Engineering Mechanics, ASCE, 113(4), 555-575.
    [128] Scanlan, R. H. (1988). "On flutter and buffeting mechanisms in long-span bridges." Prob. Engrg. Mech., 3(1), 22-27.
    [129] Scanlan, R. H. (1992). "Wind dynamics of long-span bridges." Proc., Aerodynamics of Large Bridges, Balkema, Rotterdam.
    [130] Scanlan R. H. (1993). "Problematic in formulation of wind-force models for bridge decks." J. Struct. Engrg., ASCE, 110, 1433-1446.
    [131] Scanlan R. H. (1997). "Amplitude and turbulence effects on bridge flutter derivatives." Journal of Structural Engineering, ASCE, 123(2), 232-236.
    [132] Scanlan R. H. (2000). "Bridge deck aeroelastic admittance revisited." Journal of Bridge Engineering, ASCE, 5(1), 1-7.
    [133] Scanlan R. H., Beliveau, J. G., and Budlong, K. (1974). "Indicial aerodynamic functions for bridge decks." J. Mech. Div., ASCE, 4, 657-672.
    [134] Scanlan R. H., and Gate, R. H. (1977). "Motion of suspended bridge spans under gusty wind." Journal of the Structural Division, ASCE, 103(9), 1867-1883.
    [135] Scanlan R. H., and Jones, N. P. (1990). "Aeroelastic analysis of cable-stayed bridges." J. Struct. Eng., ASCE, 116(2), 279-297.
    [136] Scanlan R. H., and Jones, N. P. (1991). "Stochastic aspect of bridge deck aeroelasticity under turbulent flow." Probabilistic Engrg. Mech., England, 6(3,4), 129-133.
    [137] Scanlan R. H., Jones, N. R, and Singh, L. (1997). "Inter-relations among flutter derivatives." Journal of Wind Engineering and Industrial Aerodynamics, 69-71,829-837.
    [138] Scanlan, R. H., and Lin, W. H. (1978). "Effects of turbulence on bridge flutter derivatives." J. Eng. Mech. ASCE, 104(4), 719-733.
    [139] Scanlan, R. H., and Rosenbaum, R. (1978). "Introduction to the study of aircraft, vibration and flutter." New York: Dover.
    [140] Scanlan, R. H., and Sabzevari, A. (1967). "Suspension Bridge Flutter Revisited." ASCE Structural Engineering Division Specialty Conference, Seattle, Wash. (Paper 468).
    [141] Scanlan, R. H., and Sabzevari, A. (1969). "Experimental aerodynamic coefficients in the analytical study of suspension bridge flutter." J. Mech. Eng. Sci., 11(3), 234-242.
    [142] Scanlan, R. H., and Tomko, J. J. (1971). "Airfoil and bridges deck flutter derivativers." J. Eng. Mech., ASCE, 97(6), 1717-1737.
    [143] Scanlan, R. H., and Wardlaw, R. L. (1978). "Aerodynamic stability of bridge decks and structural members." Cable-Stayed Bridges, Structural Engineering Series No. 4, U.S. Department of Transportation, June.
    [144] Schnabel, W., and Plate, E. J. (1979). "Prototype and model experiments on wind induced vibrations of a steel tower." Proceedings of the Fifth International Conference, Fort Collins, Colorado, USA, July, 757-767.
    [145] Sears, N. R. (1941). "Some aspects of stationary airfoil theory." J. ofAero. Sci., Vol. 8.
    [146] Selberg, A. (1961). "Oscillation and aerodynamic stability of suspension bridges." AXTA Polytechnica Scandinavica, Ci 13.
    [147] Selberg, A. (1963). "Aerodynamic effects on suspension bridges." Proc. of Int. Symp. on Wind Effects on Buildings and Structures, Teddington, 2, 462-486.
    [148] Selvam, R. P., and Govindaswamy, S. (2001). "A report on aeroelastic analysis of bridge girder section using computer modeling." Report of University of Arkansas for Mack Blackwell Transportation Center.
    [149] Sepe, V., Caracoglia, L., and Asdia, P. D. (2000). "Aeroelastic instability of long-span bridges: contributions to the analysis in frequency and time domains." Journal of Wind and Structures, 3(1), 41-58.
    [150] Shinozuka, M. (1976). "Identification of aerodynamic characteristics of a suspension bridge based on field data." International Union of Theoretical and Applied Mechanics Symposium of Stochastic Problems in Dynamics, Southampton, United Kingdom, July.
    [151] Shnozuka, M., Yun, C. B., and Imai, H. (1982). "Identification of linear structural dynamic systems." Journal of Engineering Mechanics Division, ASCE, 108(6): 1371-1390.
    [152] Simiu, E., and Scanlan, R. H. (1978). Wind effects on structures, Ist Ed., Wiley, New York.
    [153] Simiu, E., and Scanlan, R. H. (1996). Wind effects on structures, 3rd Ed., Wiley, New York.
    [154] Singh, L. (1997). "Experimental determination of aeroelastic and aerodynamic parameters of long-span bridges." PhD thesis. Johns Hopkins University, Baltimore.
    [155] Singh, L., Jones, N. P., Scanlan, R. H., and Lorendeaux, O. (1995a). "Comparison of aeroelastic parameters of streamlined and bluff bridge deck-sections." J. Struc. Eng., ASCE.
    [156] Singh, L., Jones, N. P., Scanlan, R. H., and Lorendeaux, O. (1995b). "Simultaneous identification of 3-DOF aeroelastic parameters." Proc., Ninth International Conference on Wind Engineering, New Delhi, India, 972-978.
    [157] Singh, L., Jones, N. P., Scanlan, R. H., and Lorendeaux, O. (1996). "Identification of lateral flutter derivatives of bridge decks." J. Wind Eng. Ind. Aerodyn. 60: 81-89.
    [158] Smith, W. R. (1981). "Least-squares time-domain method for simultaneous identification of vibration parameters from multiple free-reponse records." AIAA/ASME/ASCE/AHS, 2nd SDM Conference, Apr., 194-201.
    [159] Steiman, D. B., and Watson, S. R. (1957). Bridges and their buildings. Dover, New York.
    [160] Surry, D., and Stathopoulos, T. (1977). "An experimental approach to the economical measurement of spatially averaged wind loads." Journal of Industrial Aerodynamics, Vol. 2, 385-397.
    [161] Tanaka, H. (1992). "Similitude and modeling in bridge aerodynamics." Proc., Int. Syrup. on Aerodynamics of Large Bridges, Balkema, Rotterdam, The Netherlands, 83-94.
    [162] Tanaka, H., and Davenport, A. G. (1982). "Response of taut strip models to turbulent wind. "JEMD, ASCE, 108(1), 33-49.
    [163] Theodorsen, T. (1935). "General theory of aerodynamic instability and the mechanism of flutter." NACA Technical Report 496, U.S. National Advisory Committee for Aeronautics, Langley, Virginia.
    [164] Ukeguchi, N., Saketa, H., and Nishitani, H. (1966). "An investigation of aeroelastic instability of suspension bridges." Proceedings of the International Symposium on Suspension Bridges, Lisbon, Spain, Nov., 273-284.
    [165] Virgoleux, M. (1992). "Wind design and analysis for the Normandy Bridge." Proc., Aerodynamics of Large Bridges, Balkema, Rotterdam.
    [166] Wang, W., Li, M., and Chert, X. (2003). "Identification of aerodynamic derivatives for bridge sections by forced oscillation method." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 309-316.
    [167] Wardlaw, R. L. (1978). "Sectional versus full model wind tunnel testing of bridge road decks." DME/NAE Quarterly Bulletin NO. 1978(4), National Research Council, Ottawa, Canada, 24-47.
    [168] Wawzonek, M. A., and Parkinson, G. V. (1979). "Combined effects of galloping instability and vortex resonance." Proceedings of the Fifth International Conference, Fort Collins, Colorado, USA, July, 673-684.
    [169] Wianecki, J. (1979). "Cables wind excited vibrations of cable-stayed bridge." Proceedings of the Fifth International Conference, Fort Collins, Colorado, USA, July, 1381-1393.
    [170] Wyatt, Y. A. (1992). "Bridge aerodynamics 50 years after Tacoma Narrows-part 1: the Tacoma Narrows failure and after." J. Wind Eng. Ind. Aerodyn., 40, 317-326.
    [171] Xie, J. (1988). "CVR method for identification of nonsteady aerodynamic model." Journal of Wind Engineering and Industrial Aerodynamics, 29, 389-397.
    [172] Xie, J., and Xiang, H. (1985). "State-space method for 3-D flutter analysis of bridge structures." Proc. Asia Pacific Syrup. on Wind Engrg., India, 269-276.
    [173] Yamada, H., Miyata, T., and Ichikawa, H. (1992). "Measurement of aerodynamics coefficients by system identification methods." Journal of Wind Engineering and Industrial Aerodynamics, 41-44, 1255-1263.
    [174] Yamada, H., and Miyata, T. (1997)- "Introduction of a modal decomposition and reassemblage method for the multi-dimensional unsteady aerodynamic force measurement." Journal of Wind Engineering and Industrial Aerodynamics, 69-71, 769-775.
    [175] Zasso, A. (1996). "Flutter derivatives: advantages of a new representation convention." J. Wind Eng. Ind. Aerodyn. 60: 35-47.
    [176] Zasso, A., Cigada, A., and Negri, S. (1996). "Flutter derivatives identification through full bridge aeroelastic model transfer function analysis." Journal of Wind Engineering and Industrial Aerodynamics, 60, 17-33.
    [177] Zasso, A., and Curami, A. (1993). "Extensive Identification of bridge deck aeroelastic coefficients: average angle of attack, Reynolds number and other parameter effects." Proc. 3rd Asian-Pacific Symposium on Wind Engineering, Hong Kong, 143-148.
    [178] Zhou, Z., Chen, A., and Xiang, H. (2003). "Identification of aeroelastic parameter of flexible bridge decks by random discrete vertex method." Proc. the 11th International Conference on Wind Engineering, Lubbock, Texas, June, 1439-1446.
    [179] Zhu, L. D. (2002). "Buffeting response of long span cable-supported bridges under skew winds." field measurement and analysis." PhD. Dissertation, Hong Kong Polytechnic University, Hong Kong, China.
    [180] (美)奥本海姆(Oppenheim,A.V),(美)谢弗(Scenafer,R.W.),(美)巴克(Buck,J.R.)著;刘树棠,黄建国译(2001).离散时间信号处理:第2版.西安:西安交通大学出版社.书名原文:Discrete-Time Signal Processing
    [181] 曹丰产(1999),桥梁气动弹性问题的数值计算.博士学位论文,同济大学,上海.
    [182] 曹丰产、朱乐东(2003,).对桥梁断面颤振导数弯扭耦合振动系统辨识法的思考.第十一届全国结构风工程学术会议论文集,海南三亚,418-423.
    [183] 陈航(2002).紊流风场桥梁气动参数识别的理论和试验研究.硕士学位论文,同济大学,上海.
    [184] 陈伟(1993),.大跨桥梁抖振反应谱研究.博士学位论文,同济大学,上海.
    [185] 陈伟,项海帆(1993).大跨度桥梁的侧向水平抖振及侧向气动导数的测试.结构风工程研究的新进展及应用,同济大学出版社,24-29.
    [186] 陈政清(2003),颤振导数强迫振动识别的时程法与误差分析.第十一届全国结构风工程学术会议论文集,海南三亚,183-188.
    [187] 陈政清,于向东(2002).大跨桥梁颤振自激力的强迫振动法研究.土木工程学报,35(5),34-41.
    [188] 程韶红(1993).大跨度桥梁的三维颤振有限元分析,硕士学位论文,同济大学,上海.
    [189] 丁泉顺(2001).大跨度桥梁耦合颤抖振响应的精细化分析.博士学位论文,同济大学,上海.
    [190] 丁泉顺,陈艾荣,项海帆(2001).桥梁断面气动导数识别的修正最小二乘法.同济大学学报,29(1),25-29.
    [191] (美)E.H.道尔,H.C.小柯蒂斯,R.H.斯坎伦,F.西斯托著;陈文俊,尹传家译(1991).气动弹性力学现代教程.北京:宇航出版社.
    [192] 傅志方(1989,).振动模态分析与参数识别.北京:北京工业大学出版社.
    [193] 傅志方,华宏星(2000).模态分析理论与应用.上海:上海交通大学出版社.
    [194] 海伦等著,白化同、郭继忠译(2001).模态分析理论与试验.北京:北京理工大学出版社.
    [195] 何宪飞(2001),桥梁断面三自由度颤振导数识别.硕士学位论文,同济大学,上海.
    [196] 黄文虎,邵成勋(1982).振动系统参数识别的时域方法.振动与冲击,1,43-53.
    [197] 李国豪(1996).桥梁结构稳定与振动(修订版).北京:中国铁道出版社.
    [198] 马如进(2004).基于气动弹性模型的桥梁断面颤振导数识别.博士学位论文,同济大学,上海.
    [199] 倪金福(1982),用卡尔曼滤波技术识别振动系统参数.振动与冲击,2,23-35.
    [200] 项海帆等(1996).公路桥梁抗风设计指南.北京:人民交通出版社.
    [201] 谢霁明,项海帆(1985).桥梁三维颤振分析的状态空间法.同济大学学报,3.
    [202] 谢霁明(1984).桥梁颤振理论与斜拉桥颤振特性研究.博士学位论文,同济大学,上海.
    [203] 谢霁明(1986).识别非定常气动力模型的初脉冲耦合振动法.空气动力学学报,1986(3),258-267.
    [204] 小西一郎编,张健峰译(1981).钢桥(第十一分册),北京:中国铁道出版社.
    [205] 杨詠昕(2002).大跨度桥梁二维颤振机理及其应用研究.博士学位论文,同济大学,上海.
    [206] 殷峰(2003).桥梁断面气动力和气动导数的表面测压法试验识别.硕士学位论文,同济大学,上海.
    [207] 于向东(2002).大跨桥梁颤振导数识别的强迫振动法研究.博士学位论文,中南大学,长沙.
    [208] 恽起麟(2000).风洞实验.北京:国防工业出版社.
    [209] 张令弥(2001).柔性桥梁非定常气动导数识别研究.土木工程防灾国家重点实验室开放课题研究,上海.
    [210] 张若雪(1998).桥梁结构气动参数识别的理论和试验研究.博士学位论文,同济大学,上海.
    [211] 张新军(2000),大跨度桥梁三维非线性颤振分析.博士学位论文,同济大学,上海.
    [212] 赵林(2003).风场模式数值模拟与大跨桥梁抖振概率评价.博士学位论文,同济大学,上海.
    [213] 朱乐东,项海帆(1995).桥梁颤振分析的数值解法—Scanlan法的改进.土木工程防灾国家重点实验室论文集(1991—1992),同济大学出版社,74-81.
    [214] 周传荣,赵淳生(1989).机械振动参数识别及其应用.北京:科学出版社.
    [215] 周志勇(2001).离散涡方法用于桥梁截面气动弹性问题的数值计算.博士后研究工作报告,同济大学,上海.
    [216] 朱位秋(1998).随机振动.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700