用户名: 密码: 验证码:
高精度薄板带板凸度激光检测的误差分析与精度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济和科学技术的发展,薄板带材的需求量不断增加,特别是在铝加工行业,为实现铝薄板加工生产过程中板材厚度、板形、板凸度的高精度控制,对在线检测装置的检测精度提出了更高的要求,并促进检测装置向智能化方向发展。但目前的检测设备在经济性以及功能性等方面均存在着不足。
     本文以国家高技术研究发展计划(863计划)课题“铝薄板高精度板凸度在线检测装置”(课题编号:2002AA423190)为背景。开发了基于激光检测技术的铝薄板板凸度在线检测装置,通过理论分析和试验研究,深入研究了高精度板凸度激光检测装置整体及各子系统的误差规律,从误差避免和误差补偿的角度,综合运用有限元优化技术、小波信号分析与处理技术,解决了系统精度保证及精度控制的关键问题。在此基础上,结合薄板带的快速铸轧工业试验,对板凸度激光检测装置的性能进行了工业试验验证。表明该装置具有成本低、精度高、稳定性好的特点,对于提高我国铝带材的产品质量,增强市场竞争力具有重要的意义。同时文中所用理论和方法也适用于其它检测装置,本文的研究具有重要的理论意义和应用价值。
     论文的主要研究内容和成果如下:
     1.通过对高精度板凸度激光检测装置整体及各子系统深入的精度分析,在比较不同方案的基础上,根据项目要求的移动式、高精度的核心目标,设计了基于双束激光差动测量方法的扫描式激光板凸度检测方案,确定了以C型扫描框架为主体的装置的总体结构造型,实现了低成本、高精度的板厚、板凸度同时测量。
     2.研究了板凸度激光检测装置实现智能化检测的自动测量策略,对双束激光差动测量系统中的传感器位置关系与测量有效性的规律进行了研究,建立了不同被测板材厚度条件下的最佳传感器位置调节目标。基于该目标,提出了板凸度激光检测的调节策略,仿真试验证明了自动调节策略的可行性。
     3.研究了高精度板凸度激光检测系统的静态误差传递规律,分析机械装配精度等因素造成的系统中传感器平动位置误差、旋转角度误差等对系统精度的影响规律,建立了系统装置的机械加工及装配精度所致的误差分析模型,形成系统加工、装配精度的控制准则,为系统标定与静态误差修正提供理论依据。
     4.基于试验研究,通过工业现场的环境振动测试试验,不同振动激励下框架的动力学性能试验,不同扫描检测状态下板凸度检测精度的影响规律试验,分析了不同振动参数、扫描参数对检测精度的影响规律,建立了系统装置的动态误差分析模型,为通过误差避免和误差补偿以保证检测精度奠定了基础。
     5.在分析移动框架静态、动态变形以及不良振型对检测精度的影响规律的基础上,提出了通过对检测装置关键部件C型框架的进行模态优化实现精度控制的方法。在通用有限元软件ANSYS的基础上,利用APDL语言对框架力学性能分析与动态优化设计,包括静态(强度、刚度)优化分析,模态优化分析,动力学响应分析等,并进行了设计变量的灵敏度分析,提出了C型移动框架的优化设计结构。
     6.研究了基于小波原理的板凸度激光检测信号振动误差抑制的方法,针对板凸度激光检测信号的多频特性,通过多分辨小波分析与处理方法,采用小波信号分解—重构,来剔除检测信号中的谐波性振动误差成分,确定了最佳小波基函数和小波分解层数。通过仿真试验和现场试验表明,本方法可以减少因振动和各种环境扰动等原因造成的误差,检测精度得到了明显的提高。
     7.研究了板凸度激光扫描参数因素作用引起的误差补偿方法,针对该类误差多参数耦合、非线性的特点,采用神经网络的方法,建立扫描参数与动态误差之间的非线性神经网络模型,通过对动态误差的预测,实现动态误差的补偿。通过工业试验比表明,本方法有效地消除了由于扫描状态不同引起的随机误差,提高了检测精度。
     8.进行了板凸度激光检测系统的技术集成,对该装置的硬件组成和软件系统进行了详细的分析研究。设计制造了我国首台扫描式铸轧板带板凸度激光检测装置样机。经现场应用表明,装置的检测精度、系统功能完全能够满足铸轧板凸度检测与控制的要求。
With the development of economy and technology, the requirement ofthin sheet increased largely. Especially in aluminum industry, to realizehigh accuracy control of aluminum thin sheet's thickness, flatness andconvexity, the higher measurement precision of the on line measureequipment, and that will promote measure equipment become moreintelligent. But the actual measure equipment has shortage in economicand functional aspects.
     Funded by the National High Technology Research and DevelopmentProgram("863"Program) of China—"The On-line High-precisionConvexity Measurement Equipment for Thin Aluminum Sheet"(No.2002AA423190). An on-line high-precision convexity measurementequipment for thin aluminum sheet based on laser measurementtechnology. With theory analysis and experiment research, the error rulesof whole system and subsystem of high-precision convexity measurementequipment using a laser system are studied. The key technologies toguarantee and control the measuring precision of the measurement systemby use of finite element method and wavelet signal analysis andprocessing method, which includes error avoidance and error restraint.Combined with the high-speed thin-gauge roll casting industrialexperiment, the capabilities of high-precision sheet convexity using alaser measuring system are validated by the industry test. The experimentshows that the system has advantages of low-cost, high-precision andgood-stability, and that is very important to improve production quality ofdomestic aluminum sheet and boost up market competition ability. At thesame time, the theory and means are also used in other measurementequipment. All those study of this paper are very important both in theoryand application.
     In this paper, the main research work and achievement as follows:
     1. After errors analysis of whole system and subsystem ofhigh-precision convexity measurement equipment using a laser system,and compare different projects, according to the main program goal of moving and high-precision measurement, a scanning project to measurethe convexity of thin-sheet is developed, that is based on the differencemeasurement theory of a pair of laser beams, and the whole structure ofequipment is designed, which is C-frame structure. It is realized that sheetthickness and convexity are measured together with low-cost andhigh-precision.
     2. The automatic measurement strategy is studied, which is used torealize intelligent measurement for convexity measurement equipmentusing a laser system. The rule between sensor's position relation andmeasurement validity of difference measurement system with a pair oflaser beams is studied; the optimal position adjusting aim under differentthickness conditions of sheet to be measured is set up. According to thisaim, the adjustment strategy in sheet convexity measurement system withlaser is brought forward, and the differentia sensor's position adjustingmechanism is designed. The measurement simulation experimental showsthat automatic measurement strategy is feasibility.
     3. The static errors transfer rules of high-precision convexitymeasurement using a laser system is studied. The rule that is howhorizontal position errors of sensor and rotational angle errors of sensor,etc. caused by mechanism assembly precision affect system precision isstudied. The analysis model of errors caused by mechanism process andassembly precisions is set up, and the control rule of system processassembly is fashioned, which could provide the theory foundation ofsystem calibration and static errors modification.
     4. Based on experimental studies, which include the environmentvibrations testing experiment under industrial conditions, the experimentof the frame dynamics capability excited by the different vibrations, andthe rule experiment of how different scanning status affect measurementprecision, the rule of how vibrations with different parameters affect themeasurement is investigated, the dynamics errors analysis model is set up,which set up the foundation of guarantee measuring precision of themeasurement system by use of error avoidance and error restraint.
     5. After the rule of how static distortions, dynamic distortions and ill modes shapes of moving-frame affect the system's measuring precision isstudied, the method to guarantees the measuring precision of theequipment by structure optimization of the C-frame which is key part ofmeasurement system is brought forward. With the universal finite elementanalysis software-ANSYS, by the use of APDL language, the analysis ofthe frame's mechanics characteristic and dynamic structure optimizationof the frame is carried out, which include static (intensity and stiffness)optimum analysis, modal optimum analysis and dynamic responseanalysis, etc. The sensitivity analysis of design variable is also carried out.So that, the optimum structure of moving frame with C-shape is putforward.
     6. The method of vibration error restraint for sheet convexitymeasuring signal based on wavelet signal multi-resolution analysis isstudied. According to multi-frequency characteristic of sheet convexitymeasuring signal and by use of the wavelet multi-resolution analysismethod, with wavelet decomposition and restoration method, theconvexity measuring signal is decomposed into single components andafter a restraining algorithm is used, the wavelet restoration of validcomponents of the measured signal is carried out and vibration errors areeliminated. The optimum wavelet primary function and the optimumwavelet decomposition level number are determined. By the simulationtesting and experiment, it is showed that errors caused by vibration andsome environment disturbance could be reduced and measuring precisionis increased obviously.
     7. The errors compensation for sheet convexity measuring, which arecaused by the factor of scanning parameters is studied. According to thecharacteristic of multi-parameter coupling and non-linear, by use of neuralnetwork (NN) method, the non-linear NN model between scanningparameters and dynamic errors is created. By means of dynamic errorsforecasting, dynamic errors compensation is realized. By industrial testing,it is showed that errors caused by different scanning parameters areeliminated effectively and measurement precision is increased.
     8. The technology integration of high-precision convexity measurement using laser is carried out. The detailed analysis and study ofhardware composing and software structure for the measurementequipment are carried out. The device of convexity measurement withlaser for thin-gauge roll casting is designed and developed, which is firstone in our country. The application shows that the measurement precisionand the system functions of device can satisfy measurement and control ofthe convexity for thin-gauge roll casting and system.
引文
[1] 余铭皋.我国铝加工装备现状与发展趋势[J].有色设备,2000,6:10~15
    [2] 中国期货证券金融网:对我国电解铝工业进行结构调整的构想 (http://www.szcifco.com/readnews.asp?siteID=469)
    [3] 中国颗粒网:我国铝工业的环境、政策与发展 (http://www.chinagrain.net/index_web/zl.asp?id=19)
    [4] 中国集装箱控股集团公司:我国铝工业发展、政策与前景展望 (http://www.cnecg.com/Article_Show.asp?ArticleID=301)
    [5] 王国栋.板形控制和板形理论[M].北京:冶金工业出版社,1986
    [6] 黄庆学,梁爱生.高精度轧制技术[M].北京:冶金工业出版社,2002
    [7] 高增伟.辊式连铸轧铝板带厚差及板凸度的控制与调整[J].轻合金加工技术,1998,26(8):17~19,35
    [8] 李向宇.铝铸轧板板形控制初探[J].轻合金加工技术,1999,27(11):16~17
    [9] “铝薄板高精度板凸度在线检测装置”研究技术报告.长沙:中南大学机电工程学院测控技术研究室,2005.
    [10] 铝及铝合金板、带材的尺寸允许偏差.GB/T 3194—1998
    [11] V.B.金兹伯格(美)著,姜明东,王国栋等译.高精度板带材轧制理论与实践[M].冶金工业出版社,2000
    [12] 路彦德.穿透式X射线测厚仪测厚原理及选型.轻合金加工技术,2000.No.6:24~32.
    [13] 苏鸿英.美国DMC公司的先进板形厚度测量系统[J].有色综述,1995,11:14.
    [14] 杨映芬.我国高精铝板带产品的生产现状及发展趋势[J].上海有色金属,1998,19(4):178~182
    [15] Wang Qingpu, Zhang Xingyu, Zhao Shengzhi, et al. Experimental research of measuring the thickness of steel plates by laser-induced ultrasonic wave[J]. Laser Journal, Apr 1994, 15(2): 60~62.
    [16] 陈明君,李旦,李家宝,葛鸿翰.激光—CCD厚度检测系统的研究[J].机械工程师,1996,5.
    [17] Wang Yanfei, Study on measuring object thickness with the laser light triangle method[J], Proceedings of the International Symposium on Test and Measurement, June, 1999: 839-842.
    [18] 宋元鹤,陈文艺,赵宏,李根乾,谭玉山.一种新型用于覆铜板生产线的在线厚度测量系统[J].半导体光电,1997,18(6):426~429.
    [19] 钟丽云,杨齐民,王翊等.光学三角法实时测量金属板厚[J].激光技术,1998,22(3):136~139
    [20] 周利民,胡德洲,卢秉恒.激光扫描三角法测量精度因素的分析与研究[J].计量学报,1998,19(2):130~135
    [21] 钱晓凡,吕晓旭,钟丽云等.提高激光三角法测量精度的新方法[J].激光杂志,2000,21(3):54~55
    [22] 缪泓,刘献俊,王文懿等.一种应用于反射表面厚度测量的新方法[J].中国科学技术大学学报,1998,28(5):540~543
    [23] 王少清,庄葆华,张文伟.基于朗伯定律重建光学三角法测位移原理公式[J].光学学报,1996,16(12):1802~1808
    [24] Li Jiazhong, Xiao Shengan, Li Guohua. Precision Measurement of thickness of thin transparent film with laser scattering technique[J]. Applied Laser Technology, Aug, 1991, 11(4): 184~185, 188
    [25] Anon. Laser measurement in the steel industry. Two methods of laser measurement for tube and bar production[J]. Steel Times, Jan, 1991, 219 (1): 18, 20
    [26] 费业泰.精度理论若干问题研究进展与未来[J].中国机械工程,2000,11 (3).
    [27] 陈晓怀,黄强先,费业泰.广义动态测量精度理论模型及不确定度研究[J].中国科学技术大学学报,2001,2(6).
    [28] 费业泰,于连栋.论全系统动态测试精度理论研究[J].合肥工业大学学报,2000,2(23)
    [29] Consortini A. Cochetti E Churnside J etc. Measured inner scale effect in laser atmospheric scintillation. Proceedings of SPIE-The International Society for Optical Engineering. 1993, 19(3):349~350
    [30] 常丹华,王廷云.提高CCD在线测试精度的一种方法[J].计算与测试,1999,18(14):40~42
    [31] 王少清,庄葆华.激光三角法位移测量中被测物面倾斜产生测量误差的机理及其校正[J].应用光学,1995,16(2):58~64
    [32] 周恕义,关承祥,邬敏贤等.用最小二乘法提高CCD干涉计量的精度[J].仪器仪 表学报,1999,20(1):100~102
    [33] 李丽霞,蒋建华.一种测量CCD上像点精确位置的方法[J].光学技术,1996,9(5):21~23,27
    [34] 刘明华,余模智,何平安等.线阵CCD采集系统的非线性度测量[J].武汉测绘科技大学学报,1996,21(4):399~402
    [35] C. Spinola, M. J. Vazquez, A. G. Bohorquezetc. Calibration of thickness measurement instruments based on twin laser sensors. Isolines bilinear look up tables. Conference Record-IEEE Instrumentation and Measurement Technology Conference, 2001, 5(2): 1079~1083
    [36] 袁哲俊,王先逵.精密和超精密加工技术.机械工业出版社,1999.
    [37] 严济宽.机械振动隔离技术.北京:机械工业出版社,1985.
    [38] 朱德库.空气弹簧及其控制系统[M].山东科学技术出版社,1989.
    [39] Xu Bin, Jiang JieSheng, Ren JianTing, Gao YueFei. Integrated structure and control optimization based on modal control[J]. Mechanical Science and Technology, 2002, 21(SI): 34~35
    [40] 隋允康.建模、变换、优化—结构综合方法新进展[M].大连理工大学出版社,1996
    [41] 程耿东.工程结构优化设计基础[M].北京:水利电力出版社,1984,3
    [42] 王光远,董明耀.结构优化设计[M].北京:高等教育出版社,1987
    [43] 徐斌,管欣,荣见华.谐和激励下的连续体结构拓扑优化[J].西北工业大学学报,2004,22(3):313~316
    [44] 顾松年,徐斌,荣见华等.结构动力学设计优化方法的新进展[J].机械强度,2005,27(2):156~162
    [45] 张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [46] 王宏禹.现代谱估计[M].南京:东南大学出版社,1991.
    [47] Martin N. An AR Spectral Analysis of Non-stationary Signal[J]. Signal Processing, 1986, 10(1):61-74.
    [48] Djuric P M, Kay S M, Faye Boudreaux-Bartels G. Segmentation of Non-stationary Signals[J]. Proceedings of the IEEE ICASSP, San Francisco, U. S. A., 1992, 5: 161-164.
    [49] 杨叔子,吴雅,等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992.
    [50] Pandit S M, Wu S M. Time Series and System Analysis with Applications[M]. NewYork: John Wiley & Sons, 1983.
    [51] Grenier Y. Time-Dependent ARMA Modeling ofNon-StationarySignals[J]. IEEE Trans. ASSP, 1983, 31: 899-911.
    [52] Kayhan A S, EI-Jaroudi A, Chaparro L F. Data-Adaptive Evolutionary Spectral Estimation[J]. IEEE Trans. on Signal Processing, 1995, 43(1): 204-213.
    [53] Alengrin G, Barlaud M, Menez J. Unbiased Parameter Estimation of Non-Stationary Signals in Noise[J]. IEEE Trans. Acoust., Speech, Signal Process., 1986, 34: 1319-1322.
    [54] Konzin F, Nakajima F. The Order Determination Problem for Linear Time-Varying AR Models[J]. IEEE Trans. on Automatic Contral, 1980, 25(2): 250-257.
    [55]王文华,王宏禹.非平稳信号的一种ARMA模型参数估计法[J].信号处理,1998,14(1):33-37.
    [56] Qiu I, Tsoi A C. The Relationship between a Time-Varying Model of Non-Stationary Signals and Its Wigner Distribution[J]. Signal Processing, 1993, 32: 305-314.
    [57] 丁康,陈健林,苏向荣.平稳和非平稳信号的若干处理方法及发展[J].振动工程学报,2003,16(1):1—10.
    [58] 王文华,王宏禹.非平稳随机信号ARMA模型与WVD的关系[J].大连理工大学学报,1997,37(6).
    [59] Hu Changliu, Wen Chenglin. An Improved Multi-scale Estimation Method of Signal [J]. Quarterly Journal of Mathematics, 2000, 15(2): 102~107.
    [60] Mallat SGA. Theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans Pattern Anal and Mach Intell, 1989, 11 (7): 674~93.
    [61] Meyer Y. Wavelets and operators. Cambridge Studies in Advanced Mathematics, 37. Cambridge: Cambridge University Press, 1992
    [62] S. Mallat, Zheng Sifen. Characterization of signals from multiscale edges[J]. IEEE Trans. on PAMI, 1992, 14 (7): 710~732
    [63] Zhang Haiyong, Ma Xiaojiang, Gai Qiang. A New Method for theAnalysis of Non-Stationary Signal: The Time-Varying AR Model Based on Intrinsic Mode Function[J]. Proc. of ISTM, Shanghai, 2001: 544-546.
    [64] Qian S, Chen D. Joint Time-Frequency Analysis, Methods and Applications. Prentice Hall PTR, 1996.
    [65] 王志刚,李友荣.小波分析-AR谱及其工程应用[J].振动与冲击,2001,20(1):85~86,51
    [66] 汤庸.结构化与面向对象软件方法[M].北京:科学出版社,1998
    [67] Borland/Inprise公司著.梁志刚,汪浩等译.C++Builder 5开发人员指南[M].北京:机械工业出版社,2000
    [68] Jarrod Hollingworth(澳)等著.康向东,汪浩等译.C++Builder 5程序设计大全[M].北京:机械工业出版社,2002
    [69] 清宏计算机工作室.C++Builder编程技巧—网络与数据库篇[M].北京:机械工业出版社,2001
    [70] F. -J. SHIOU, T. PFEIFER. Strategies and Processes to Measure the Dimensional Geometry of Sheet Metal Parts for Exact Laser Cutting[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(2): 106~116
    [71] K-C Fan. A non-contact automatic measurement for free-form surface profiles[J]. Computer Integrated Manufacturing Systems. 1997, 10 (4): 277~285.
    [72] WANG Xue-jun. Study of a laser automatic position shifting measuring system for the auto-body 3-D shape measurement[J]. Chinese Journal of Lasers, 1998, 25(11): 1051-1055.
    [73] TONG Kai, REN Rui, LI Zhi-quan. Design of an automatic focusing system for 3-D topography measurement [J]. Opto-Electronic Engineering, 2004, 31(3): 56-59.
    [74] 荣烈润.微位移机构综述[J].机电一体化,2005(2):6~11
    [75] 梁晋文,陈林才,何贡.误差理论与数据处理[M].北京:中国计量出版社,2001:2~46
    [76] 沙定国.实用误差理论与数据处理[M].北京:电子工业出版社,1993:12~14
    [77] layer E, Gawedzki W. Theoretical principle for dynamic errors measurement[J]. Measurement, 1990, 8 (1): 178~182
    [78] 谢礼立.强震观测与分析原理[M].北京:地震出版社,1982.
    [79] 田小平.数字地震信号中长周期随即干扰的消除[J].信号处理,1999,15(1)
    [80] 宗孔德.数字信号处理[M].北京:清华大学出版社,1988
    [81] 丁美玉.窄带数字滤波器的设计[J].西安电子科技大学学报,1996,23(1)
    [82] 孙永荣,刘建业,陆涛等.基于自适应滤波的车载DR系统研究[J].南京航空航天大学学报,2000,32(4):450~454
    [83] Liu Ding, Ma Ning, Zheng Gang. Usage of the Adaptive Neural Network Filter in the Roller Eccentricity Control[J]. Heavy Machinery, 2000, (5): 3~6
    [84] 杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京理工大学出版社,1988:6~11
    [85] 王正光.数据采集与处理[M].北京:国防工业出版社,1985:164~169
    [86] ANSYS Advanced Analysis Techniques Guide[M]. ANSYS Inc., 1999
    [87] 任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003:194~196
    [88] 杨宗明,马哲树,王健雄.基于CAE技术的优化方法及其应用[J].机械设计与制造.2004,8(4):5~6
    [89] 王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [90] 毛勇健,王齐鲁,阎渊.一例优化设计中复杂模型的APDL实现[J].ANSYS用户年会论文集.2002
    [91] 龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M]-北京:机械工业出版社.2004:1~3
    [92] 陈立周.机械设计优化方法[M].北京:冶金工业出版社,1995
    [93] 林家浩.有频率禁区的结构优化设计[J].大连工学院学报,1981,20(1)
    [94] 林家浩.结构动力优化中的灵敏度分析[J].振动与冲击,1985,13(1)
    [95] Sobol'灵敏度分析方法在结构动态特性分析中的应用研究.长沙:湖南大学,2003
    [96] 张学荣,朱茂桃,张敏中.灵敏度分析在车身结构动力修改中的应用[J].ANSYS用户用户年会论文集.2002
    [97] 陈鑫,于雪,林松轿.车车身静态刚度计算及静态竖直弯曲刚度优化分析[J].汽车技术,2004,1:15~17
    [98] 叶宁,袁景侠.用灵敏度分析指导结构动态修改[J].动态分析与测试技术,1988
    [99] 田军.有限元模型静力—模态协同修正技术[硕士学位论文].兰州:西北工业大学,2004
    [100] 许桢英,费业泰.基于小波神经网络的动态测试误差溯源研究[J].农业机械学报.2003,7(34),117~119
    [101] 丁晓牧,金施群,费业泰.动态误差时间序列小波神经网络预测模型[J].合肥工业大学学报.2003,12(26),1127~1130
    [102] 邓辉宇,王欣利,苏宝库.基于小波分析的测角系统误差补偿研究[J].哈尔 滨工业大学学报.2004,1(36):95~98
    [103] 陈庆虎,李柱.小波分析用于表面粗糙度量仪导轨位移误差补偿的探讨[J].计量技术.1998,2,5-7
    [104] Chen Qinghu, Li Zhu. Applications of Wavelet in Measurements and Analysis of Curved Surface[J]. Asia- Pacific Symposium on Instrumentation. China Metrology Press, August, 1997:234~237
    [105] 秦前清,杨宗凯.实用小波分析[M].西安:西安科技大学出版社,1994:23~56
    [106] 王欣,王德隽.离散信号的滤波[M].北京:电子工业出版社,2002.6
    [107] 王海清.基于小波和统计学的方法[J].工业过程检测2000,12
    [108] 飞思科技产品研发中心.MATLAB6.5辅助小波分析与应用[M].北京:电子工业出版社,2003,1:174~184
    [109] 程正兴.小波分析算法与应用[M].西安:西安交通大学出版社,1998:31~52
    [110] 李舜酩.二进小波振动检测中低频保相的二次变换处理[J].仪器仪表学报.2005,4(26):370~373
    [111] 蔡志强,吴雅,周笠,杨叔子.故障诊断与切削颤振的小波分析[J].华中理工大学学报,1993,21(1):88~94
    [112] 吴延军,赵艳,吕维雪,小波包分解及其参数模型[J].应用声学,1998,17(3):25-29
    [113] Shao Junpeng, Jia Huijuan. Feature Eextraction of Vibration Signals Based on Wavelet Packet Transform[J]. Chinese Journal of Mechanical Engineering, 2004, 17 (1): 25~27
    [114] Hou Rongtao, Sun Liyuan. Fault Diagnosis of a Turbo-unit Based on Wavelet Packet Theory [J]. International Journal of Plant Engineering and Management, 2002, 7 (4): 198~203
    [115] Chui CK. Wavelets: a mathematical tool for signal analysis. SIAM Monographs on Mathematical Modeling and Computation. Philadelphia, PA: SIAM, 1997
    [116] Cohen A, Daubeehies I, Feauveau JC. Biorthogonal basis of compactly supported wavelets[J]. Comms on Pure and Appl Mathematics. 1992, 45: 485~560
    [117] Ovanesova AV. Applications of wavelets to crack detection in frame structures. Ph. D. Thesis, Civil Engineering Department. College of Engineering, University of Puerto Rico, Mayagu¨ez, Puerto Rico, 2000.
    [118] Rao RM. Bopardikar AS. Wavelet transforms—introduction to theory and applications. Reading, MA: Addison Wesley Longman, 1998.
    [119] 彭玉华.《小波变换与工程应用》[M].北京:科学出版社,1999
    [120] S. G. Mallat. "Characterization of signals from multiscales edges". NYU, Computer Science Tech. Report, 1991
    [121] 陈逢时.《小波变换理论及其在信号处理中的应用》[M].北京:国防工业出版社,1998
    [122] 焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996
    [123] 高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003
    [124] 李金宗.模式识别导论[M].北京:高等教育出版社,1994
    [125] 黄同岗,宋克欧.模式识别[M].哈尔滨:哈尔滨工程大学出版社,1998
    [126] Dan Hammerstron. Neural Networks at work. IEEE, 1993, 5:26~32
    [127] King Damien, Flanagan C., Lyons W. B. et al. An Optical Fibre Water Sensor Utilizing Signal Processing Techniques and Artificial Neural Network Pattern Recognition. Proceedings oflEEE Sensors, 2002, 1 (2): 1374~1378
    [128] Lyons William B., Flanagan Colin, Lewis Elfed, et al. Interrogation of multipoint optical fibre sensor signals based on artificial neural network pattern recognition techniques[J]. Sensors and Actuators, A: Physical. 2004, 114 (1): 7~12
    [129] Lyons William B., Flanagan C., Lochmann S., et al. A multipoint optical evanescent wave U-bend sensor system based on Artificial Neural Network pattern recognition[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4596:320~328
    [130] Al-Nuaimy W., HuangY., Nakhkash M., et al. Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition[J]. Journal of Applied Geophysics, 2000, 43 (2-4): 157~165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700