用户名: 密码: 验证码:
风—车—桥系统非线性空间耦合振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将风、车、桥三者作为一个交互作用、协调工作的耦合振动系统,较全面地考虑了风桥间的流固耦合作用、车桥间的固体接触耦合作用、风对车的空间脉动作用及整个系统的时变特性。
     首先,基于自由振动信号,提出了一种颤振导数识别的新方法——加权整体最小二乘法(WELS),以识别桥道断面的颤振导数。为考虑斜拉桥桥塔风效应,根据大跨度斜拉桥结构形式特点,结合脉动风的相关特性,提出了一种简化的大跨度斜拉桥三维脉动风场模拟方法。针对桥址区风速观测记录的特点,证明了利用不同高度处月最大风速记录推算地表粗糙度影响系数的可行性,并对通过最小二乘拟合得到的地表粗糙度影响系数进行统计分析,最终确定桥址区风特性。采用研制的三分力分离装置——交叉滑槽系统(Crossed Slot System)对车—桥系统的气动特性进行了测试,得到了考虑车桥气动相互影响的三分力系数。基于测试的气动参数和模拟的脉动风速场,给出了车辆和桥梁静风力、抖振力及自激力的时域表达式。
     其次,基于欧洲低干谱,模拟了轨道不平顺样本。建立了轮轨接触几何和轮轨接触力的迭代算法。在分析车—桥系统的几何耦合关系和力学耦合关系的基础上,建立了风—车—桥系统运动方程,通过分离平衡迭代方法进行求解,并考虑非线性因素的影响。基于本文的分析理论及多年的科研积累,采用Visual C++的Windows编程技术,编制了桥梁结构科研分析软件BANSYS(Bridge ANalysis SYStem)。
     最后,以京沪高速铁路南京长江大桥为工程背景,比较了桥梁时域抖振分析和频域抖振分析的一致性,分析了桥塔风效应和非线性因素对结构抖振响应的影响。针对风—车—桥系统振动特点,提出了一种更能反映桥梁实际振动特性的评价指标表达式。采用BANSYS软件对风—车—桥系统的振动特性以及风场模型、风速、车速、车辆位置及非线性等因素的影响进行了多工况的对比分析。
     时域抖振分析结果表明:大跨度斜拉桥抖振的时域和频域分析方法具有较好的一致性;考虑桥塔风效应会显著增大桥塔的横桥向抖振响应;非线性因素会降低斜拉桥的自振频率,会增大斜拉桥的竖向及扭转抖振响应。
     风—车—桥系统耦合振动分析结果表明:考虑风的作用会显著增加车辆和桥梁的响应;车辆和桥梁的响应总体上随风速和车速的提高而变大;车辆位于桥道背风侧时较迎风侧时更为不利;非线性因素对桥梁的影响较车辆的要大。
In this dissertation, wind, vehicle and bridge are regarded as an interactional coupling vibration system., In the analysis model of the system, many factors are considered in detail, such as the fluid-solid coupling interaction between wind and bridge, the solid contact coupling interaction between vehicle and bridge, the stochastic wind load of vehicle, the time variation characteristic of the system induced by train movement.
    Firstly, a reliable but simple identification method, here called the Weighting Ensemble Least-Square method (WELS), has been developed to extract all eight flutter derivatives of bridge deck from free vibration records. According to the properties of both the structural style and the vibration mode of long cable-stayed bridge, and considering the correlation characteristics of natural wind, a practical method is introduced to simplify stochastic wind velocity field of long cable-stayed bridges for taking pylon wind field effect into account. Based on wind speed observation record with drawback, it is proved that the exponent expressing terrain roughness can be calculated according the monthly maximum wind speed records at various height levels. Wind characteristics of bridge site are determined by statistical method. In order to measure respective aerodynamic parameters of deck and vechile when vehicle is above deck, a simple but performance- excellent device was developed, here called Crossed Slot System. The device can separate the wind loads on bridge and on vehicles from each other. Based measured aerodynamic parameter and simulated wind speed field, time-domain expression of static wind load, buffeting load and self-excited load for bridge and vehicle are introduced.
    Secondly, Germany high-speed spectrums with weak disturbance are adopted to simulate the stochastic rail irregularities. Iterative methods are developed to calculate the geometric relationship and interaction force between wheel and rail. Based the geometric and mechanical coupling relation between vehicle and bridge, movement equation of wind-vehicle-bridge system is established. The equation can be solved by a separated iterative procedure which can considers various nonlinear factors. According to the theory presented in this dissertation and author's research practice for many years, a computational software, named BANSYS (Bridge Analysis System), is developed by the Windows technique of Visual C++.
    Finally, Nanjing Yangtze River Bridge on Peking-Shanghai high speed railway which is a three-pylon cable-stayed bridge is analyzed. In buffeting analysis, analysis result in time
    
    domain is compared with that in frequency domain. The effects of pylon wind speed field and nonlinear factors are taken into account. In wind-vehicle-bridge system vibration analysis, The effects of wind field model, wind speed, train speed, relative location of vehicle and nonlinear factors on the system vibration are analyzed by various case comparisons.
    It is showed in buffeting analysis that the analysis results in time domain agree well with those in frequency domain. Effect of pylon wind field can increase the lateral buffeting response of pylon. Nonlinear factor can decrease the nature frequency of cable-stayed bridge, and can increase the vertical and torsional buffeting response.
    It is showed in wind-vehicle-bridge system vibration analysis that cross wind action can remarkably increase the response of bridge and vehicle. Generally, the response of bridge and vehicle are increased with wind speed and train speed, one case that vehicle is on leeward side of deck is more unsafe than another case that vehicle is on windward side of deck. Nonlinear factors can more influence bridge than vehicle.
引文
[1]钱仲候.高速铁路概论.北京:中国铁道出版社,1999
    [2]高家驹,王文仓.高速铁路与广深准高速铁路概论.北京:中国铁道出版社,1994.6
    [3]孙翔编译.世界各国的高速铁路.成都:西南交通大学出版社,1992
    [4]王其昌.高速铁路土木工程.成都:西南交通大学出版社,1999
    [5]卢乃宽.世界高速铁路建设发展趋势.中国铁路.2000,3
    [6]刘尚培,项海帆,谢霁明译.风对结构的作用—风工程导论.上海:同济大学出版社,1987
    [7]项海帆等.公路桥梁抗风设计指南.北京:人民交通出版社,1996
    [8]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1992
    [9]伯野元彦等著,李明昭等译.土木工程振动手册.北京:中国铁道出版社,1992
    [10]张相庭.结构风压和风振计算.上海:同济大学出版社,1985
    [11]张相庭.工程抗风设计计算手册.上海:同济大学出版社,1998
    [12]陈英俊,于希哲.风荷载计算.北京:中国铁道出版社,1998
    [13]Davenport A.G. The application of statistical concepts to the wind loading of structures. Proc. ICE,1961,19(2):449-472
    [14]Davenport A.G. The response of slender line-like structures to a gusty wind. Proc. ICE, 1962, 23(6): 389-408
    [15]Davenport A.G. Buffeting of suspension bridge by storm winds. J. Struct. Div., ASCE. 1962, 88(6): 233-264
    [16]Scanlan R.H.,Tomko, J.J. Airfoil and bridge deck flutter derivatives. J. Engrg. Mech. Div., ASCE. 1971, 97Em6:1717-1737
    [17]Scanlan R.H., Gade, R.H. Motion of suspended bridge spans under gusty wind. J. Struct. Div., ASCE. 1977, 103ST9:1867-1883
    [18]Scanlan R.H. The action of flexible bridges under wind Ⅰ: Flutter theory. J. Sound and Vibration. 1978, 60(2): 187-199
    [19]Scanlan R.H. The action of flexible bridges under wind Ⅱ: buffeting theory. J. Sound and Vibration. 1978, 60(2): 201-211
    [20]Scanlan R.H.Interpreting aeroelastic models of cable-stayed bridges. J. Engrg. Mech., ASCE. 1987, 113(4): 555-575
    [21]Scanlan R.H., Jones N.E Aeroelastic analysis of cable-stayed bridges. J. Struct. Engrg., ASCE. 1990, 116(2): 279-297
    [22]Lin Y.K. Motion of suspension bridges in turbulent wind. J. Engineering Mech. Div., ASCE,
    
    1979,100(4)
    [23]Lin Y.K., Ariaratnam S.T. Stability of bridge motion in turbulent winds. J. Struct. Mech. 1980, 8(1) 1-15
    [24]Lin Y.K., Yang J.N. Multimode bridge response to wind excitations. J. Engrg. Mech., ASCE. 1983, 109(2): 586-603
    [25]Lin Y.K., Bucher C.G.Effects of wind turbulence on motion stability of long span bridges. J. Wind Engrg. Indust. Aerodyn. 1990, 36(2)
    [26]Lin Y.K., Li Q.C. Stochastic stability of wind excited structures J. Wind Engrg. Indust. Aerodyn. 1995,54-55:75-82
    [27]项海帆,陈伟,顾明.桥梁抖振反应谱的实用计算方法.土木工程学报.1995,28(3):3-8
    [28]李明水.连续大气湍流中大跨度桥梁的抖振响应.博士学位论文.成都:西南交通大学,1993
    [29]李明水,贺德馨,王卫华.大跨度桥梁抖振响应的频域分析.空气动力学报.2000,18(1):74-80
    [30]李明水,王卫华,陈忻.大跨度桥梁抖振响应研究.流体力学实验与测量.2000,14(1):90-95
    [31]Matsumoto M., Chen X., and Shiraishi N. Buffeting analysis of long span bridge with aerodynamic coupling. Proc., 13th Nat. Symp on Wind Engrg., Japan, 1994:227-232
    [32]Jain A., Jones N.E, Scanlan R.H., Coupled flutter and buffeting analysis of long-span bridges. J. Struct. Engrg., ASCE. 1996, 122(7):716-725
    [33]Jain A., Jones N. P., Scanlan R. H. Coupled aeroelastic and aerodynamic response analysis of long-span bridges. J. Wind Engrg. Indust. Aerodyn. 1996, 60:69-80
    [34]Katsuchi H., Jones N.P., Scanlan R. H. Muitimode coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge. J. Struct. Engrg., ASCE. 1999, 125(1): 60-70
    [35]Katsuchi H., Jones N. E, Scanlan R. H. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo Bridge.J.Wind Engrg. Indust.Aerodyn. 1998, 77&78:431-441
    [36]Chert X., Matsumoto M., Kareem A.Aerodynamic coupled effects on flutter and buffeting of bridges. J. Engrg. Mech. 2000, 126(1): 17-26
    [37]Xu,Y.L, Sun D.K., Ko J.M., Lin J,H. Buffeting analysis of long-span bridges: a new algorithm. Computer and Structures. 1998, 68(2): 303-313
    [38]Xu Y.L., Sun D.K., Fully coupled buffeting analysis of Tsing Ma suspension bridge. J. Wind Engrg. Indust. Aerodyn. 2000, 85:97-117
    [39]Sun, D.K., Xu, Y.L. Fully coupled buffeting analysis of long-span cable-supported bridge: Formulation. J. Sound and Vibration. 1999, 228(3)
    
    
    [40]Sun D.K., Zhi H., Zhang W.S., Lin J.H., Xu Y.L. Highly efficient and accurate buffeting analysis of complex structures. Communications in Numerical Methods in Engineering. 1998, 14(7): 559-567
    [41]Lin J.H., A fast CQC algorithm of PSD matrices for random seismic responses. Computers and Structures, 1992, 44(3): 683-687
    [42]林家浩,李建俊,郑浩哲.任意相关多激励随机响应.应用力学学报.1995,12(1)
    [43]林家浩,钟万勰.关于虚拟激励法与结构随机响应的注记.计算力学学报.1998,15(2)
    [44]Minh N.N., Miyata T., Yamada H., Sanada Y. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. J. Wind Engrg. Indust. Aerodyn. 1999, 83:301-315
    [45]Borri C., Zahlten W. Fully simulated nonlinear analysis of large structures subjected to turbulent artificial wind. Mech. Struct. and mach. 1991, 19(2): 213-250
    [46]Kovacs L.,Svensson H.S. Analytical aerodynamic investigation of cable-stayed Helgeland Bridge. J. Struct. Engrg., ASCE. 1992, 118(1):147-168
    [47]Boonyapinyo V., Miyata T., Yamada H. Advanced aerodynamic analysis of suspension bridge by state-space approach. J. Struct. Engrg., ASCE. 1999, 125(12):1357-1366
    [48]Chen X., Matsumoto M. Time domain flutter and buffeting response analysis of bridges. J. Engrg. Mech., ASCE. 2000, 126(1): 7-16
    [49]Ding Q., Lee P.K.K. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computer and Structures. 2000, 76(6): 787-797
    [50]周述华.大跨度悬索桥空间非线性抖振响应仿真分析.博士学位论文.成都:西南交通大学,1993
    [51]周述华.大跨度桥梁抖振响应的三维非线性分析.计算力学学报.1997,14(增刊)
    [52]刘春华.大跨度桥梁抖振响应的空间非线性时程分析法.同济大学学报.1996,24(4):380-385
    [53]曹映泓,项海帆,周颖.大跨度桥梁颤振和抖振统一时程分析.土木工程学报.2000,33(5):57-62
    [54]蒋永林.斜拉桥抖振响应分析.博士学位论文.成都:西南交通大学,2000
    [55]卢伟,强士中,周述华.斜拉桥抖振响应非线性时程分析.桥梁建设.2001,(1):11-13
    [56]罗雄,潘言喻.大跨度钢管混凝土钢管拱桥时域抖振分析.西南交通大学学报.2000,35(5):475-479
    [57]韩大建,谭学民,颜全胜,苏成.香港汀九大桥抖振响应时程分析.华南理工大学学报.1999,27(11):44-50
    [58]Timoshenko著,胡人礼译.工程中的振动问题.北京:中国铁道出版社,1978
    [59]Timoshenko S.P. Forced vibration of prismatic bars. Izvestiya Kievskogo Politekhnicheeskogo
    
    Institute, 1908
    [60] Timoshenko S.P. On the forced vibration of bridges. Philosoph Magazine. 1922, Ser.6
    [61] Inglis C.E.A mathematical treatise on vibration in railway bridges. Cambridge, 1934
    [62] Schallenkamp A. Schwingungen von tragem bei bewegten laster. Ingenieur Archly.1937, 8: 182-198
    [63] Mise K., Kunii S. A theory for the forced vibrations of a railway bridge under the action of moving loads. Quartley Journal of Mech. and Applied Math. 1956, 9
    [64] Wen P.R. Dynamic response of beams traversed by two-axle loads. J. Engrg. Mech., ASCE. 1960, 86(EM5): 91-111
    [65] Symonds P.S., Neal B.G. Travelling loads on rigid-plastic beams. J. Engrg. Mech., ASCE. 1960, 86(EM1):79-89
    [66] Schlack A.L. Raske T.F. Resonance of beams due to cyclic moving loads. J. Engrg. Mech., ASCE. 1966, 92(EM6)
    [67] Ting E.C. Ginsberg J.H. A general algorithm for moving mass problems. J. Sound and Vibration. 1974, 33(1)
    [68] Adams G.G. Bogy D.B. Steady solutions for moving loads on elastic beams with ond-sided constrains. J. Applied Mechanics, Transactions of ASME. 1974, 41
    [69] Blejwas T.E. Feng C.C. Ayre R.S. Dynamic interaction of moving vehicles and structures.J. Sound and Vibration. 1979, 67(4)
    [70] Hayashikawa T. Watanabe N.Dynamic behavior of continuous beams with moving loads. J. Engrg. Mech., ASCE. 1981, 107(EM1)
    [71] Genin J. Ting E.C. Vafa Z.Curved bridge response to a moving vehicle. J Sound and Vibration. 1982, 81(4)
    [72] Fryba L. Non-stationary response of a beam to a moving random force. J Sound and Vibration. 1976, 46(3)
    [73] Hirai A. Ito M.Dynamic effects produced by trains upon suspension bridges. Symposium on suspension bridges, Lisbon, 1966
    [74] Hiral A. Ito M. Response of suspension bridges to moving vehicles. J. of the Faculty of Engineering, University of Tokyo. 1967, ⅩⅩⅨ(1)
    [75] Hayashikawa T. Watanabe N. Suspension bridge response to moving loads. J. Engrg. Mech., ASCE. 1982, 108(EM6)
    [76] Dodds C.J. Robson J.D. The description of road surface roughness. J. Sound and Vibration. 1973, 31(2): 175-183
    [77] Snyder J.E. Wormley D.N. Dynamic interactions between vehicles and elevated, flexible
    
    randomly irregular guideways. J. Dynamic Systems, Measurement and Control. 1977, 99(1): 23-33
    [78] Gupta R.K. Traill-Nash R.W. Bridge dynamic loading due to suface irregularities and braking of vehicle. Earthquake Engineering and Structural Dynamics. 1980, 8:83-96
    [79] Palamas J.Coussy O. Bamberger Y. Effects of surface Irregularities upon the dynamic response of bridges under suspended moving loads. J. Sound and Vibration. 1985, 99(2)
    [80] Fryba L.Dynamic interaction of vehicle with tracks and roads. Vehicle System Dynamics. 1987, 16:129-138
    [81] Schneider H.J., Elf H.P., Kolle P.Modeling of traveling-loads and time-dependant masses with Adina. Computer and Structures. 1983, 17:5-6
    [82] Padovan J., Paramodilok O.Generalized solution of time dependent traveling load problem via moving finite element scheme. J. Sound and Vibration. 1983, 91(2)
    [83] Hino J., Yoshimura T., Konishi K. A finite element method prediction of the vibration of a bridge subjected to a moving vehicle load. J. Sound and Vibration. 1984, 96(1)
    [84] Olsson M.Finite element model co-ordinate analysis of structures subjected to moving loads. J Sound and Vibration. 1985, 99(1)
    [85] Hino J. Yoshimura T.Vibration analysis of non-linear beams subjected to a moving load using the finite element method. J. Sound and Vibration. 1985, 100(4)
    [86] Chu K.H. Garg V.K. Railway-bridge impact: simplified train and bridge model. J. Structural Division, ASCE. 1979,105(ST9)
    [87] Wiriyachai A., Chu K.H., Garg V.K. Impact study by various bridge models. Earthquake Engineering and Structural Dynamics. 1982, 10
    [88] Bhatti M.H. Garg V.K. Chu K.H. Dynamic Interaction between freight train and steel bridge. J. Dynamic Systems, Measurement and Control. 1985, 107(1): 60-66
    [89] Chu K.H. Garg V.K. Bhatti M.H. Impact in truss bridge due to freight trains. J. Engrg. Mech., ASEC. 1985, 111(2): 159-174
    [90] Wang T.L. Impact and fatigue in open-deck steel truss and ballasted prestressed concrete railway bridges. Ph.D. thesis. Illinois Institue of Technology, Chicago, Illinois, 1984
    [91] Wang T.L. Ranp/Brdige interface in railway prestressed concrete bridge.J. Structural Engrg., ASCE. 1990, 166(6)
    [92] Wang T.L., Garg V.K., Chu K.H. Railway bridge/vehicle interaction studies with new vehicle model. J. Structural Engrg., ASCE. 1991, 117(7)
    [93] Tanabe M., Yamada Y.Modal method for interaction of train and bridge. Computer and Structures. 1987, 27(1): 119-127
    
    
    [94]Diana G., Cheli F. Dynamic interaction of railway systems with large bridges. Vehicle System Dynamics. 1989, 18(1): 71-106
    [95]Olsson M. On the foundational moving load problems J. Sound and Vibration. 1991, 145(2): 299-307
    [96]Bogaert V.Dynamic response of trains crossing large span dounble-track bridge. J. Constructional Steel Research. 1991, 32:223-253
    [97]Green M.F., Cebon D. Dynamic response of highway bridges to heavy vehicles loads: theory and experimental validation. J. Sound and Vibration. 1994, 170(1):51-78
    [98]Green M.F., Cebon D., Cole D.J. Effects of vehicle suspension design on dynamics of highway bridges. J. Structural Engrg., ASCE. 1995, 121(2): 272-282
    [99]Yang Y.B., Lin B.H. Vehicle-bridge interaction analysis by dynamic condensation method. J. Structural Engineering, ASCE. 1995, 121(11): 1636-1643
    [100]Yang Y.B., Liao S.S., Lin B.H. Impact formulas for vehicle moving over simple and continuous beams. J. Structural Engrg., ASCE. 1995, 121(11)1644-1650
    [101]Yang Y.B., Yau J.D. Vehicle-bridge interaction element for dynamic analysis. J. Structural Engrg., ASCE. 1997, 123(11): 1512-1518
    [102]Yang Y.B., Yau J.D., Hsu L.C. Vibration of simple beams due to Irains moving at high speed. Engineering Structures. 1997, 19(11): 936-944
    [103]曾庆元等.桁梁行车空间振动计算的桁段有限元法.桥梁建设.1985,(4):11-16
    [104]曾庆元,杨平.形成矩阵的“对号入座”法则与桁梁空间分析的桁段有限元.铁道学报.1986,8(2):48-58
    [105]曾庆元,郭向荣.列车桥梁时变系统振动分析理论及应用.北京:中国铁道出版社,1999
    [106]曾庆元,骆宁安.桥上列车横向摇摆力的初步研究.桥梁建设.1989,(2):28-36
    [107]曾庆元.关于铁路桥梁的刚度问题.长沙铁道学院学报.1991,9(3):1-15
    [108]曾庆元等.列车—桥梁时变系统的横向振动分析.铁道学报.1991,13(2):38-46
    [109]王荣辉,郭向荣等.高速列车—钢桁梁桥系统横向振动随机分析.铁道学报.1996,18(1):90-95
    [110]张麒,曾庆元.钢桁梁桥横向刚度控制指标的探讨.桥梁建设.1998,(1):14
    [111]郭向荣,曾庆元.高速铁路简支钢桁梁桥横向刚度限值研究.长沙铁道学院学报.1998,16(2):1-6
    [112]曹雪琴.列车通过时桥梁结构竖向振动分析.上海铁道学院学报.1981,2(3):1-15
    [113]曹雪琴,吴鹏贤.桁梁桥横向振动实测资料的概率统计分析.桥梁建设.1983,(3):43-51
    [114]曹雪琴.桁梁桥横向刚度设计检算.桥梁建设.1985,(3):37-45
    [115]曹雪琴,陈晓.轮轨蛇行引起桥梁横向振动随机分析.铁道学报.1986,8(1):89-97
    
    
    [116]曹雪琴.钢桁梁桥横向振动.北京:中国铁道出版社,1991
    [117]许慰平.大跨度铁路桥梁车桥耦合振动研究.博士学位论文.北京:铁道科学研究院,1988
    [118]孙建林.大跨度斜拉桥横向振动特性分析.博士学位论文.北京:铁道科学研究院,1988
    [119]杨岳民,潘家英.大跨度铁路桥梁动力响应理论分析及试验研究.中国铁道科学.1995,16(4):1-15
    [120]王贵春.大跨度铁路斜拉桥车激空间振动线性及非线性分析.博士学位论文.北京:铁道科学研究院,1996
    [121]程庆国,许慰平.大跨度铁路斜拉桥列车走行性探讨.92全国桥梁结构学术大会论文,武汉,41-51
    [122]程庆国,潘家英.大跨度铁路斜拉桥竖向刚度分析.92全国桥梁结构学术大会论文,武汉,1163-1168
    [123]张格明.中高速条件下车线桥动力分析模型与轨道不平顺影响.博士学位论文.北京:铁道科学研究院,2001
    [124]高芒芒.高速铁路列车—线路—桥梁耦合振动及列车走行性研究.博士学位论文.北京:铁道科学研究院,2001
    [125]张煅,柯在田.既有线提速至160km/h桥梁评估的研究.中国铁道科学.1996,17(1):9-20
    [126]杨宜谦,张煅.用调频质量阻尼器抑制铁路桥梁竖向振动的研究.中国铁道科学.1998,19(1):12-18
    [127]夏禾,陈英俊.车—梁—墩体系动力相互作用分析.土木工程学报.1992,25(2):3-12
    [128]夏禾,阎贵平.列车—斜拉桥体系统在风载作用下的动力响应.北方交通大学学报.1995,19(2):131-136
    [129]阎贵平,夏禾.列车与刚梁柔拱组合体系的地震响应分析.北方交通大学学报.1994,18(1):9-16
    [130]阎贵平,夏禾.铁路斜拉桥的地震响应特性研究.北方交通大学学报.1995,19(2):137-142
    [131]夏禾,陈英俊.风和列车荷载同时作用下车桥系统的动力可靠性.土木工程学报.1994,27(2):14-21
    [132]夏禾.车辆与结构动力相互作用.北京:科学出版社,2002
    [133]Xia H., Xu Y.L. Dynamic interaction of long suspension bridges with running trains. J. Sound and Vibration. 2000, 237(2): 263-280
    [134]李小珍,强士中.高速列车—大跨度钢斜拉桥空间耦合振动响应研究.桥梁建设.1998,(4):65-68
    [135]李小珍,强士中.京沪高速铁路南京越江钢斜拉桥车桥耦合振动分析.西南交通大学学
    
    报.1999,34(2):153-157
    [136]李小珍.高速铁路列车—桥梁系统耦合振动理论及应用研究.博士学位论文.成都:西南交通大学,2000
    [137]宁晓骏,何发礼,强士中.车桥耦合振动研究中轮轨接触几何非线性的考虑.桥梁建设.1999,(2):8-10
    [138]宁晓骏,李小珍,强士中.高速铁路桥墩横向刚度的初步研究.西南交通大学学报.2000,35(1):11-13
    [139]单德山.高速铁路曲线梁桥车桥耦合振动分析及大跨度曲线梁桥设计研究.博士学位论文.成都:西南交通大学,1999
    [140]何发礼.高速铁路中小跨度曲线梁桥车桥耦合振动研究.博士学位论文.成都:西南交通大学,1999
    [141]沈锐利.高速铁路桥梁与车辆耦合振动研究.博士学位论文.成都:西南交通大学,1998
    [142]沈锐利.高速铁路线上简支梁桥车桥共振问题初探.西南交通大学学报.1995,30(3):275-282
    [143]沈锐利.高速铁路简支梁桥竖向振动响应研究.中国铁道科学.1996,17(3)24-34
    [144]袁向荣.考虑约束扭转效应时桥梁的振动分析.博士学位论文.成都:西南交通大学,1992
    [145]葛玉梅,袁向荣.机车—桁架桥梁耦合振动研究.西南交通大学学报.1998,33(2):138-142
    [146]葛玉梅,周述华,李龙安.斜拉桥在考虑风效应时的车—桥耦合振动.西南交通大学学报.2001,36(4)
    [147]葛玉梅,李永乐,何向东.作用在车—桥系统上的风荷载的风洞试验研究.西南交通大学学报.2001,36(6):612-616
    [148]郭向荣,曾庆元.京沪高速铁路南京长江斜拉桥方案行车临界风速分析.铁道学报.2001,23(5):75-80
    [149]Scanlan R.H. and Tomko J.J. Airfoil and bridges deck flutter derivatives. J. Eng. Mech. Div. 1971, 97(6): 1717-1733
    [150]Shinozuka M.Identification of linear structure dynamic system. J. Eng. Mech. Div. 1982, 108(6): 1371-1390
    [151]Yamada H., Ichikawa H.Measurement of aerodynamic parameters by extended Kalman Filter algorithm. J. Wind Engineering and Industrial Aerodynamics.1992,41-44:1255-1263
    [152]Sarkar P.P., Jones N.P., Scanlan R.H. System identification for estimation of flutter derivatives. J. Wind Engineering and Industrial Aerodynamics.1992,41-44:1243-1254
    [153]Sarkar P.P. Identification of aeroelastic parameters of flexible bridges. J. Eng. Mech. Div.
    
    1994, 120(8): 1718-1741
    [154]Liao Haili, Xi Shaozhong. A method for identification of aerodynamics derivatives from free vibration data. Proc. 2nd EACWE, Genova, SGE, 1997:1593-1600
    [155]廖海黎,奚绍中.非流线形断面气动导数辨识.振动工程及应用.成都:成都科技大学出版社,1998
    [156]Gu Ming,Zhang Ruoxue and Xiang Haifan. Identification of flutter derivatives of bridge decks.J.Wind Engineering and Industrial Aerodynamics.2000,84:151-162
    [157]丁泉顺,陈艾荣,项海帆.桥梁断面气动导数识别的修正最小二乘法.同济大学学报.29(1),2001:25-29
    [158]Poulson N.K., Damsgard A., Reinhold A. Determination of flutter derivatives for the Great Belt Bridge. J. Wind Engineering and Industrial Aerodynamics. 1992, 41-44:153-164
    [159]Yang W.W., Chang T.Y.P. An efficient wind field simulation technique for bridges. J. Wind Engineering and Industrial Aerodynamics. 1997, 67&68:696-708
    [160]Yang W. W., Chang T. Y. P. Numerical simulation of turbulent fluctuations along the axis of a bridge. Eng. Struct. 1998, 20(9): 837-848
    [161]Cao Y.H., Xiang H.F., Zhou Y. Simulation of stochastic wind velocity field on long-span bridges. J. Engrg. Mech. 2000,126(1): 1-6
    [162]Davenport A.G. The dependence of wind load upon meteorological parameters. Proc. Int. Res. Seminar on Wind Effects on Build and Struct. University of Toronto Press, Toronto,1968: 19-82
    [163]Shinozuka M. Deodatis G. Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 1991, 44(4): 191-204
    [164]Deodatis G.Simulation of ergodic multivariate stochastic processes. J. Engrg. Mech. 1996, 122(8): 778-787
    [165]Hu B., Schiehlen W., On the simulation of stochastic processes by spectral representation. Prob. Engrg. Mech. 1997, 12(2): 105-113
    [166]Grigoriu M. A spectral representation based model for Monte Carlo simulation. Prob. Engrg. Mech. 2000, 15:365-370
    [167]南京长江大桥改造工程抗风设计所需基础资料整理研究,湖北省气象研究所,2001,2
    [168]铁路桥涵设计基本规范(TB 10002.1—99),中国铁道出版社,2000,1
    [169]杭州市钱塘四桥主梁节段模型风洞试验研究,西南交通大学风工程试验研究中心,2003.1
    [170]Sears W.R. Some aspects, of non-stationary airfoil theory and its practical application. J. Aeronautical Science. 1941, 8(3)
    
    
    [171]Liepmann H.W. On the application of statistical concepts to the buffeting proplem. J. Aeronautical Science. 1952, 19(12): 793-800
    [172]Scanlan R.H. Pole of indicial functions in buffeting analysis of bridges. J. of Structure Engineering ASCE. 1984, 110(7): 1433-1446
    [173]Scanlan,R.H.,Beliveau, J.G.Indicial aerodynamic functions for bridge decks. J.Engrg. Mech., ASCE. 1974, 100(4): 657-672
    [174]Lin Y.K., Ariaratnam S.T. Self-excited bridge motion in turbulent wind. The 3rd U.S.National Conference on Wind Engineering Research. Gainesvile, Florida. 1978:367-370
    [175]Li Q.C., Lin Y.K. New stochastic theory for bridge stability in turbulent flow. J. Engrg Mech. 1995, 121(1): 102-116
    [176]沈利人译,V.K.Garg,R.V.Dukkipati著.铁道车辆系统动力学.四川成都:西南交通大学出版社,1998.9
    [177]张定贤.机车车辆轨道系统动力学.北京:中国铁道出版社,1996
    [178]王福天.车辆系统动力学.北京:中国铁道出版社,1996
    [179]詹斐生.机车动力学.北京:中国铁道出版社,1990
    [180]翟婉明.车辆—轨道耦合动力学.北京:中国铁道出版社,1997
    [181]罗林.轨道随机干扰函数.中国铁道科学.1982,3(1)
    [182]美国运输部联邦铁路局.轨道几何形关变化的分析说明.美国国家科技情报中心,1983
    [183]曾庆元,吴应喧.悬挂参数对车辆垂直振动性能的影响.铁道车辆.1984,9
    [184]许慰平.大跨度铁路桥梁车桥空间耦合振动研究.北京:铁道科学研究院,1989
    [185]陈果,翟婉明,左洪福.仿真计算比较我国干线谱与国外典型轨道谱.铁道学报.2001,23(3)
    [186]钱雪军.轨道不平顺的时域模拟法.铁道学报.2000,22(4):94-98
    [187]陈果,翟婉民.铁路轨道不平顺随机过程的数值模拟.西南交通大学学报.1999,34(2):138-142
    [188]曾宇清,王卫东,贺启庸.车辆激励谱的时频转换复现技术.中国铁道科学.1996,17(4):26-32
    [189]王元丰,王颖,王东军.铁路轨道不平顺模拟的一种新方法.铁道学报.1997,19(6):110-115
    [190]杨国桢.磨耗形踏面轮轨接触几何参数(上,中,下).铁道车辆.1980,(10,11,12)
    [191]严隽耄.具有任意轮廓形状的轮轨空间几何约束的研究.西南交通大学学报.1983,(3):40-48
    [192]严隽耄,王开文.任意形状轮轨接触关系的计算.铁道车辆.1984,(2)
    [193]王开文.车轮接触点迹线及轮对接触几何参数的计算.西南交通大学学报.1984,(1):
    
    89-98
    [194]罗赟,金鼎昌.轮轨三维接触的快速算法.铁道学报.1989,(3):109-117
    [195]宁晓骏.高速铁路列车—桥梁—基础空间耦合振动研究.博士学位论文.成都:西南交通大学,1998
    [196]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997
    [197]朱伯芳.有限单元法原理及应用.北京:中国水利水电出版社,1998
    [198]丁浩江,何福保.弹性及塑性力学中的有限单元法.北京:机械工业出版社,1989
    [199]吴鸿庆,任侠.结构有限元分析.北京:中国铁道出版社,2000
    [200]项海帆,朱乐东.考虑约束扭转刚度影响的斜拉桥动力分析模型.全国桥梁结构学术大会论文集,武汉,1992
    [201]Bathe K.J., Bolourchi S. Large displacement analysis of three-dimension beam structures. Int. J. Num. Meth. Engrg. 1979, (14): 961-986
    [202]Hsiao K.M., Horng H.J., Chen Y.R. A corotational procedure that handle large rotations of spatial beam structures. Computer and Structures. 1987, (27): 769-781
    [203]Narayanan G., Krihnamoorthy C.S. An investigation of geometric non-linear formulation for 3-D beam element. Int. J. Non-linear Mech. 1990, 25(6): 643-662
    [204]潘家英,程庆国.大跨度悬索桥有限位移分析.土木工程学报.1994,27(1):1-10
    [205]蒋友谅.非线性有限元法.北京:北京工业学院出版社,1988
    [206]殷有泉.固体力学非线性有限元引论.北京:北京大学出版社,1987
    [207]张汝清.非线性有限元分析.重庆:重庆大学出版社,1990
    [208]华孝良.桥梁结构非线性分析.北京:人民交通出版社,1997年
    [209]陈政清等.空间杆系结构大挠度问题内力分析的UL列式法.土木工程学报,1992,25(2):34-43
    [210]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析—Ⅰ:平面问题.计算结构力学及其应用.1995,12(1):7-15
    [211]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析—Ⅱ:三维问题.计算结构力学及其应用.1995,12(2):133-141
    [212]杨岳民,潘家英,程庆国.车桥耦合振动方程的分组迭代求解.中国铁道科学.1996,17(4):69-79
    [213]王贵春,潘家英,程庆国.铁路桥梁在列车荷载作用下的动力分析.中国铁道科学.1996,17(4):80.89
    [214]Yang F., Fonder G. An iterative solution method for dynamic response of bridge-vehicles systems. Earthquake Eng. & Struct. Dyn. 1996, 25: 195-215.
    [215]Richard C.L.,Tom A.著,张艳等译.Visual C++6宝典.北京:电子工业出版社,1999
    
    
    [216]三味创作室.Visual C++应用与提高.北京:科学出版社,1999
    [217]John E.S著,前导工作室译.Visual C++MFC编程实例.北京:机械工业出版社,1999
    [218]颜东煌,田仲初,李学文.桥梁结构电算程序设计.湖南长沙:湖南大学出版社,1999
    [219]何雄君.桥梁结构电算.北京:科学出版社,1996
    [220]铁道部科学研究院铁建所.广深准高速铁路运营线试验报告之三——桥梁动载试验报告.北京,1995
    [221]铁道部科学研究院等.200km/h电动旅客列车组环线及广深线试验研究报告.北京,2000
    [222]Wood R.D., Zienkiewicz O.C.Geomatrically Nonlinear Finite Element Analysis of Beams, Frames, Arches and Axisymmetric Shells. Computer. and Struct. 1977, 7:725-735
    [223]吕和祥.非线性有限元.化学工业出版社,1992
    [224]Saafan A. Theoretical analysis of suspension bridges. J. Structural Division, ASCE. 1966, 92(ST4)
    [225]中华人民共和国国家标准.铁道车辆动力学性能评定和试验鉴定规范.1985
    [226]中华人民共和国铁道部行业标准.铁道机车动力学性能试验鉴定方法和评定标准.1990
    [227]詹斐生.平稳性指标的回顾(上,中,下).铁道机车车辆.1995,(1):39-51;(2):19-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700