用户名: 密码: 验证码:
基于微纳结构阵列的全色彩颜色调控新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颜色是宇宙万物存在的基本特征之一,为了得到不同的颜色,人们提出了各种颜色获取及调控方法。但是,随着科技的发展和人类社会的进步,传统的颜色调控方法已经难以满足相关需求。为此,本文在介绍微纳米技术及微纳米材料的发展历史,综述传统的基于微纳结构阵列的颜色调控研究发展现状,分析这些技术的特点及尚存在的局限性的基础上,提出和发展了一种基于微纳结构阵列的颜色调控新方法,可实现覆盖可见光全光谱的颜色序列和复杂彩色图案的颜色调控。该方法具有原理新颖、方法巧妙、色彩亮丽、可覆盖可见光全光谱等特点,不仅具有重要的科学意义,而且可在物理学、微光学及光子学、仿生学、材料学、MOEMS及微纳米技术等领域获得广泛应用。
     本文首先介绍了基于纳米仿生学的颜色调控方法,阐述了激光投影式光刻、激光直写、纳米压印及电化学自组装等用于微纳结构制备的加工技术,并对基于这些加工技术的颜色调控方法进行了探讨和分析,确定了一种基于多孔氧化铝(PA)模板和纳米层的静态颜色调控新方法。
     针对布拉格反射模型和微纳结构等效折射率计算模型进行了深入的研究,揭示了纳米层/PA微纳结构的颜色呈现(呈色)机制及相关的颜色调控因子;建立了几种不同的呈色数理模型,利用多物理场仿真分析软件COMSOL Multiphysics,分别从不同材料的金属纳米层,不同厚度的金属纳米层,不同孔深及不同孔隙率的PA模板等方面,对呈色模型展开了仿真;通过对仿真结果的详细分析和可行性实验,设计了一系列基于PA和纳米层的静态颜色调控方案。
     在理论研究和仿真的基础上,开展了基于PA模板和纳米层的静态颜色调控实验。通过在PA模板表面沉积或溅射不同的金属纳米层、控制PA模板的孔深或孔隙率等多种技术手段,分别实现了单色和多色的颜色呈现;首次实现了基于Cr纳米层/PA和Ag纳米层/PA、覆盖可见光全光谱(全色彩)的颜色序列调控,并根据Cr纳米层/PA的颜色序列,进一步得出了由预期颜色到PA参数的经验公式,提出了满足实际应用的颜色调控流程和方法;在此基础上,首次提出和发展了用于制备复杂彩色图案的“局域制备法”和“局域溅射法”,分别成功制备出“世界地图”、“蝴蝶翅膀”等复杂彩色图案。
     在静态颜色调控的基础上,提出了一种基于压电材料和微纳结构阵列的动态颜色调控方法,并进一步对动态颜色调控方法开展了预研。通过对压电材料的选择和对微纳结构周期的优选及仿真,设计了一种动态颜色调控器件,并对该器件的制备工艺展开了详细的实验研究。针对该器件搭建了由CCD成像检测单元和压电控制模块组成的调控控制系统,设计并开发了应用软件,实现了从图像采集到处理、由参数计算到颜色调控的一整套系统功能。
     最后对本课题的研究成果进行总结:提出和发展了一种基于PA的颜色调控新方法,并开展了系统的理论研究,建立了完备的数理模型;开展了基于PA的静态颜色调控技术研究,首次实现了覆盖可见光全光谱的颜色序列及“世界地图”、“蝴蝶翅膀”等复杂彩色图案的颜色调控;研究总结出颜色调控的经验指导公式,据此可在实际应用中指导PA模板的制备并实现有效的颜色调控;提出了基于微纳结构和压电材料的动态颜色调控方法,开展了相应的制备工艺及实验研究。此外指出了课题研究中有待改进之处,并对今后的研究工作提出了展望。
Color is a basic property of objects in the world, to chase different colors with high quality, various color tuning methods were put forward. However, these traditional methods cannot satisfy the growing need as the developing of human society. Under this circumstance, we introduce the development history of Micro/Nano technology and Micro/Nano material, overview of the traditional color tuning methods and analysis of their strengths and weaknesses, then propose a color tuning method based on the Micro/Nano structure array, which is capable of modulating the colors series covering the whole visible range and fabricating the colorful patterns. This method has advantages of novel principle, simple process, sufficing to fabricate the brilliant colors covering the whole visible range, which has an extraordinary scientific meaning with expecting to have a potential of being widely applied in the fields of micro-optics, microstructures, advanced materials and micro/nanotechnology.
     In this paper, some color tuning methods based on the Nano-Bionics are introduced first, some other ways for color tuning are also discussed in the aspects of fabricating technique, principle, advantages and disadvantages. On the base of that, a novel static color tuning method by depositing a nanolayer on porous alumina (PA) templates is put forward.
     Through the study of the Bragg-Reflection model and the Effective-Refractive-Index model, the color-generation principle of PA-nanolayer structure as well as several factors affecting color tuning is promulgated. With the aid of COMSOL Multiphysics, several reasonable physical models of PA-nanolayer structure are set up and the color presenting situations of different nanolayer materials, thicknesses of Cr nanolayer, hole depths and porosities of PA are simulated. According to the result of modeling and feasibility experiment, we design a series of color tuning schemes based on the PA templates and nanolayer.
     The color tuning schemes formerly designed are carried out in the corresponding experiments. By depositing or sputtering different metal materials nanolayer on the PA surface and controlling the pore depth and porosity of PA, various colors are obtained. On one hand, two series of colors covering the whole visible range are first fabricated by respectively sputtering Cr and Ag nanolayers on two groups of PA templates with pore-depths ranging from230to490nm. and by analyzing and summarizing the color series data, a color modulation method which is suitable for application is further derived; on the other hand, two kinds of preparation methods of colorful pattern are developed for the first time, some exciting colorful pattern such as "World Map" or "Butterfly Wings", are successfully prepared respectively using "local pore depth fabrication method" and "local sputtering method".
     On the basis of static color tuning research, a method used to tune color dynamically is proposed by integrating the piezoelectric material and the microstructure array. Take into account the study of piezoelectric material and the optimization of the array's period, a device is designed to display different surface colors in real time by tuning the voltage between the up and bottom electrodes of PZT. As the most important part of this work, the fabrication process of the device is focused during experiments, attempting to realize the function of designed device. For detecting and tuning the surface color of the device, a system consisted of CCD imaging-detecting unit and piezoelectric property controlling module is set up, with its software designed and completed as well.
     The achievements of the whole research work are concluded in the end:studying the static color tuning method based on the PA templates in both theoretical and experimental ways, carrying out a series of colors covering the whole visible light range and some colorful patterns, developing a dynamically color tuning method by integrating the piezoelectric material and the microstructure array, designing a device for dynamical color tuning, exploring the detail process for the device fabrication in the experiment. Besides, we point out some inadequacy of our work, and give some advices on the future research.
引文
1. Srinivasarao, M., Nano-optics in the biological world:beetles, butterflies, birds, and moths. Chemical Reviews-Columbus 1999,99 (7),1935-1962.
    2. Mason, C. W., Structural colors in insects. Ⅰ. The Journal of Physical Chemistry 1926, 30(3),383-395.
    3. Mason, C., Structural colors in insects. Ⅱ. The Journal of Physical Chemistry 1927,31 (3),321-354.
    4. Mason, C., Structural colors in insects. Ⅲ. The Journal of Physical Chemistry 1927, 31 (12),1856-1872.
    5. Ghiradella, H., Light and color on the wing:structural colors in butterflies and moths. Applied optics 1991,30 (24),3492-3500.
    6. Parker, A. R.; Welch, V. L.; Driver, D.; Martini, N., Structural colour:opal analogue discovered in a weevil. Nature 2003,426 (6968),786-787.
    7. Michel, B.; Bernard, A.; Bietsch, A.; Delamarche, E.; Geissler, M.; Juncker, D.; Kind, H.; Renault, J.-P.; Rothuizen, H.; Schmid, H., Printing meets lithography:soft approaches to high-resolution patterning. IBM Journal of Research and Development 2001,45(5),697-719.
    8. Duan, X. High-resolution imprint and soft lithography for patterning self-assembling systems. University of Twente, Enschede,2010.
    9. Geissler, M., Sub-Micrometer Patterning Using Soft Lithography.2010.
    10. Carter, K. R., An Age-Old Printing Process Goes Nano. ACS nano 2010,4 (2), 595-598.
    11. Obaton, A. F.; Laffont, G.; Wang, C.; Allard, A.; Ferdinand, P., Tilted Fibre Bragg Gratings and Phase Sensitive-Optical Low Coherence Interferometry for refractometry and liquid level sensing. Sensors and Actuators A:Physical 2013,189, 451-458.
    12. Kim, H.-J.; Kim, Y.-Y.; Lee, K.-W.; Park, S.-H., A distributed Bragg reflector porous silicon layer for optical interferometric sensing of organic vapor. Sensors and Actuators B:Chemical 2011,155 (2),673-678.
    13. Kemling, J. W.; Qavi, A. J.; Bailey, R. C.; Suslick, K. S., Nano structured Substrates for Optical Sensing. The journal of physical chemistry letters 2011,2 (22), 2934-2944.
    14. Torres-Costa, V.; Salonen, J.; Jalkanen, T. M.; Lehto, V. P.; Martin-Palma, R. J.; Martinez-Duart, J. M., Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity, physica status solidi (a) 2009,206 (6),1306-1308.
    15. Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R. Olson, E., Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics 2007,1 (2),123-128.
    16.张立德,我国纳米技术发展现状.中国经贸导刊2002,16,24-25.
    17.张立德;牟季美,纳米材料和纳米结构.北京:科学出版社2001.
    18. Salamanca-Buentello, F.; Persad, D. L.; Martin, D. K.; Daar, A. S.; Singer, P. A. Nanotechnology and the developing world. PLoS Medicine 2005,2 (5), e97.
    19. Whitesides, G. M., Nanoscience. nanotechnology, and chemistry. Small 2005,1 (2), 172-9.
    20.张莉芹;袁泽喜,纳米技术和纳米材料的发展及其应用.武汉科技大学学报(自然科学版)2003,3.
    21.白春礼,中国纳米科技研究的现状及思考.物理2002,31(2),65-70.
    22. Porter, A. L.; Youtie, J.; Shapira, P.; Schoeneck, D. J., Refining search terms for nanotechnology. Journal of Nanoparticle Research 2007,10 (5),715-728.
    23. Wyszecki, G.; Stiles, W. S., Color science. Wiley New York:1982.
    24. Fairman, H. S.; Brill, M. H.; Hemmendinger, H., How the CIE 1931 color-matching functions were derived from Wright-Guild data. Color Research & Application 1997, 22(1),11-23.
    25. Hinchey, M.; Pagnoni, A.; Rammig, F. J.; Schmeck, H., Color theory and its application in art and design. Springer Publishing Company, Incorporated:2008.
    26. Guild, J., The colorimetric properties of the spectrum. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 1932,230,149-187.
    27. Sabra, A.; Stork, D. G., Theories of Light from Descartes to Newton. Physics Today 1983,36,71.
    28. Whittaker, E., History of the Theories of Aether and Electricity. Soil Science 1954,77 (5),417.
    29.王乐妍.激光光致热塑成型效应及三维微结构制备新方法研究.浙江大学,2011.
    30. Huang, J.; Wang, X.; Wang, Z. L., Controlled replication of butterfly wings for achieving tunable photonic properties. Nano letters 2006,6 (10),2325-2331.
    31. Vorobyev, A.; Guo, C., Enhanced absorptance of gold following multipulse femtosecond laser ablation. Physical Review B 2005,72 (19).
    32. Vorobyev, A. Y.; Guo, C., Colorizing metals with femtosecond laser pulses. Applied Physics Letters 2008,92 (4),041914.
    33. Vorobyev, A.; Makin, V.; Guo, C., Brighter Light Sources from Black Metal: Significant Increase in Emission Efficiency of Incandescent Light Sources. Physical Review Letters 2009,102 (23).
    34. Ge, J.; Hu, Y.; Yin, Y., Highly Tunable Superparamagnetic Colloidal Photonic Crystals. Angewandte Chemie 2007,119 (39),7572-7575.
    35. Ge, J.; Hu, Y.; Zhang, T.; Huynh, T.; Yin. Y., Self-assembly and field-responsive optical diffractions of superparamagnetic colloids. Langmuir 2008,24 (7),3671-3680.
    36. Ge, J.; Lee, H.; He, L.; Kim, J.; Lu, Z.; Kim, H.; Goebl. J.; Kwon, S.; Yin, Y., Magnetochromatic microspheres:rotating photonic crystals. Journal of the American Chemical Society 2009,131 (43),15687-94.
    37. Wang, B.; Fei, G. T.; Wu, B.; Jin. Z.; Zhang, L. D., Preparation of Three-dimensional Netlike Mesoporous Alumina Membrane. Chemistry Letters 2006,35 (12), 1336-1337.
    38. Wang, B.; Fei, G. T.; Wang, M.; Kong, M. G.; Zhang, L. D., Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 2007,18 (36).365601.
    39. Zheng, W. J.; Fei. G. T.; Wang, B.; De Zhang, L., Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature. Nanoscale research letters 2009,4 (7),665-667.
    40. Zheng, W. J.; Fei, G. T.; Wang, B.; Jin, Z.; Zhang, L. D., Distributed Bragg reflector made of anodic alumina membrane. Materials Letters 2009,63 (8),706-708.
    41. Madsen, C. K.; Zhao, J. H., Optical filter design and analysis:a signal processing approach. John Wiley & Sons, Inc.:1999.
    42.郁道银;谈恒英,工程光学.机械工业出版社:2006.
    43. Pfaff, G.; Reynders, P., Angle-dependent optical effects deriving from submicron structures of films and pigments. Chemical reviews 1999,99 (7),1963-1981.
    44. Young, A. T., Rayleigh scattering. Physics Today 1982,35,42.
    45. Bohren, C. F.; Fraser, A. B., Colors of the sky. The Physics Teacher 1985,23,267.
    46. Bohren, C. F., Multiple scattering of light and some of its observable consequences. Am. J. Phys 1987,55 (6),524-533.
    47. Ghiradella, H.; Aneshansley, D.; Eisner, T.; Silberglied, R. E.; Hinton, H. E., Ultraviolet reflection of a male butterfly:interference color caused by thin-layer elaboration of wing scales. Science 1972,178 (4066),1214-1217.
    48. Ghiradella, H., Hairs, bristles, and scales. Microscopic anatomy of invertebrates 1998, 11,257-287.
    49. Nijhout, H. F., The development and evolution of butterfly wing patterns. Smithsonian series in comparative evolutionary biology 1991.
    50. Nijhout, H. F., Insect hormones. Princeton University Press:1998.
    51. Nijhout, H.; Emlen, D., Competition among body parts in the development and evolution of insect morphology. Proceedings of the National Academy of Sciences 1998,95(7),3685-3689.
    52. Scalora, M.; Dowling, J.; Bowden, C.; Bloemer, M., Optical Limiting and Switching of Ultrashort Pulses in Nonlinear Photonic Band Gap Materials. Physical Review Letters 1994,73 (10),1368-1371.
    53. Campbell, M.; Sharp, D.; Harrison, M.; Denning, R.; Turberfield, A., Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 2000, 404(6773),53-56.
    54. Wijnhoven, J. E., Preparation of Photonic Crystals Made of Air Spheres in Titania. Science 1998,281 (5378),802-804.
    55. Packan, P. A., Pushing the limits. Science 1999,285 (5436),2079-2081.
    56.邓常猛;耿永友;吴谊群,激光光刻技术的研究与发展.红外与激光工程2012,41(5),1223-1231.
    57. Moon, S.-Y.; Kim, J.-M., Chemistry of photolithographic imaging materials based on the chemical amplification concept. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2007,8 (4),157-173.
    58. Malek, C. K.; Saile, V., Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems:a review. Microelectronics Journal 2004,35 (2),131-143.
    59.田丰.微纳光纤直写技术研究.浙江大学,2010.
    60. Tamada, H.; Doumuki, T.; Yamaguchi, T.; Matsumoto, S., Al wire-grid polarizer using the< i> s-polarization resonance effect at the 0.8-μm-wavelength band. Optics letters 1997,22 (6),419-421.
    61. Sun, H.; Chen, A.; Olbricht, B. C.; Davies, J. A.; Sullivan, P. A.; Liao, Y.; Dalton, L R., Direct electron beam writing of electro-optic polymer microring resonators. Optics Express 2008,16 (9),6592-6599.
    62. Tong, L.; Gattass, R. R.; Ashcom, J. B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E., Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003,426(6968),816-819.
    63.丁玉成;刘红忠;卢秉恒;李涤尘,下一代光刻技术——压印光刻.机械工程学报2007,43(3),1-7.
    64. Choi, J.; Schilling, J.; Nielsch, K.; Hillebrand, R.; Reiche, M.; Wehrspohn, R.; Gosele, U. In Large-area porous alumina photonic crystals via imprint method. Materials Research Society Symposium Proceedings, Cambridge Univ Press:2002; pp 417-422.
    65.邢丽;张复实;向军辉;杨镜奎,自组装技术及其研究进展.世界科技研究与发展2007,29(3),39-44.
    66. Masuda, H.; Fukuda, K., Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995,268 (5216), 1466-8.
    67. Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T., Highly ordered nanochannel-array architecture in anodic alumina. Applied Physics Letters 1997,71 (19),2770-2772.
    68. Martin, C. R., Membrane-based synthesis of nanomaterials. Chemistry of Materials 1996.8(8),1739-1746.
    69. Brumlik, C. J.; Menon, V. P.; Martin, C. R., Template synthesis of metal microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. Journal of materials research 1994,9 (05).1174-1183.
    70. Vorobyev, A. Y.; Guo, C., Femtosecond laser nanostructuring of metals. Optics express 2006,14 (6),2164-2169.
    71. Yamamoto, Y.; Baba, N.; Tajima, S., Coloured materials and photoluminescence centres in anodic film on aluminium.1981.
    72. Huang, G. S.; Wu, X. L.; Yang, L. W.; Shao, X. F.; Siu, G. G.; Chu, P. K., Dependence of blue-emitting property on nanopore geometrical structure in Al-based porous anodic alumina membranes. Applied Physics A 2005,81 (7),1345-1349.
    73. Li, Z.; Huang, K., Optical properties of alumina membranes prepared by anodic oxidation process. Journal of luminescence 2007,127 (2),435-440.
    74. Yasui, A.; Iwasaki, M.; Kawahara. T.; Tada, H.; Ito, S., Color properties of gold-silver alternate nanowires electrochemically grown in the pores of aluminum anodic oxidation film. Journal of colloid and interface science 2006,293 (2),443-8.
    75. Chen, H. M.; Hsin, C. F.; Liu, R.-S.; Hu, S.-F.; Huang, C.-Y., Controlling Optical Properties of Aluminum Oxide Using Electrochemical Deposition. Journal of The Electrochemical Society 2007,154 (6), K11.
    76. Hu, X.; Pu, Y. J.; Ling, Z. Y.; Li, Y., Coloring of aluminum using photonic crystals of porous alumina with electrodeposited Ag. Optical Materials 2009.32 (2),382-386.
    77. Sankar, P. R.; Tiwari, P.; Kumar, R.; Ganguli, T.; Mukherjee, C.; Srivastava, A. K.; Oak, S. M.; Pathak, R. K., Synthesis and characterization of cadmium selenide nanostructures on porous aluminum oxide templates by high frequency alternating current electrolysis. Applied Surface Science 2010.256 (7),2097-2103.
    78. Wang, X. H.; Akahane, T.; Orikasa, H.; Kyotani, T.; Fu, Y. Y., Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films. Applied Physics Letters 2007,91 (1),011908.
    79. Ono, S.; Masuko, N., Evaluation of pore diameter of anodic porous films formed on aluminum. Surface and Coatings Technology 2003,169-170,139-142.
    80. Casanova, F.; Chiang, C. E.; Li, C. P.; Roshchin, I. V.; Ruminski, A. M.; Sailor, M. J.; Schuller, I. K., Gas adsorption and capillary condensation in nanoporous alumina films. Nanotechnology 2008,19 (31),315709.
    81. Casanova, F.; Chiang, C. E.; Li, C. P.; Roshchin, I. V.; Ruminski, A. M.; Sailor, M. J.; Schuller, I. K., Effect of surface interactions on the hysteresis of capillary condensation in nanopores. EPL (Europhysics Letters) 2008,81 (2),26003.
    82. Alvine, K.; Shpyrko, O.; Pershan, P.; Shin, K.; Russell, T., Capillary Filling of Anodized Alumina Nanopore Arrays. Physical Review Letters 2006,97 (17).
    83. Zhang, J.; Sun, Z.; Yang, B., Self-assembly of photonic crystals from polymer colloids. Current Opinion in Colloid & Interface Science 2009,14 (2),103-114.
    84. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y., Monodispersed colloidal spheres:old materials with new applications. Advanced materials 2000,12 (10),693-713.
    85. Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 1997,389 (6653),829-832.
    86. Muscatello, M. M.; Asher, S. A., Poly(vinyl alcohol) Rehydratable Photonic Crystal Sensor Materials. Advanced functional materials 2008,1186 (1193),18-8.
    87. Tian, E.; Wang, J.; Zheng, Y.; Song, Y.; Jiang, L.; Zhu, D., Colorful humidity sensitive photonic crystal hydrogel. Journal of Materials Chemistry 2008,18 (10), 1116.
    88. Zhang, Y.-Q.; Wang, J.-X.; Ji, Z.-Y.; Hu, W.-P.; Jiang, L.; Song, Y.-L.; Zhu, D.-B., Solid-state fluorescence enhancement of organic dyes by photonic crystals. J. Mater. Chem.2006,17(1),90-94.
    89. Han. G.-Z.; Xie, Z.-Y.; Zheng, D.; Sun, L.-G.; Gu, Z.-Z., Phototunable photonic crystals with reversible wavelength choice. Applied Physics Letters 2007,91 (14), 141114-141114-3.
    90. Burkert, K.; Neumann. T.; Wang, J.; Jonas, U.; Knoll, W.; Ottleben, H., Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter. Langmuir 2007,23 (6), 3478-3484.
    91. http://www.pitt.edu/-asher/homepage/colgrp.html.
    92. Thomas, E. L.; Gorishnyy, T.; Maldovan, M.. Phononics:Colloidal crystals go hypersonic. Nature materials 2006,5(10),773-774.
    93. Cheng, W.; Wang, J.; Jonas, U.; Fytas. G.; Stefanou, N., Observation and tuning of hypersonic bandgaps in colloidal crystals. Nature materials 2006.5(10),830-836.
    94. McGrath, J. G.; Bock, R. D.; Cathcart, J. M.; Lyon, L. A., Self-assembly of "paint-on" colloidal crystals using poly (styrene-co-N-isopropylacrylamide) spheres. Chemistry of Materials 2007,19 (7),1584-1591.
    95. Viel. B.; Ruhl. T.; Hellmann. G. P., Reversible deformation of opal elastomers. Chemistry of Materials 2007,19 (23),5673-5679.
    96. Wohlleben, W.; Bartels, F. W.; Altmann, S.; Leyrer, R. J., Mechano-optical octave-tunable elastic colloidal crystals made from core-shell polymer beads with self-assembly techniques. Langmuir 2007,23 (6),2961-2969.
    97. Wang, J.; Wen, Y.; Ge, H.; Sun, Z.; Zheng, Y.; Song, Y.; Jiang, L., Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromolecular Chemistry and Physics 2006,207 (6),596-604.
    98. Gates, B.; Xia, Y., Photonic crystals that can be addressed with an external magnetic field. Advanced materials 2001,13 (21),1605.
    99. Ge, J.; Lee, H.; He, L.; Kim, J.; Lu, Z.; Kim, H.; Goebl, J.; Kwon, S.; Yin, Y. Magnetochromatic microspheres:rotating photonic crystals. Journal of the American Chemical Society 2009,131 (43),15687-15694.
    100. Bragg, W. L., The Specular Reflection of X-rays. Nature 1912,90,410.
    101. Bragg, W. L., The Structure of Some Crystals as Indicated by Their Diffraction of X-rays. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences 1913,89 (610),248-277.
    102. Bragg, W. H.; Bragg, W. L., The Reflection of X-rays by Crystals. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences 1913.88 (605). 428-438.
    103. Kittel, C.; McEuen, P., Introduction to solid state physics. Wiley New York:1996; Vol.7.
    104. Cowley, J. M., Diffraction physics. North Holland:1995; Vol.22.
    105. Garnett, J. C. M., Colours in Metal Glasses and in Metallic Films. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences 1904,203 (359-371),385-420.
    106. Lamb, W.; Wood, D. M.; Ashcroft, N. W., Long-wavelength electromagnetic propagation in heterogeneous media. Physical Review B 1980,21 (6),2248-2266.
    107. Hornyak, G.; Patrissi, C.; Oberhauser, E.; Martin, C.; Valmalette, J.; Lemaire, L. Dutta, J.; Hofmann, H., Effective medium theory characterization of Au/Ag nanoalloy-porous alumina composites. Nanostructured Materials 1997,9 (1), 571-574.
    108. Kerker, M., The scattering of light, and other electromagnetic radiation.1969.
    109. Niklasson, G. A.; Granqvist, C.; Hunderi, O., Effective medium models for the optical properties of inhomogeneous materials. Applied Optics 1981,20 (1),26-30.
    110.陈新华,多孔阳极氧化铝研究综述.许昌学院学报2005,24(2),29-29.
    111. Sides, C. R.; Martin, C. R., Deposition into templates. In Electrochemistry at the Nanoscale, Springer:2009; pp 279-320.
    112. Foss Jr, C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R.. Template-synthesized nanoscopic gold particles:optical spectra and the effects of particle size and shape. The Journal of Physical Chemistry 1994,98 (11),2963-2971.
    113.Zeng, H.; Zheng, M.; Skomski. R.; Sellmyer, D. J.; Liu, Y.; Menon, L. Bandyopadhyay. S., Magnetic properties of self-assembled Co nanowires of varying length and diameter. Journal of Applied Physics 2000,87 (9).4718-4720.
    114. Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H., Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999,283 (5401),512-514.
    115. Shelimov, K. B.; Davydov, D. N.; Moskovits, M., Template-grown high-density nanocapacitor arrays. Applied Physics Letters 2000,77 (11),1722-1724.
    116. Parthasarathy, R.; Martin, C. R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization; DTIC Document:1994.
    117. Ishikawa, Y.; Matsumoto, Y., Electrodeposition of TiO< sub> 2 photocatalyst into nano-pores of hard alumite. Electrochimica Acta 2001,46 (18), 2819-2824.
    118. Llandro, J.; Palfreyman, J.; Ionescu, A.; Barnes, C., Magnetic biosensor technologies for medical applications:a review. Medical & biological engineering & computing 2010,48(10),977-998.
    119. Chen, I.-C.; Chen, Y.-H.; Wang, Y.-C.; Shih, M.-H., Plasmon resonance properties of silver-patterned glass substrates fabricated by anodic alumina oxide templates. Applied Physics A 2012,1-6.
    120. Ding, D.; Cai, W.; Long, M.; Wu, H.; Wu, Y., Optical, structural and thermal characteristics of Cu-CuAl2O4 hybrids deposited in anodic aluminum oxide as selective solar absorber. Solar Energy Materials and Solar Cells 2010,94 (10), 1578-1581.
    121. Rana, K.; Dogu, G. K.; Bengu, E., Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties. Applied Surface Science 2012.
    122. http://comsol.cntech.com.cn/中仿科技官方网站.
    123. Yu, Z.; Gao, H.; Wu, W.; Ge, H.; Chou, S. Y., Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2003,21 (6),2874.
    124. Ding, G. Q.; Zheng, M. J.; Xu, W. L.; Shen, W. Z., Fabrication of controllable free-standing ultrathin porous alumina membranes. Nanotechnology 2005,16 (8), 1285-1289.
    125. Keller, F.; Hunter, M.; Robinson. D., Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society 1953,100 (9),411-419.
    126. O'sullivan, J.; Wood, G., The morphology and mechanism of formation of porous anodic films on aluminium. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1970,511-543.
    127. Ono, S.; Saito, M.; Ishiguro. M.; Asoh. H., Controlling Factor of Self-Ordering of Anodic Porous Alumina. Journal of The Electrochemical Society 2004,151 (8), B473.
    128. Wang, X.; Zhang, H.; Zhang, D., A method of color modulation based on porous alumina and atomic layer deposition. Acta Physica Sinica 2011,5,117.
    129. Wang, X.; Zhang, D.; Zhang, H. In A study of color modulation of porous alumina processed by physical vapor deposition, Journal of Physics:Conference Series, IOP Publishing:2011; p 012048.
    130.徐万劲,磁控溅射技术进展及应用(上).现代仪器2006,11(5),1-5.
    131. Wang. X.; Zhang, D.; Zhang. H.; Ma. Y.; Jiang. J. Z., Tuning color by pore depth of metal-coated porous alumina. Nanotechnology 2011,22 (30),305306.
    132. Wang, X.; Zhang, H.; Zhang, D.; Ma, Y.; Fecht, H. J.; Jiang, J., Color tuning by local sputtering metal nanolayer on microstructured porous alumina. Microscopy research and technique 2012.
    133. Polla, D. L.; Francis, L. F., Processing and characterization of piezoelectric materials and integration into microelectromechanical systems. Annual review of materials science 1998,28 (1),563-597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700