用户名: 密码: 验证码:
大跨桥梁颤振导数识别的强迫振动法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,桥梁断面颤振导数的识别都是大跨度桥梁颤抖振响应分析中的重点和难点问题。鉴于目前桥梁断面颤振导数识别的水平和存在的问题,本文通过对大跨度桥梁非定常气动力、颤振分析方法及颤振导数识别方法的回顾和评述,基于现有的非定常气动力和颤振导数的测试方法,在国家自然科学基金与铁道部重点学科基金的联合资助下,研究开发了一套在风洞中采用强迫振动法测试颤振导数的装置。本文主要进行了以下几方面的工作:
     1.首次在国内成功实现了在风洞中测试桥梁节段模型颤振导数的强迫振动法,并通过大量的试验验证了本测试装置的可靠性。结果显示:本文提出的强迫振动法装置具有试验数据稳定、数据重复性好、可测量的折减风速范围宽、交叉项导数与对角项导数具有同等精度和不需要复杂的系统识别过程等一系列优点。
     2.通过系列试验考查了模型驱动频率和振幅对颤振导数的影响,验证了驱动频率和振幅对颤振导数影响很小。在折减风速的实用范围之内,颤振导数只是折减风速的函数。
     3.通过对三种典型断面颤振导数的测试,考查了各颤振导数随断面形状的变化趋势,说明了最主要的变化体现在与扭转阻尼有关的H_2和A_2项。
     4.考查了Scanlan的线性假定:如果自激力与模型运动的位移、速度成线性关系,模型振动是某一频率的正弦函数,那么相应的自激力也应是这一频率的正弦函数,高次谐波的分量应极小。结果表明对薄平板这一类近乎流线体的断面,自激力与振动参数之间能较好地满足线性关系。而钝体断面的颤振自激力高次谐波分量较大,具有较明显的非线性响应特征,验证了用颤振导数表示钝体的自激力只是一种线性近似。
     5.在两自由度桥梁断面颤振导数的强迫振动法识别装置的基础上,我们和国防科技大学及同济大学风洞试验室联合研制开发了一套三自由度桥梁断面颤振导数的强迫振动法识别装置,进一步的研究正在进行中。
The identification of flutter derivatives for bridge sectional model has long been a key issue in long-span bridge flutter and buffeting analysis. As to the current problems existing in the identification for these flutter derivatives, the dissertation tries to trace the development in the identification for the past unsteady aerodynamic forces of long-span bridges. It also investigates the method for flutter and buffeting analysis and the flutter derivatives. Based on the present methods used in obtaining the unsteady aerodynamic forces and flutter derivatives, and co-funded by a natural scientific fund from the Nation and a key project fund from the Railway Ministry, the current research has attempted to develop a device which can be employed in the wind tunnel to test flutter derivative through a forced vibration method. Major contents of the dissertation includes the following:
    1. As the first successful experiment which has been conducted in China to test the unsteady aerodynamic forces in wind tunnel, the feasibility of the method is proved through numerous tests and abundant practice. The result of the experiment shows that the proposed forced vibration method device has the quality of stability and repetitiveness of the data, the wide range of the testable reduced velocity, the exactness of coupled and direct flutter derivatives. And it does not need to employ any complicated identification system to check it further.
    2. A systematic test has been carried out to observe how the model actuating frequencies and amplitudes affect the flutter derivatives, and the effect is found to be quite minor. The researcher also concludes that in the range of reduced velocity, the flutter derivatives equal to the function of it.
    3. A test has been carried out on three typical bridges sectional models of flutter derivatives to find the general rules with the change of flutter derivatives of the
    
    
    
    bridges sectional model. And it has been discovered that this change depend on the torsional damping, an element closely relating to the H*2 and A*2
    4. A study on the proposed Scanlan linearity has discovered that if the self-excited loads and movement of the model and velocity constitute a linear relationship, and the model vibration accounts for a sine function of the frequency, the rate of the high-order harmonic waves should be quite small. And the result shows that the self-excited loads and the flutter derivatives satisfying the linear relationship as to the streamline section-like thin plate. While the flutter self-excited loads of a bluff section has a quality of obvious nonlinearity. And the application of flutter derivatives to self-excited loads of the bluff section is close to a linear relationship.
    5. Based on a identification device of forced vibration mthod for 2-DOF flutter derivatives of bridges sectional model, the researcher, cooperated with some others from the National University of Defense Technology and Tongji University, has developed a set of identification device for a 3-DOF flutter derivatives of bridges sectional model, and further research is being conducted.
引文
1. Agar T. J. A. The analysis of aerodynamic flutter of suspension bridges. Computers & structures, Vol 30(3), 1988, 593-560.
    2. Agar T.J.A., Aerodynamic flutter analysis of suspension bridges by a modal technique, J. Eng. Struct. 11 (1989) 75-82.
    3. Agar T.J.A., Dynamic instability of suspension bridges, Comput. Struct. 41 (6) (1991) 1321-1328.
    4. Beith J. G. A practical engineering method for the flutter analysis of long-span bridges. J. Wind. Eng. Ind. Aerodyn. 77-78, 1998,357-366.
    5. Bleich F. Dynamic instability of truss-stiffened suspension bridges under wind action. Proc. ASCE 74(7), 1948, 1269-1314.
    6. Bleich F., Dynamic instability of truss-stiffened suspension bridges under wind action, Trans. ASCE 114 (1949) 1177-1222.
    7. Bucher C.G., Y.K. Lin, Stochastic stability of bridges considering coupled modes, J. Eng. Mech. Div. ASCE 114 (EM12) (1988) 2055-2071 & 115 (EM2) (1989) 384-400.
    8. Bucher C. G., Lin Y. K. Effect of spanwise correlation of turbulence field on the motion stochastic stability of long-span bridges. J. Of Fluids and Structures, No.2, 1988.
    9. Bucher C. G., Lin Y. K. Effect of wind turbulence on motion stability of long-span bridges. J. Wind. Eng. Ind. Aerodyn. 36,1990,1355-1364.
    10. Bucher C. G., Wall F. J. Stochastic response of bridges in turbulent wind. J. Wind. Eng. Ind. Aerodyn. 41-44, 1992, 1347-1358.
    11. Cai C. S., Albrecht P., Bosch H. R. Flutter and buffeting analysis. Ⅰ: finite-element and RPE solution. J Bridge engrg. Vol 4(3), 1999, 174-180.
    12. Cai C. S., Albrecht P., Bosch H. R. Flutter and buffeting analysis. Ⅱ: Luling and Deer Isle bridges. J Bridge engrg. Vol 4(3), 1999, 181-188.
    13. Chen X, Matsumoto M, Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges. J Engrg Mech ASCE, 126(1),2000,17-26.
    14. Chen X, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges, J Engrg Mech ASCE,, 126(1) 2000,7-16.
    15. Chen X. Kareem A. et al. Nonlinear aerodynamic analysis of bridges under turbulent winds: the new frontier bridge aerodynamics. Advance in structural dynamics. Vol Ⅰ, 2000, 475-482.
    16. Chen Z.Q., The three dimensional analysis of behavior investigation on the critical
    
    flutter state of bridges. Proceedings of the International Symposium on Cable-Stayed Bridges, Shanghai, China, 1994, pp. 302-307.
    17. Davenport A G. The application of statistical concepts to the wind loading of structures. Proc ICE, 1961.19:449-472.
    18. Davenport A. G. The action of wind on suspension bridges. Proc. Int' I. Symposium on Suspension Bridges, Lisbon, Portugal. 1966.
    19. Davenport A. G., et al. A study of wind action on a suspension bridge during erection and on completion. Rep. BLWT -3-69, Boundary Layer Wind Tunnel Lab., Univ. of Western Ontario, London, Canada, May, 1969.
    20. Dung N. N., Miyata T., Yamada H. et al., Flutter responses in long span bridges with wind induced displacement by the mode tracing method, J. Wind. Eng. Ind. Aerodyn. 78&79, 1998,367-379.
    21. Ehsan F., Scanlan R. H. Vortex-induced vibrations of flexible bridges. J. Engrg Mech. Vol 116(6), 1990,1392-1411.
    22. Ge Y. J., Tanaka, H. Aerodynamic flutter analysis of cable-supported bridges by multi-mode and full-mode approaches, J. Wind. Eng. Ind. Aerodyn. 86 (2000) 123-153.
    23. Ge Y. J., Xiang H. F. Tanaka H. Application of a reliability analysis model to bridge flutter under extreme winds. J. Wind. Eng. Ind. Aerodyn. 86(2000), 155-167.
    24. Forsching H., Aeroelastic stability investigations on prismatic beams, Proceedings of Symposium on Wind Effects on Buildings and Structures, Loughborough, 1958.
    25. Huston D.R., Flutter derivatives from 14 generic deck sections, Proceedings of ASCE Structure Congress, Orlando, 1987, pp. 281-292.
    26. Huston D. R. The effects of upstream gusting on the aeroelastic behavior of long suspended-span bridges. PhD dissertation. Dept. Of civ. engeg. , Princeton University, Princeton. N. J.
    27. Ibrahim R. S., Mikulcik E. C., A Method for the Direct Identification of Vibration Parameters from the Free Response, The Shock and Vibration Bulletin, Vol47(4), 196-200.
    28. Iwamoto M., Fujino Y. Identification of flutter derivatives of bridges deck from free vibration data. J. Wind. Eng. Ind. Aerodyn. 54-55 (1995) 55-63.
    29. Jain A., Jones N.P., Scanlan R.H., Coupled flutter and buffeting analysis of long-span bridges, J. Struct. Eng. ASCE 122(7) (1996) 716-725.
    30. Jain A., Jones N. P., Scanlan R. H. Coupled aeroelastic and aerodynamic response analysis of long-span bridges. J. Wind. Eng. Ind.. Aerodyn. 60 (1996) 69-80.
    
    
    31. Jakobsen J.B., Hjorth-Hansen E., Determination of the aerodynamic derivatives by a system identification method, Proceedings of First IAWE European & African Regional Conference, Guernsey, 1993, pp. 367-377.
    32. Jones N.P., Scanlan R.H., Issues in the multi-mode aerodynamic analysis of cable-stayed bridges, Infrastracture '91, International, 1991.
    33. Jones N P, Jain A, Scanlan R H. Wind cross-spectrum effects on long-span bridges. Proceedings of Engrg Mech Spec Conf ASCE, New York, 1992.
    34. Jones, N. P., Jain, A. and Scanlan, R. H. Multi-mode aerodynamic analysis of long-span bridges. Proceeding of Structure Congress, ASCE, Atlanta, Georgia, April, 1994.
    35. Jones N. P., Scanlan R. H., Jain A., Katsuchi H. Advanced (and challenges) in the prediction of long-span bridges response. Bridge aerodynamics, Larsen & Esdahl, 1998,59-85.
    36. Kloppel k., Thield F. Modell ver suche in wind kanal zur bemessng vorucken gegen die gefahr winderregter schwingungen. Stahlbau, Vol.20., No. 12, 1967.
    37. Kumarasena, T. et al. Recent observations in bridge deck aeroelasticity, J. Wind. Eng. Ind. Aerodyn. 40(1992), 225-247.
    38. Larsen A. Prediction of aeroelastic stability of suspension bridges during erection. J. Wind. Eng. Ind. Aerodyn.72(1997)265-274.
    39. Li Q. C., Lin Y. K. New Stochastic theory for bridge stability in turbulent flow.Ⅱ. J. Engrg Mec.h. Vol 121(1), 1995,102-116.
    40. Li, Q.C.,. Measuring flutter derivatives for bridge sectional models in water channel, J.Eng. Mech., ASCE, 121(1), 1995, 90-101.
    41. Liao H. L., Xi S. Z., A Method for Identification of Aerodynamic Derivatives from Free Vibration Data, 2 EACWE, Genova, Italy, 1997.
    42. Lin Y. K., Ariaratnam S. T. Self-excited bridge motion in turbulent wind. Presented at the 3M U.S. National Conference on Wind Engineering Research. Gainesville, Florida, Feb. 26-Mar. Ⅰ, 1978,367-370
    43. Lin Y. K. Motion of suspension bridges in turbulent wind. J. of the Engrg. Mech. Div., ASCE, Vol. 105(6),1979.
    44. Lin Y. K., Ariaratnam S. T. Stability of bridge motion in turbulent wind. J. Struct. Mech. Vol 108(1), 1980, 1-15.
    45. Lin Y.K., Yang J.N., Multi-mode bridge response to wind excitation, J. Eng. Mech. Div. ASCE 109(2) (1983) 586-603.
    46. Lin Y. K. Li Q.C., Su T. C. Application of a new wind turbulence model in predicting motion stability of wind-excited long-span bridges. J. Wind. Eng. Ind. Aerodyn. 49 (1993) 507-516.
    
    
    47. Lin Y.K., Li Q.C., New stochastic theory for bridge stability in turbulent flow, J. Eng. Mech. Div. ASCE 119 (1) (1993) 113-127.
    48. Matsumoto, M., etc., Aerodynamic derivatives of coupled/hybrid flutter of fundamental structural sections, J. wind Eng. Indus Aerodyn., 1993 , v49, 575-584.
    49. Matsumoto M., On flutter of bluff bodies, Proceedings of 80th Birthday Symposium in honor of Prof. R.H. Scanlan, The Johns Hopkins University, 1994, pp. 285-294.
    50. Matsumoto M. et al. Flutter stabilization and heaving-branch flutter. J. Wind. Eng. Ind. Aerodyn. 83 (1999) 289-299.
    51. Miyata T. Tanaka H. Aerodynamics of long-span structures. Wind Effects on Structs, Univ. Of Tokyo Press,1976.
    52. Miyata T., Yamada H., Coupled flutter estimate of a suspension bridge, Proc. Int. Colloquium on bluff body aerodyn, and its appl., Kyoto (1988) 485-492.
    53. Miyata T., Yamada H., Coupled flutter estimate of a suspension bridge, J. Wind. Eng. Ind. Aerodyn. 33 (1990)341-348
    54. Miyata T. et al. New findings of coupled flutter in full model wind runnel tests on the Akashi Kaiko Bridge, Proc. Symp. on cable-stayed and suspension bridges, Deauvlille. France, 1994, 163-170.
    55. Miyata T., and Yamada,H. et al., On a application of the direct flutter FEM analysis for long-span bridges. Proc. 9th Int. Conf. on Wind Engineering, New Delhi, India, 1995, 1033-1041.
    56. Miyata T., Yamada H., Boonyapinyo V., Santos J.C., Analytical investigation on the response of a very long suspension bridge under gusty wind, Proceedings of Ninth ICWE, New Delhi, Vol. 2, 1995, pp. 1006-1017.
    57. Morimitsu Y., Ito M., Miyata T., Aeroelastic oscillation of structures due to nonlinear aerodynamic forces, Proc. JSCE 219 (1973) 27-36.
    58. Namini A., Albrecht P., Bosch H., Finite element-based flutter analysis of cable-suspended bridges, J. Struct. Eng. ASCE 118 (6) (1992) 1509-1526.
    59. Otsuki Y., Washizu K., Tomizawa H., Ohya A., A note on the aeroelastic instability of a prismatic bar with square section, J. Sound Vib. 34 (2) (1974) 233-248.
    60. Pfeil M. S. Batista R. C. Aerodynamic stability analysis of cable-stayed bridges. J. Struct. Eng. ASCE, 1995, 121(12):1784-1788.
    61. Poulsen N.K., A. Damsgaard, T.A. Reinhold, Determination of flutter derivatives for the Great Belt Bridge, Proceedings of the Eighth International Conference on Wind Engineering, London, Ontario, Vol. 1, 1991, pp. 153-164.
    
    
    62. Sarkar P.P., Jones N.P., Scanlan R.H., System identification for estimation of flutter derivatives, Proceedings of the Eighth ICWE, London, Ontario, Vol. 2, 1991, pp. 1243-1254.
    63. Sarker P. P. et al., System identification for estimation of flutter derivatives. J. Wind. Eng. Ind. Aerodyn. 41-44 (1992) 1243-1254.
    64. Sarkar P.P., Jones N.P., Scanlan R.H., A comparative study of the aeroelastic behavior of three flexible bridges and a thin airfoil, Proceedings of Seventh US National Wind Engineering Conference, UCLA, 1993, pp. 595-604.
    65. Sarker P. P. et al., Identification of Aeroelastic Parameters of Flexible Bridges, EM8, 1994, ASCE, 1718-1741.
    66. Scanlan R.H., A. Sabzevari, A suspension bridge flutter revisited, ASCE National Meeting on Structural Engineering, Seattle, pre-print No. 468, 1967.
    67. Scanlan R.H., Rosenbaum R., Aircraft Vibration and Flutter, Macmillan, New York, 1951; Dover, New York, 1968.
    68. Scanlan R. H., Sabzevari A. Experimental aerodynamic coefficients in the analytical study of suspension bridge flutter . J. of Mechanical Engineering Science, Vol. 11, NO.3, 1969.
    69. Scanlan R.H., J.J. Tomko, Airfoil and bridge deck flutter derivatives, J. Eng. Mech. Div. ASCE 97 (EM6) (1971) 1717-1737.
    70. Scanlan R.H., BeH liveau J.G., Budlong K.S., Indicial aerodynamic functions for bridge decks, J. Eng. Mech. Div. ASCE 100 (EM4) (1974) 657-672.
    71. Scanlan R H, Gade R H. Motion of suspended bridge spans under gusty wind. J Struct Engrg Div ASCE. 1977,103(9): 1867-1883.
    72. Scanlan R.H., Lin W.H., Effects of turbulence on bridge flutter derivatives, J. Eng. Mech. Div. ASCE 104 (EM4) (1978) 719-733.
    73. Scanlan R. H., The action of flexible bridges under wind, Ⅰ: flutter theory. J. Sound and Vib., 1978, 60(2):187-199.
    74. Scanlan R. H., The action of flexible bridges under wind, Ⅱ: buffeting theory. J. Sound and Vib., 1978, 60(2):201-211.
    75. Scanlan R. H.. Role of indicia Ⅰ functions in buffeting analysis of bridges. J. of Struct. Engrg., Vol. 110, No.7, July., 1984.
    76. Scanlan R. H. and Lin W. Effects of turbulence on bridge flutter derivatives, J. Engrg. Mech. Div., ASCE, 104(4),1987,719-733.
    77. Scanlan R H, Jones N P. Aeroelastic analysis of cable-stayed bridges. J Struct Engrg ASCE, 1990,116(2): 229-297.
    78. Scanlan R H. Problematic in formulation of wind-force model for bridge decks. J Struct Engrg ASCE, 1993,119(7): 1433-1446.
    
    
    79. Scanlan R. H. Amplitude and turbulence effects on bridge flutter derivatives. J. Struct. Eng., 1997, 123(2): 232-236.
    80. Scanlan R. H. Bridge flutter derivatives at vortex lock-in. J. Struct. Eng.. 1998. 124(4): 450-458.
    81. Scanlan R. H. A review of some key developments in the aeroelasticity of long-span bridges. Development of Wind Engineering: State-of-the-art, Davenport.
    82. Shinozuka, et al. Identification of linear structure dynamic systems. J.Eng. Mech. ,ASCE, 108(6), 1982,1371-1390.
    83. Simiu E, Scanlan R H. Wind Effects on Structures (2nd Ed). New York: John Wiley & Sons 1986.
    84. Singh L., Jones N.P., Scanlan R.H., O. Lorendeaux, Simultaneous identification of 3-D aeroelastic parameters, Proceedings of Ninth International Conference on Wind Engineering, New Delhi, India, 1995.
    85. Singh L., Jones N. P., Scanlan R. H., et. al. Identification of lateral flutter derivatives of bridge decks. J. Wind. Eng. Ind. Aerodyn. 60 (1996) 81-89.
    86. Tanaka H., Vibrations of bluff-sectional structures under wind action, Proceedings of the Third International Conference on Wind Effects on Buildings and Structures, Tokyo, 1971, pp. 889-910.
    87. Tanaka H., Davenport A.G., Effect of turbulence on aeroelastic instability of suspension bridges, Proceedings of Seventh CANCAM, Sherbrooke, 1979, pp. 397-398.
    88. Tanaka H., Yamamura N., Tatsumi M., Coupled mode flutter analysis using flutter derivatives, J. Wind Eng. Ind. Aerodyn. 42 (1992) 1279-1290.
    89. Theodorson T., General theory of aerodynamic instability and the mechanism of flutter, NACA Report No. 496, US National Advisory Committee for Aeronautics, Langley, VA, 1935.
    90. Ukeguchi N., Sakata H., Nishitani H., An investigation of aeroelastic instability of suspension bridges,Proceedings of International Symposium on Suspension Bridges, Lisbon, 1966, pp. 273-284.
    91. Van der Put Rigidity of structures against aerodynamic forces. IABSE. 1976.
    92. Wagner H. Ueber die entstehung des dynamischen auftriebes yon tragflugeln. Zeitschrift fuer Angewandte Mathematik und Mechanik, Vol. 5, Berlin, Germany, 1925, 17-35.
    93. Wilde K. Fujuno Y., Masukawa J. Time domain modeling of bridge deck flutter. Journal of Structural Engineering/Earthquake Engineering, JSCE, Vol. 13, No.2, July. 1996,93-104.
    
    
    94. Wyatt T. A, May H. I. The generation of stochastic load functions to simulate wind loads on structures. International J. Of Earthquake Engineering And Structural Dynamics, 1(3), 1973, pp217-224.
    95. Xie J. M., Xiang H. F., State-space method for 3-D flutter analysis of bridge structures, Proc. Asia pacific symp. on wind engrg., India (1985) 269-276.
    96. Yamada, H. and Ichikawa, H. "Estimation of Aerodynamics Parameters By Extended Kalman Filter Algorithm ." J. Wind. Eng. Vol 41,1989
    97. Yamada H., Miyata T., Ichikawa H., Measurement of aerodynamic coefficients by system identification methods, Proceedings of the Eighth International Conference on Wind Engineering, London, Ontario, Vol. 2, 1991, pp. 1255-1264.
    98. Yamada, H. et aI. "Measurement of Aerodynamics Coefficients By System Identificaiton Metheds." J. Wind. Eng. & Ind. Aerodynamics, Vol 41,1992
    99.曹映泓.大跨度桥梁非线性颤振和抖振时程分析,上海:同济大学博士论文,1999
    100.陈政清.桥梁颤振临界风速值上下限预测与多模态参与效应,结构工程研究的新进展及应用,1993.
    101.陈政清.桥梁颤振临界状态的三维分析与机理研究.见:1994年斜拉桥国际学术讨论会论文集.上海,1994
    102.程韶红,大跨度桥梁的三维颤,有限元分析,同济大学硕士学位论文,1993.
    103.傅志方主编.振动模态分析与参数辨识,机械工业出版社,1990.
    104.何宪飞.三自由度桥梁断面颤振导数识别的实验研究.同济大学硕士学位论文,2001.
    105.华旭刚,陈政清.桥梁风致颤振临界状态的全域自动搜索法,工程力学,19(2),2002年4月.
    106.黄方林,陈政清.桥梁颤振导数识别的泛函极小值搜索方法,第十三届全国桥梁大会论文集,同济大学出版社,1998,572-576
    107.李国豪.桥梁结构稳定与振动(修订版).中国铁道出版社,1996年.
    108.希缪,A·,斯坎伦,R.H.(刘尚培,项海帆,谢雾明译).风对结构的作用.同济大学出版社,1992.
    109.项海帆、陈艾荣等.桥梁断面18个颤振导数识别的试验研究,大型复杂结构体系的关键科学问题及设计理论研究论文集.同济大学出版社,2000.
    110.项海帆.21世纪世界桥梁工程的展望,土木工程学报,33(3),2000年6月.
    111.项海帆.进入二十一世纪的中国大桥工程及抗风研究.
    112.项海帆.桥梁工程的宏伟发展前景,桥梁漫笔.366—372.
    113.项海帆等.公路桥梁抗风设计指南.人民交通出版社,1996.
    114.小西一郎(日) (张键峰译).钢桥(第11分册),人民铁道出版社,1981.
    115.谢霁明,项海帆,桥梁三维颤振分析的状态空间法.同济大学学报,1985年第3
    
    期.
    116.谢霁明.识别非定常气动力模型的初脉冲耦合振动法.空气动力学学报,4(3),1996年9月.
    117.张若雪.桥梁结构气动导数识别的理论和试验研究.同济大学博士论文,1998.
    118.张新军,大跨度桥梁三维非线性颤振分析,同济大学博士学位论文,2000.
    119.周传荣,赵淳生编著.机械振动参数识别及其应用.科学出版社,1989.
    120.曹丰产.桥梁气动弹性问题的数值计算,同济大学博士学位论文,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700