用户名: 密码: 验证码:
锂离子电池SnO_2基负极材料的设计制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源危机和环境污染的严重挑战下,电动汽车的发展在世界各国都给予了高度的重视。SnO2负极材料在目前研发的负极材料中,由于低嵌锂电压、高嵌锂容量,环境友好等优点被视为一种极具潜力的新一代动力电池负极材料。但是SnO2负极材料存在循环寿命较差和大电流充放电性能差等问题,限制了其商业化应用。为此本文对SnO2电极的嵌锂行为进行了量化计算,可以更具体直观地理解SnO2电极发生巨大体积膨胀的内因。在计算结论的基础上对SnO2材料进行性能的改进和提高,对SnO2材料进行掺杂、制备特殊形貌的SnO2材料以及特殊形貌的SnO2基复合材料,对它们的电化学性能进行研究,分析其性能提高的影响机理,为获得高性能SnO2基材料提供有价值的指导。
     利用第一性原理计算方法研究了SnO2负极材料在嵌锂过程中形成的晶态LixSn的电子结构、几何结构等微观变化。结果表明,SnO2材料被还原为Sn单质后,在锡与锂合金化过程中,随着嵌锂浓度的增加,晶态锡逐渐发生相变转化为LixSn,都表现出金属导电性质。LixSn在费米能级附近的电子呈现出不同的波动值,说明不同嵌锂浓度的LixSn有不同的电子传导性,这是由于不同晶体结构所具有的混合轨道的不同所引起的。Sn、Li2Sn5、LiSn和Li22Sn5在费米能级处的N(EF)值分别对应1.01、5.18、3.71和24.26states/eV,嵌锂相具有高的导电性就可以较容易地形成稳定的SEI膜和电荷传输,从而提高循环性能。但是通过计算LixSn的几何结构可知Li22Sn5的体积膨胀系数最大(343%)。由此可见,对于提高其循环性能来说,LixSn合金化合物高的导电性和大的体积膨胀是相互制约的一对矛盾。
     在嵌锂行为分析的结论上,考虑到提高材料的电子传导率,研究Ni、W掺杂对SnO2材料电化学性能的影响。Ni、W掺杂后,抑制了SnO2晶粒的增大,提高了SnO2的导电性,掺杂W的效果更明显。在循环前期电极粉化较少,电极完整性保持较好的时候作用不明显;在后期当电极遭受巨大体积膨胀裂纹较多粉化较严重时候,高导电性能够更好的保持电极本身的电子传导,从而延长循环寿命。通过Mott-Schottky测试研究了电极在脱嵌锂循环过程中SnO2的状态,证实了中间产物Li2O催化分解反应的部分可逆现象。
     对水热法制备特殊形貌SnO2微球的工艺进行了优化,制备了实心SnO2微球、中空SnO2微球和部分核壳结构的SnO2中空微球,并对这三种形貌的SnO2材料进行电化学性能的对比研究,揭示影响SnO2电极循环性能的因素。研究发现,实心SnO2微球电极首次放电容量为842.1mA h g1,循环48次后可逆容量保持在386.5mA h g1;中空SnO2微球电极的首次放电容量为996.5mA h g1,循环65次后可逆容量保持在406.5mA h g1;部分核壳结构的SnO2中空微球电极的首次放电容量为688.8mA h g1,循环100次后可逆容量保持在374.2mA h g1。结果说明中空结构的材料对于循环性能的提升有很大优势;部分核壳结构的SnO2中空微球电极的放电容量并不高,但是循环性能最好,这应该主要归因于不完全的空心核壳结构内部的微腔缓冲了巨大的体积膨胀,同时,核壳的相互支撑加强了在脱嵌锂过程中的结构稳定性。进一步观察发现,热处理后样品的充电电压平台比未经过热处理的充电电压平台高0.05V左右,随后的放电电压却比未经过热处理的电压稍低。充电电压的增加以及放电电压的降低扩展了材料脱嵌锂的有效电压范围,便利了电极材料脱嵌锂的反应,增大了电极的脱嵌锂容量。
     在中空SnO2微球的基础上,设计并制备了不同的中空SnO2核壳复合材料。中空SnO2/B2O3核壳复合材料尤其是含B2.1wt%复合材料在160次充放电后容量仍保持在622.7mA h g1,3900mA g1(5C)下的容量保持在528.6mA h g1以上。循环性能的提升是因为微球表面的非活性B2O3壳层缓冲了巨大的体积变化和纳米颗粒的团聚,同时,内部的空间也一定程度上容纳了一部分体积变化;倍率性能的提升归因于B原子由于自身的电子缺陷,降低了电荷传递阻抗,意味着离子传导率的提高。中空SnO2/21wt%PPy核壳复合材料电极在100次循环后的可逆容量保持在448.4mA h g1;中空SnO2/17wt%rGO/21wt%PPy三元核壳复合材料电极在100次循环后的可逆容量保持在647.8mA h g1;在电流密度为3900mA g1(5C)时,三元复合物所展现的可逆容量仍在117.6mA h g1之上。通过CV曲线计算了三种复合材料各自的Li+的扩散系数,分别为4.5×108cm2s1,7.4×109cm2s1,1.8×10-8cm2s1,都比中空SnO2微球电极的Li+扩散系数1.2×109cm2s1大,也解释了倍率性能优异和电化学性能提升的原因,为SnO2负极材料的实用化提供了指导和借鉴。
The development of electric vehicles in the world has been paid close attention to face the severe challenges of energy crisis and environmental pollution. In the current development of the anode materials, SnO2is regarded as a potential next-generation anode material of power lithium ion batteries for electric vehicles, due to its advantages of low lithium inserted potential, high capacity and environmental friendliness. However, its commercial application has been limited by its poor cycle life and high current charge-discharge performance. So quantum chemical calculations for lithium intercalation behaviors were carried out in this paper, which can be more intuitive understanding the internal of dramatic volume expansion in SnO2electrodes. Based on the calculated conclusions, doped SnO2materials, special morphology SnO2materials and special morphology SnO2-based composite materials were prepared to improve the electrochemical properties. The impact mechanisms were studied to further guide the design and synthesis of high performance SnO2-based materials.
     The geometric and electronic structures of crystalline LixSn formed during lithiation of SnO2anode material were investigated by first-principle calculations. SnO2material is reduced to the elemental Sn, in processes of the phase transformation of crystalline Sn to crystalline LixSn with increased concentration of lithium intercalation, and the results of quantum chemical calculation showed that crystalline LixSn exhibits metallic conductivity. With the concentration of lithium insertion increasing, the electrons near the Fermi level in DOS, N(EF), display fluctuant values, declaring that the electric conductivity is different for various Li intercalation compounds. This phenomenon results from the differences of hybrid orbital caused by diverse crystal structures. The value of N at the Fermi level (EF) of Sn, Li2Sn5, LiSn and Li22Sn5are1.01,5.18,3.71and24.26states/eV, respectively. The high conductivity of lithium intercalation phases is beneficial to the formation of stabilized Solid Electrolyte Interphase (SEI) films and electron transfer, resulting in improved cycling performance. However, the volume expansion coefficient of Li22Sn5is maximum (343%) by calculating the geometry of LixSn. Thus, high conductivity and large volume expansion of LixSn alloy compounds is a pair of conflicting constraints for improving their cycling performance.
     Based on the analysis conclusion of lithium intercalation behavior, taking into account the electronic conductivity, the impacts of Ni and W dopants on the electrochemical properties of Ni-doped SnO2and W-doped SnO2were researched. SnO2grains were decreased and the conductivities of SnO2were improved after doping with Ni, W, and the effect of W-doped SnO2is more obvious than that of Ni-doped SnO2. At the early stage of the cycle, the impact was less obvious when the integrity of electrode was maintained well; when the electrode has more cracks and severe pulverization due to huge volume expansion at later period of the cycle, high conductivity electrodes are better able to maintain their electronic conduction, thus extending the cycle life. The portion reversible phenomenon of intermediate Li2O catalytic decomposition reaction was confirmed by Mott-Schottky testing investigating SnO2state during lithium de-intercalation cycling.
     Hydrothermal synthesis process of special morphology SnO2microspheres was optimized to prepare SnO2solid microspheres, SnO2hollow microspheres and partial core-shell structure SnO2hollow microspheres. The electrochemical properties of these morphology SnO2microspheres were studied to reveal the factors that affect the cycle performance of the electrodes. The study found that the three prepared SnO2microspheres exhibit different cycle performances. The initial discharge capacity is842.1mA h g1for SnO2solid microspheres,996.5mA h g1for SnO2hollow microspheres, and688.8mA h g1for partial core-shell structure SnO2hollow microspheres. The retained specific capacity for each sample is386.5mA h g1up to48cycles for SnO2solid microspheres,406.5mA h g1up to64cycles for SnO2hollow microspheres, and374.2mA h g1up to100cycles for partial core-shell structure SnO2hollow microspheres. These results suggested that the hollow structured materials have advantages for the anode cycle performance. Partial core-shell structure SnO2hollow microspheres exhibited the most excellent cycle performance. The superior stability of partial core-shell structure SnO2hollow microspheres can be attributed to the formation of smaller SnO2hollow microspheres and incomplete core-shell structure. The interior microcavities of core-shell structured materials are capable of accommodating large volume change. Simultaneously, the mutual support between core and shell heightens structural stability during Li insertion-extraction. In addition, the charging voltage platform of sample with heat treatment is higher (about0.05V) than that without heat treatment; the discharge voltage of sample with heat treatment is lower than that without heat treatment. The increased charging voltage and reduced discharge voltage expanded effective voltage range of lithium de-intercalation, facilitated the lithium de-intercalation reaction of electrode material and increased the lithium de-intercalation capacity of the electrode.
     Different SnO2-based hollow core-shell structure composite materials were prepared via hydrothermal-impregnation method and hydrothermal-polymerization method based on SnO2hollow microspheres. In the case of hollow SnO2/B2O3core-shell composites, the cycle performance has been greatly improved, especially for B2.1wt%electrode, still maintaining622.7mA h g1of discharge capacity at the160th cycle; at a rate of5C (3900mA g1), the specific capacity of B2.1wt%electrode is above528.6mA h g1. Apart from the inner hollow space that is able to mitigate the enormous volume change to some degree, the much improved cycle performance can be attributed to the inactive B2O3buffer layer, accommodating the enormous volume change during continuous cycling and keeping the nanoparticles from agglomeration during the charge-discharge process. The enhanced rate performance is ascribed to the electron-deficient nature of boron, which reduced the Rct, indicating enhanced ionic conductivity in the nanocomposite. The retained specific capacity is448.4mA h g1in the100th cycle for the hollow SnO2/21wt%PPy core-shell nanocomposite anode;647.8mA h g1in the100th cycle for the hollow SnO2/17wt%rGO/21wt%PPy ternary core-shell nanocomposite anode. At a current density of3900mA g1(5C), the ternary composite material still exhibited a reversible capacity above117.6mA h g1. The diffusion coefficient of Li+ions (DLi) was calculated from a linear relationship between Ip and v1/2according to CV curves. The Li+diffusion coefficients in hollow SnO2/20wt%B2O3core-shell composites, hollow SnO2/21wt%PPy core-shell nanocomposites and hollow SnO2/17wt%rGO/21wt%PPy ternary core-shell nanocomposites were calculated to be4.5×108cm2s1,7.4×109cm2s1and1.8×10-8cm2s1, which were all larger than that of SnO2hollow microspheres (1.2×109cm2s1). These data explain the reason of excellent rate capability and electrochemical performance, providing guidance and reference for SnO2practical application as anode materials.
引文
[1] Flandrois S, Simon B. Carbon Materials for Lithium-Ion RechargeableBatteries[J]. Carbon,1999,37(2):165-180.
    [2] Endo M, Kim C, Nishimura K, et al. Recent Development of CarbonMaterials for Li Ion Batteries[J]. Carbon,2000,38(2):183-197.
    [3] Ohzuku T, Iwakoshi Y, Sawai K. Formation of Lithium-GraphiteIntercalation Compounds in Nonaqueous Electrolytes and Their Applicationas a Negative Electrode for a Lithium Ion (Shuttlecock) Cell[J]. Journal ofThe Electrochemical Society,1993,140(9):2490-2498.
    [4] Courtney I A. Electrochemical and In Situ X-Ray Diffraction Studies of theReaction of Lithium with Tin Oxide Composites[J]. Journal of TheElectrochemical Society,1997,144(6):2045.
    [5] Yang S F, Zavalij P Y, Whittingham M S. Anodes for Lithium Batteries: TinRevisited[J]. Electrochemistry Communications,2003,5(7):587-590.
    [6] Choi W, Lee J Y, Jung B H, et al. Microstructure and ElectrochemicalProperties of a Nanometer-Scale Tin Anode for Lithium SecondaryBatteries[J]. Journal of Power Sources,2004,136(1):154-159.
    [7] Inaba M, Uno T, Tasaka A. Irreversible Capacity of Electrodeposited Sn ThinFilm Anode[J]. Journal of Power Sources,2005,146(1-2):473-477.
    [8]魏巍,王久林,杨军, et al.锂离子电池锡基负极材料的研究进展[J].化工进展,2010,(01):80-87.
    [9]袁万颂,田彦文,刘国强.锂离子电池锡基负极材料的研究进展[J].稀有金属与硬质合金,2009,(04):53-57.
    [10] Zaghib K, Julien C M. Structure and Electrochemistry of FePO4·2H2OHydrate[J]. Journal of Power Sources,2005,142(1-2):279-284.
    [11] Sun Y H, Liu X Q. Synthesis and Electrochemical Properties ofPhospho-Olivine Type LiFexM(1-x)PO4(1≥x≥0) Compounds[J].合成化学,2004,12(z1):146-146.
    [12] Andersson A S, Kalska B, H ggstr m L, et al. Lithium Extraction/Insertionin LiFePO4: An X-ray Diffraction and M ssbauer Spectroscopy Study[J].Solid State Ionics,2000,130(1-2):41-52.
    [13] Noel M, Santhanam R. Electrochemistry of Graphite IntercalationCompounds[J]. Journal of Power Sources,1998,72(1):53-65.
    [14] Wang Q, Li H, Chen L Q, et al. Novel Spherical Microporous Carbon asAnode Material for Li-Ion Batteries[J]. Solid State Ionics,2002,152-153(0):43-50.
    [15] Alpen U V. Li3N: A Promising Li Ionic Conductor[J]. Journal of Solid StateChemistry,1979,29(3):379-392.
    [16] Nishijima M, Kagohashi T, Takeda Y, et al. Electrochemical Studies of aNew Anode Material, Li3xMxN (M=Co, Ni, Cu)[J]. Journal of PowerSources,1997,68(2):510-514.
    [17] Nishijima M, Takeda Y, Imanishi N, et al. Li Deintercalation and StructuralChange in the Lithium Transition Metal Nitride Li3FeN2[J]. Journal of SolidState Chemistry,1994,113(1):205-210.
    [18] Zhong K F, Xia X, Zhang B, et al. MnO Powder as Anode Active Materialsfor Lithium Ion Batteries[J]. Journal of Power Sources,2010,195(10):3300-3308.
    [19] Chen J S, Lou X W. The Superior Lithium Storage Capabilities of Ultra-FineRutile TiO2Nanoparticles[J]. Journal of Power Sources,2010,195(9):2905-2908.
    [20] Lai C, Dou Y Y, Li X, et al. Improvement of the High Rate Capability ofHierarchical Structured Li4Ti5O12Induced by the Pseudocapacitive Effect[J].Journal of Power Sources,2010,195(11):3676-3679.
    [21] Yuan T, Cai R, Gu P, et al. Synthesis of Lithium Insertion Material Li4Ti5O12from Rutile TiO2via Surface Activation[J]. Journal of Power Sources,2010,195(9):2883-2887.
    [22] Benedek R, Thackeray M M. Lithium Reactions withIntermetallic-Compound Electrodes[J]. Journal of Power Sources,2002,110(2):406-411.
    [23] Li H, Shi L, Wang Q, et al. Nano-Alloy Anode for Lithium Ion Batteries[J].Solid State Ionics,2002,148(3-4):247-258.
    [24] Chen Z, Qian J, Ai X, et al. Preparation and Electrochemical Performance ofSn-Co-C Composite as Anode Material for Li-Ion Batteries[J]. Journal ofPower Sources,2009,189(1):730-732.
    [25] Von Sacken U, Nodwell E, Sundler A, et al. Comparative Thermal Stabilityof Carbon Intercalation Anodes and Lithium Metal Anodes for RechargeableLithium Batteries[J]. Solid State Ionics,1994,69(3-4):284-290.
    [26] Fong R, Von Sacken U, Dahn J R. Studies of Lithium Intercalation intoCarbons Using Nonaqueous Electrochemical Cells[J]. Journal of TheElectrochemical Society,1990,137(7):2009-2013.
    [27] Winter M, Novák P, Monnier A. Graphites for Lithium-Ion Cells: TheCorrelation of the First-Cycle Charge Loss with the Brunauer-Emmett-TellerSurface Area[J]. Journal of The Electrochemical Society,1998,145(2):428-436.
    [28] He X, Ren J, Wang L, et al. Expansion and Shrinkage of the SulfurComposite Electrode in Rechargeable Lithium Batteries[J]. Journal of PowerSources,2009,190(1):154-156.
    [29] Zhu X J, Zhu Y W, Murali S, et al. Nanostructured Reduced GrapheneOxide/Fe2O3Composite As a High-Performance Anode Material for LithiumIon Batteries[J]. ACS Nano,2011,5(4):3333-3338.
    [30] Bai H, Li C, Shi G Q. Functional Composite Materials Based on ChemicallyConverted Graphene[J]. Advanced Materials,2011,23(9):1089-1115.
    [31] Yin H S, Zhou Y L, Ma Q, et al. Electrochemical Oxidation Behavior ofGuanosine-5′-Monophosphate on a Glassy Carbon Electrode Modified witha Composite Film of Graphene and Multi-Walled Carbon Nanotubes, and ItsAmperometric Determination[J]. Microchimica Acta,2011,172(3-4):343-349.
    [32] Ducros J B, Bach S, Pereira J P, et al. Comparison of the ElectrochemicalProperties of Metallic Layered Nitrides Containing Cobalt, Nickel andCopper in the1V-0.02V Potential Range[J]. ElectrochemistryCommunications,2007,9(10):2496-2500.
    [33] Yang J, Takeda Y, Capiglia C, et al. High-Capacity Composite Anodes withSnSb and Li2.6Co0.4N for Solid Polymer Electrolyte Cells[J]. Journal ofPower Sources,2003,119-121(0):56-59.
    [34] Melghit K, Pillai S P, Kumar Das V G. Preparation of Vanadium Tin OxideSolid Solution at500°C from Xerogel and Metallic Tin[J]. Journal ofMaterials Science Letters,1999,18(9):661-663.
    [35] Chen C H, Vaughey J T, Jansen A N, et al. Studies of Mg-SubstitutedLi4xMgxTi5O12Spinel Electrodes (0≤x≤1) for Lithium Batteries[J].Journal of The Electrochemical Society,2001,148(1): A102-A104.
    [36] Poizot P, Laruelle S, Grugeon S, et al. Nano-Sized Transition-Metal Oxidesas Negative-Electrode Materials for Lithium-Ion Batteries[J]. Nature,2000,407(6803):496-499.
    [37] Grugeon S, Laruelle S, Herrera R, et al. Particle Size Effects on theElectrochemical Performance of Copper Oxides toward Lithium[J]. Journalof The Electrochemical Society,2001,148(4): A285-A292.
    [38] Park J C, Kim J, Kwon H, et al. Gram-Scale Synthesis of Cu2O Nanocubesand Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-IonBattery Anode Materials[J]. Advanced Materials,2009,21(7):803-807.
    [39] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the Low-PotentialReactivity of3d-Metal-Based Inorganic Compounds toward Li[J]. Journal ofThe Electrochemical Society,2002,149(9): A1212-A1217.
    [40] Zhang Y B, Tan Y W, Stormer H L, et al. Experimental Observation of theQuantum Hall Effect and Berry's Phase in Graphene[J]. Nature,2005,438(7065):201-204.
    [41] Wang C, Wang D L, Wang Q M, et al. Fabrication and Lithium StoragePerformance of Three-Dimensional Porous NiO as Anode for Lithium-IonBattery[J]. Journal of Power Sources,2010,195(21):7432-7437.
    [42] Chen Z X, Qian J F, Ai X P, et al. Electrochemical Performances of Al-BasedComposites as Anode Materials for Li-Ion Batteries[J]. Electrochimica Acta,2009,54(16):4118-4122.
    [43] Wang J Y, Yang S Y, Huang Y L, et al. Preparation and Properties ofGraphene Oxide/Polyimide Composite Films with Low Dielectric Constantand Ultrahigh Strength via in Situpolymerization[J]. Journal of MaterialsChemistry,2011,21(35):13569-13575.
    [44] Wang X Y, Liu T X. Fabrication and Characterization of Ultrathin GrapheneOxide/Poly(Vinyl Alcohol) Composite Films via Layer-by-LayerAssembly[J]. Journal of Macromolecular Science, Part B,2011,50(6):1098-1107.
    [45] Ye Y S, Tseng C Y, Shen W C, et al. A New Graphene-Modified Protic IonicLiquid-Based Composite Membrane for Solid Polymer Electrolytes[J].Journal of Materials Chemistry,2011,21(28):10448-10453.
    [46] Wang X Y, Zhou X F, Yao K, et al. A SnO2/Graphene Composite as a HighStability Electrode for Lithium Ion Batteries[J]. Carbon,2011,49(1):133-139.
    [47] Jin Z, Yao J, Kittrell C, et al. Large-Scale Growth and Characterizations ofNitrogen-Doped Monolayer Graphene Sheets[J]. ACS Nano,2011,5(5):4112-4117.
    [48] Xie J, Cao G S, Zhao X B, et al. Properties of CoSb as the Anode Materialfor Rechargeable Lithium Ion Batteries[J]. Journal of Materials Science,2004,39(3):1105-1107.
    [49] Matsuno S, Noji M, Nakayama M, et al. Dynamics of Phase Transition inLi-Cu-Sb Anode Material for Rechargeable Lithium Ion Battery[J]. Journalof The Electrochemical Society,2008,155(2): A151-A157.
    [50] Matsuno S, Noji M, Kashiwagi T, et al. Construction of the Ternary PhaseDiagram for the Li-Cu-Sb System as the Anode Material for a Lithium IonBattery[J]. The Journal of Physical Chemistry C,2007,111(20):7548-7553.
    [51] Xie J, Zhao X B, Cao G S, et al. Electrochemical Lithiation and Delithiationof FeSb2Anodes for Lithium-Ion Batteries[J]. Materials Letters,2003,57(30):4673-4677.
    [52]王小东,李雪鹏,孙占波, et al.锂离子电池合金负极材料的研究进展[J].电池,2007,(02):161-163.
    [53] Yen M Y, Teng C C, Hsiao M C, et al. Platinum Nanoparticles/GrapheneComposite Catalyst as a Novel Composite Counter Electrode for HighPerformance Dye-Sensitized Solar Cells[J]. Journal of Materials Chemistry,2011,21(34):12880-12888.
    [54] Wu Z S, Ren W C, Xu L, et al. Doped Graphene Sheets As Anode Materialswith Superhigh Rate and Large Capacity for Lithium Ion Batteries[J]. ACSNano,2011,5(7):5463-5471.
    [55] Li M Q, Qu M Z, He X Y, et al. Effects of Electrolytes on theElectrochemical Performance of Si/Graphite/Disordered Carbon CompositeAnode for Lithium-Ion Batteries[J]. Electrochimica Acta,2009,54(19):4506-4513.
    [56] Jang S M, Miyawaki J, Tsuji M, et al. The Preparation of a Novel Si-CNFComposite as an Effective Anodic Material for Lithium-Ion Batteries[J].Carbon,2009,47(15):3383-3391.
    [57] Luo Z J, Fan D D, Liu X L, et al. High Performance Silicon CarbonComposite Anode Materials for Lithium Ion Batteries[J]. Journal of PowerSources,2009,189(1):16-21.
    [58] Gu P, Cai R, Zhou Y, et al. Si/C Composite Lithium-Ion Battery AnodesSynthesized from Coarse Silicon and Citric Acid through Combined BallMilling and Thermal Pyrolysis[J]. Electrochimica Acta,2010,55(12):3876-3883.
    [59]吕逵弟,余林,吴雅红, et al.二氧化锡超细粉体的制备及研究进展[J].无机盐工业,2005,(04):7-11.
    [60] Idota Y, Kubota T, Matsufuji A, et al. Tin-Based Amorphous Oxide: AHigh-Capacity Lithium-Ion-Storage Material[J]. Science,1997,276(5317):1395-1397.
    [61] Machill S, Shodai T, Sakurai Y, et al. Electrochemical Characterization ofTin Based Composite Oxides as Negative Electrodes for Lithium Batteries[J].Journal of Power Sources,1998,73(2):216-223.
    [62] Courtney I A, Dahn J R. Key Factors Controlling the Reversibility of theReaction of Lithium with SnO2and Sn2BPO6Glass[J]. Journal of TheElectrochemical Society,1997,144(9):2943-2948.
    [63] Yang J, Winter M, Besenhard J O. Small Particle Size Multiphase Li-AlloyAnodes for Lithium-Ion Batteries[J]. Solid State Ionics,1996,90(1-4):281-287.
    [64] Retoux R, Brousse T, Schleich D M. High-Resolution Electron MicroscopyInvestigation of Capacity Fade in SnO2Electrodes for Lithium-IonBatteries[J]. Journal of The Electrochemical Society,1999,146(7):2472-2476.
    [65] Thangaraju B. Structural and Electrical Studies on Highly Conducting SprayDeposited Fluorine and Antimony Doped SnO2Thin Films from SnCl2Precursor[J]. Thin Solid Films,2002,402(1-2):71-78.
    [66] Li H, Huang X J, Chen L Q. Electrochemical Impedance Spectroscopy Studyof SnO and Nano-SnO Anodes in Lithium Rechargeable Batteries[J]. Journalof Power Sources,1999,81-82(0):340-345.
    [67] Brousse T, Retoux R, Herterich U, et al. Thin-Film Crystalline SnO2-LithiumElectrodes[J]. Journal of The Electrochemical Society,1998,145(1):1-4.
    [68] Xu M W, Zhao M S, Wang F, et al. Facile Synthesis and ElectrochemicalProperties of Porous SnO2Micro-Tubes as Anode Material for Lithium-IonBattery[J]. Materials Letters,2010,64(8):921-923.
    [69] Winter M, Besenhard J O, Spahr M E, et al. Insertion Electrode Materials forRechargeable Lithium Batteries[J]. Advanced Materials,1998,10(10):725-763.
    [70] Liu W F, Huang X J, Wang Z X, et al. Studies of Stannic Oxide as an AnodeMaterial for Lithium-Ion Batteries[J]. Journal of The ElectrochemicalSociety,1998,145(1):59-62.
    [71] Ayouchi R, Martin F, Ramos Barrado J R, et al. Use of AmorphousTin-Oxide Films Obtained by Spray Pyrolysis as Electrodes in LithiumBatteries[J]. Journal of Power Sources,2000,87(1-2):106-111.
    [72] Whitehead A H, Elliott J M, Owen J R. Nanostructured Tin for Use as aNegative Electrode Material in Li-Ion Batteries[J]. Journal of Power Sources,1999,81-82(0):33-38.
    [73] Kim J H, Jeong G J, Kim Y W, et al. Tin-Based Oxides as Anode Materialsfor Lithium Secondary Batteries[J]. Journal of The Electrochemical Society,2003,150(11): A1544-A1547.
    [74] Mehrotra R C. Chemistry of Alkoxide Precursors[J]. Journal ofNon-Crystalline Solids,1990,121(1-3):1-6.
    [75] Hampden M J, Wark T A, Brinker C J. The Solid State and SolutionStructures of Tin (IV) Alkoxide Compounds and Their Use as Precursors toForm Tin Oxide Ceramics via Sol-Gel-Type Hydrolysis and Condensation[J].Coordination chemistry reviews,1992,112:81-116.
    [76] Satoshi H R, Helena P S, Valentim S C. Formation of SnO2Gels fromDispersed Sols in Aqueous Colloidal Solutions[J]. Journal ofNon-Crystalline Solids,1990,121(1-3):76-83.
    [77] Chatelon J P, Terrier C, Bernstein E, et al. Morphology of SnO2Thin FilmsObtaibed by the Sol-Gel Technique[J]. Thin Solid Films,1994,247(2):162-168.
    [78] Zhang R, Lee J Y, Liu Z L. Pechini Process-Derived Tin Oxide and TinOxide-Graphite Composites for Lithium-Ion Batteries[J]. Journal of PowerSources,2002,112(2):596-605.
    [79] Liang Y, Fan J, Xia X H, et al. Synthesis and Characterisation of SnO2Nano-Single Crystals as Anode Materials for Lithium-Ion Batteries[J].Materials Letters,2007,61(22):4370-4373.
    [80] Rezan D C, Hu Y S, Antonietti M, et al. Facile One-Pot Synthesis ofMesoporous SnO2Microspheres via Nanoparticles Assembly and LithiumStorage Properties[J]. Chemistry of Materials,2008,20(4):1227-1229.
    [81] Brousse T, Crosnier O, Devaux X, et al. Advanced Oxide and Metal Powdersfor Negative Electrodes in Lithium-Ion Batteries[J]. Powder Technology,2002,128(2-3):124-130.
    [82] Hassan M F, Rahman M M, Guo Z P, et al. Solvent-Assisted Molten SaltProcess: A New Route to Synthesise α-Fe2O3/C Nanocomposite and ItsElectrochemical Performance in Lithium-Ion Batteries[J]. ElectrochimicaActa,2010,55(17):5006-5013.
    [83] Liang H Y, Qiu X P, Chen H L, et al. Analysis of High Rate Performance ofNanoparticled Lithium Cobalt Oxides Prepared in Molten KNO3forRechargeable Lithium-Ion Batteries[J]. Electrochemistry Communications,2004,6(8):789-794.
    [84] Liang H Y, Qiu X P, Zhang S C, et al. High Performance Lithium CobaltOxides Prepared in Molten KCl for Rechargeable Lithium-Ion Batteries[J].Electrochemistry Communications,2004,6(5):505-509.
    [85] Guo Z P, Du G D, Nuli Y, et al. Ultra-Fine Porous SnO2NanopowderPrepared via a Molten Salt Process: A Highly Efficient Anode Material forLithium-Ion Batteries[J]. Journal of Materials Chemistry,2009,19(20):3253-3257.
    [86] Yuan L, Guo Z P, Konstantinov K, et al. In Situ Fabrication of SphericalPorous Tin Oxide via a Spray Pyrolysis Technique[J]. Electrochimica Acta,2006,51(18):3680-3684.
    [87] Nuli Y N, Zhao S L, Qin Q Z. Nanocrystalline Tin Oxides and Nickel OxideFilm Anodes for Li-Ion Batteries[J]. Journal of Power Sources,2003,114(1):113-120.
    [88] Stjerna B, Olsson E, Granqvist C G. Optical and Electrical Properties ofRadio Frequency Sputtered Tin Oxide Films Doped with Oxygen Vacancies,F, Sb, or Mo[J]. Journal of Applied Physics,1994,76(6):3797-3817.
    [89] Santos P J, Brousse T, Sánchez L, et al. Antimony Doping Effect on theElectrochemical Behavior of SnO2Thin Film Electrodes[J]. Journal ofPower Sources,2001,97-98(0):232-234.
    [90] Wang Y D, Chen T. Nonaqueous and Template-Free Synthesis of Sb DopedSnO2Microspheres and Their Application to Lithium-Ion Battery Anode[J].Electrochimica Acta,2009,54(13):3510-3515.
    [91] Wang Y D, Djerdj I, Smarsly B, et al. Antimony-Doped SnO2Nanopowderswith High Crystallinity for Lithium-Ion Battery Electrode[J]. Chemistry ofMaterials,2009,21(14):3202-3209.
    [92] Wu F D, Wu M H, Wang Y. Antimony-Doped Tin Oxide Nanotubes for HighCapacity Lithium Storage[J]. Electrochemistry Communications,2011,13(5):433-436.
    [93] Morales J, Sánchez L. Electrochemical Behaviour of SnO2Doped withBoron and Indium in Anodes for Lithium Secondary Batteries[J]. Solid StateIonics,1999,126(3-4):219-226.
    [94] Morales J, Sánchez L. Improving the Electrochemical Performance of SnO2Cathodes in Lithium Secondary Batteries by Doping with Mo[J]. Journal ofThe Electrochemical Society,1999,146(5):1640-1642.
    [95] Ha H W, Kim K, Borniol M D, et al. Fluorine-Doped Nanocrystalline SnO2Powders Prepared via a Single Molecular Precursor Method as AnodeMaterials for Li-ion Batteries[J]. Journal of Solid State Chemistry,2006,179(3):702-707.
    [96] Kwon C W, Campet G, Portier J, et al. A New Single Molecular PrecursorRoute to Fluorine-Doped Nanocrystalline Tin Oxide Anodes for LithiumBatteries[J]. International Journal of Inorganic Materials,2001,3(3):211-214.
    [97] Hassoun J, Panero S, Simon P, et al. High-Rate, Long-Life Ni-SnNanostructured Electrodes for Lithium-Ion Batteries[J]. Advanced Materials,2007,19(12):1632-1635.
    [98] Taberna P L, Mitra S, Poizot P, et al. High Rate Capabilities Fe3O4-Based CuNano-Architectured Electrodes for Lithium-Ion Battery Applications[J]. NatMater,2006,5(7):567-573.
    [99] Guo Y G, Hu Y S, Sigle W, et al. Superior Electrode Performance ofNanostructured Mesoporous TiO2(Anatase) through Efficient HierarchicalMixed Conducting Networks[J]. Advanced Materials,2007,19(16):2087-2091.
    [100] Lou X W, Li C M, Archer L A. Designed Synthesis of Coaxial SnO2@carbonHollow Nanospheres for Highly Reversible Lithium Storage[J]. AdvancedMaterials,2009,21(24):2536-2539.
    [101] Xu M, Zhang J, Wang S, et al. Gas Sensing Properties of SnO2HollowSpheres/Polythiophene Inorganic-Organic Hybrids[J]. Sensors and ActuatorsB: Chemical,2010,146(1):8-13.
    [102] Zhao Q R. Controllable Synthesis and Catalytic Activity of SnO2Nanostructures at Room Temperature[J]. Transactions of Nonferrous MetalsSociety of China,2009,19(5):1227-1231.
    [103] Zhong Z, Yin Y, Gates B, et al. Preparation of Mesoscale Hollow Spheres ofTiO2and SnO2by Templating Against Crystalline Arrays of PolystyreneBeads[J]. Advanced Materials,2000,12(3):206-209.
    [104] Han S, Jang B, Kim T, et al. Simple Synthesis of Hollow Tin DioxideMicrospheres and Their Application to Lithium-Ion Battery Anodes[J].Advanced Functional Materials,2005,15(11):1845-1850.
    [105] Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2hollow nanostructures via self-assembly for high power lithium ionbatteries[J]. The Journal of Physical Chemistry C,2010,114(17):8084-8088.
    [106] Xiao L F, Li J P, Li Q, et al. One-Pot Template-Free Synthesis, FormationMechanism, and Lithium Ions Storage Property of Hollow SnO2Microspheres[J]. Journal of Solid State Electrochemistry,2009,14(6):931-936.
    [107] Meduri P, Pendyala C, Kumar V, et al. Hybrid Tin Oxide Nanowires asStable and High Capacity Anodes for Li-Ion Batteries[J]. Nano Letters,2009,9(2):612-616.
    [108] Liu J, Luo T, Mouli T S, et al. A Novel Coral-like Porous SnO2HollowArchitecture: Biomimetic Swallowing Growth Mechanism and EnhancedPhotovoltaic Property for Dye-Sensitized Solar Cell Application[J]. ChemCommun (Camb),2010,46(3):472-4.
    [109] Yang R, Gu Y A, Li Y Q, et al. Self-Assembled3-D Flower-Shaped SnO2Nanostructures with Improved Electrochemical Performance for LithiumStorage[J]. Acta Materialia,2010,58(3):866-874.
    [110] Wang Y, Yang Lee J. Preparation of SnO2-Graphite Nanocomposite Anodesby Urea-Mediated Hydrolysis[J]. Electrochemistry Communications,2003,5(4):292-296.
    [111] Hassoun J, Derrien G, Panero S, et al. A Nanostructured Sn-C CompositeLithium Battery Electrode with Unique Stability and High ElectrochemicalPerformance[J]. Advanced Materials,2008,20(16):3169-3175.
    [112] Chen J S, Cheah Y L, Chen Y T, et al. SnO2Nanoparticles with ControlledCarbon Nanocoating as High-Capacity Anode Materials for Lithium-IonBatteries[J]. The Journal of Physical Chemistry C,2009,113(47):20504-20508.
    [113] Liu J, Li W, Manthiram A. Dense Core-Shell Structured SnO2/C Compositesas High Performance Anodes for Lithium Ion Batteries[J]. Chem Commun(Camb),2010,46(9):1437-9.
    [114] Zhang L S, Jiang L Y, Yan H J, et al. Mono Dispersed SnO2Nanoparticles onboth Sides of Single Layer Graphene Sheets as Anode Materials in Li-IonBatteries[J]. Journal of Materials Chemistry,2010,20(26):5462-5467.
    [115] Cheng J L, Xin H L, Zheng H M, et al. One-Pot Synthesis of CarbonCoated-SnO2/Graphene-Sheet Nanocomposite with Highly ReversibleLithium Storage Capability[J]. Journal of Power Sources,2013,232:152-158.
    [116] Xia G F, Li N, Li D Y, et al. Graphene/Fe2O3/SnO2Ternary Nanocompositesas a High-Performance Anode for Lithium Ion Batteries[J]. ACS appliedmaterials&interfaces,2013,5(17):8607-8614.
    [117]杨同欢,周学酬,李求忠, et al.纳米Sn/SnO2/石墨复合材料作为锂离子电池负极材料的研究[J].化工时刊,2008,(06):1-3.
    [118] Lou X W, Chen J S, Chen P, et al. One-Pot Synthesis of Carbon-Coated SnO2Nanocolloids with Improved Reversible Lithium Storage Properties[J].Chemistry of Materials,2009,21(13):2868-2874.
    [119] Wang D N, Li X F, Wang J J, et al. Defect-Rich Crystalline SnO2Immobilized on Graphene Nanosheets with Enhanced Cycle Performance forLi Ion Batteries[J]. The Journal of Physical Chemistry C,2012,116(42):22149-22156.
    [120]何则强. SnO2基锂离子电池负极材料的研究[D].中南大学,2004.
    [121] Yu Y, Chen C H, Shi Y. A Tin-Based Amorphous Oxide Composite with aPorous, Spherical, Multideck-Cage Morphology as a Highly ReversibleAnode Material for Lithium-Ion Batteries[J]. Advanced Materials,2007,19(7):993-997.
    [122] Zhu X J, Geng L M, Zhang F Q, et al. Synthesis and Performance ofZn2SnO4as Anode Materials for Lithium Ion Batteries by HydrothermalMethod[J]. Journal of Power Sources,2009,189(1):828-831.
    [123] Lei S, Tang K, Chen C, et al. Preparation of Mn2SnO4Nanoparticles as theAnode Material for Lithium Secondary Battery[J]. Materials ResearchBulletin,2009,44(2):393-397.
    [124] Xiao T, Tang Y W, Jia Z Y, et al. Synthesis of SnO2/Mg2SnO4Nanoparticlesand Their Electrochemical Performance for Use in Li-Ion BatteryElectrodes[J]. Electrochimica Acta,2009,54(8):2396-2401.
    [125] Ceder G. Opportunities and Challenges for First-Principles Materials Designand Applications to Li Battery Materials[J]. MRS bulletin,2010,35(09):693-701.
    [126] Meng Y S, Arroyo M E. First Principles Computational Materials Design forEnergy Storage Materials in Lithium Ion Batteries[J]. Energy&Environmental Science,2009,2(6):589-609.
    [127] Shi S Q, Liu L J, Ouyang C Y, et al. Enhancement of Electronic Conductivityof LiFePO4by Cr Doping and Its Identification by First-PrinciplesCalculations[J]. Physical Review B,2003,68(19):195108.
    [128] Maxisch T, Zhou F, Ceder G. Ab Initio Study of the Migration of SmallPolarons in Olivine LixFePO4and Their Association with Lithium Ions andVacancies[J]. Physical review B,2006,73(10):104301.
    [129] Shi S Q, Ouyang C Y, Lei M S, et al. Effect of Mg-Doping on the Structuraland Electronic Properties of LiCoO2: A First-Principles Investigation[J].Journal of Power Sources,2007,171(2):908-912.
    [130] Marianetti C A, Kotliar G, Ceder G. A First-Order Mott Transition inLixCoO2[J]. Nature materials,2004,3(9):627-631.
    [131] Carlier D, Van Der Ven A, Delmas C, et al. First-Principles Investigation ofPhase Stability in the O2-LiCoO2System[J]. Chemistry of materials,2003,15(13):2651-2660.
    [132] Shi S Q, Ouyang C Y, Wang D S, et al. The Effect of Cation Doping onSpinel LiMn2O4: a First-Principles Investigation[J]. Solid StateCommunications,2003,126(9):531-534.
    [133] Ouyang C Y, Du Y L, Shi S Q, et al. Small Polaron Migration in LixMn2O4:From First Principles Calculations[J]. Physics Letters A,2009,373(31):2796-2799.
    [134] Arroyo M E, Ceder G. First-Principles Calculations on LixNiO2: PhaseStability and Monoclinic Distortion[J]. Journal of power sources,2003,119:654-657.
    [135] Koyama Y, Yabuuchi N, Tanaka I, et al. Solid-State Chemistry andElectrochemistry of LiCo1/3Ni1/3Mn1/3O2for Advanced Lithium-Ion BatteriesI. First-Principles Calculation on the Crystal and Electronic Structures[J].Journal of The Electrochemical Society,2004,151(10): A1545-A1551.
    [136] Kang K, Morgan D, Ceder G. First Principles Study of Li Diffusion inI-Li2NiO2Structure[J]. Physical Review B,2009,79(1):014305.
    [137] Kang K, Meng Y S, Breger J, et al. Electrodes with High Power and HighCapacity for Rechargeable Lithium Batteries[J]. Science,2006,311(5763):977-980.
    [138] Benedek R, Thackeray M M, Yang L H. Atomic Structure andElectrochemical Potential of Li1+xV3O8[J]. Physical Review B,1999,60(9):6335.
    [139] Tang P, Holzwarth N. Electronic Structure of FePO4, LiFePO4, and RelatedMaterials[J]. Physical Review B,2003,68(16):165107.
    [140] Sigala C, Guyomard D, Verbaere A, et al. Positive Electrode Materials withHigh Operating Voltage for Lithium Batteries: LiCryMn2yO4(0≤y≤1)[J].Solid State Ionics,1995,81(3):167-170.
    [141] Ceder G, Aydinol M K, Kohan A F. Application of First-PrinciplesCalculations to the Design of Rechargeable Li-Batteries[J]. Computationalmaterials science,1997,8(1):161-169.
    [142] Barras J L, Atanasov M, Daul C A, et al. First-Principles Prediction ofVoltages of Lithiated Oxides for Lithium-Ion Batteries[J]. Solid State Ionics,1998,112(3):255-259.
    [143] Zhao J J, Buldum A, Han J, et al. First-Principles Study of Li-IntercalatedCarbon Nanotube Ropes[J]. Physical review letters,2000,85(8):1706.
    [144] Zhou Z, Zhao J J, Gao X P, et al. Do Composite Single-Walled NanotubesHave Enhanced Capability for Lithium Storage?[J]. Chemistry of materials,2005,17(5):992-1000.
    [145] Wang X L, Zeng Z, Ahn H, et al. First-Principles Study on the Enhancementof Lithium Storage Capacity in Boron Doped Graphene[J]. Applied PhysicsLetters,2009,95(18):183103-183103-3.
    [146] Kim H, Chou C Y, Ekerdt J G, et al. Structure and Properties of Li-Si Alloys:A First-Principles Study[J]. The Journal of Physical Chemistry C,2011,115(5):2514-2521.
    [147]侯柱锋,刘慧英,朱梓忠, et al.锂离子电池负极材料CuSn的Li嵌入性质的研究[J].物理学报,2003,(04):952-957.
    [148]刘慧英,侯柱锋,朱梓忠, et al. InSb的Li嵌入电压轮廓曲线从头计算[J].物理学报,2004,(11):3868-3872.
    [149] Nuli Y N, Wang B F, Yang J, et al. Cu5Si-Si/C composites for lithium-ionbattery anodes[J]. Journal of power sources,2006,153(2):371-374.
    [150] Segall M D, Lindan P J, Probert M J, et al. First-Principles Simulation: Ideas,Illustrations and the CASTEP Code[J]. Journal of Physics: CondensedMatter,2002,14(11):2717.
    [151] Dolbec R, El Khakani M A, Serventi A M, et al. Microstructure and PhysicalProperties of Nanostructured Tin Oxide Thin Films Grown by Means ofPulsed Laser Deposition[J]. Thin Solid Films,2002,419(1):230-236.
    [152] Mallia G, Harrison N M. Magnetic Moment and Coupling Mechanism ofIron-Doped Rutile TiO2from First Principles[J]. Physical Review B,2007,75(16):165201.
    [153] Zainullina V M. Electronic Structure, Chemical Bonding and Properties ofSn1xMxO2, M=As, Sb, Bi, V, Nb, Ta (0.0    [154] Long R, Dai Y, Yu L, et al. Structural, Electronic, and Optical Properties ofOxygen Defects in Zn3N2[M].2007.
    [155] Rhodes K J, Meisner R, Kirkham M, et al. In Situ XRD of Thin Film TinElectrodes for Lithium Ion Batteries[J]. Journal of the ElectrochemicalSociety,2012,159(3): A294-A299.
    [156] Courtney I A, Tse J S, Mao O, et al. Ab Initio Calculation of the Lithium-TinVoltage Profile[J]. Physical Review B,1998,58(23):15583.
    [157] Gersten J I, Smith F W. The Physics and Chemistry of Materials. JohnWiley&Sons[J]. Inc., New York,2001.
    [158] Hansen D A, Chang L J. Crystal structure of Li2Sn5[J]. ActaCrystallographica Section B: Structural Crystallography and CrystalChemistry,1969,25(11):2392-2395.
    [159] Müller W, Sch fer H. The Crystal Structure of LiSn[J]. Z. Naturforsch. B,1973,28(5-6):246-248.
    [160] Dahn J R, Courtney I A, Mao O. Short-Range Sn Ordering and CrystalStructure of Li4.4Sn Prepared by Ambient Temperature ElectrochemicalMethods[J]. Solid State Ionics,1998,111(3):289-294.
    [161] Reshak A H, Shalaginov M Y, Saeed Y, et al. First-Principles Calculations ofStructural, Elastic, Electronic, and Optical Properties of Perovskite-TypeKMgH3Crystals: Novel Hydrogen Storage Material[J]. The Journal ofPhysical Chemistry B,2011,115(12):2836-2841.
    [162] Usman Z, Cao C, Nabi G, et al. First-Principle Electronic, Elastic, andOptical Study of Cubic Gallium Nitride[J]. The Journal of PhysicalChemistry A,2011,115(24):6622-6628.
    [163] Ru Q, Peng W, Zhang Z W, et al. First-Principles Calculations andExperimental Studies of Sn-Zn Alloys as Negative Electrode Materials forLithium-Ion Batteries[J]. Rare Metals,2011,30(2):160-165.
    [164] Morrison S R. Electrochemistry at Semiconductor and Oxidized MetalElectrodes[J].1980.
    [165]陈长风,姜瑞景,张国安, et al.双极性半导体钝化膜空间电荷电容分析[J].物理化学学报,2009,(03):463-469.
    [166]钟庆东,王超,鲁雄刚, et al.304不锈钢钝化膜在不同溶液中的半导体导电行为[J].中国腐蚀与防护学报,2008,(06):341-344.
    [167]曾令可,税安泽,刘平安, et al.离子掺杂对纳米二氧化钛粒径的影响[J].人工晶体学报,2007,(02):428-432.
    [168] Ma X G, Lv Y H, Xu J, et al. A Strategy of Enhancing the Photoactivity ofg-C3N4via Doping of Nonmetal Elements: A First-Principles Study[J]. TheJournal of Physical Chemistry C,2012,116(44):23485-23493.
    [169] Wu X, Wang Z, Chen L, et al. Carbon/B2O3Composite with Higher Capacityfor Lithium Storage[J]. Solid State Ionics,2004,170(1-2):117-121.
    [170] Xiang H Q, Fang S B, Jiang Y Y. Carbons Prepared from Boron-ContainingPolymers as Host Materials for Lithium Insertion[J]. Solid State Ionics,2002,148(1):35-43.
    [171] Courtney I A, Dunlap R A, Dahn J R. In-Situ119Sn M ssbauer Effect Studiesof the Reaction of Lithium with SnO and SnO:0.25B2O3:0.25P2O5Glass[J]. Electrochimica acta,1999,45(1):51-58.
    [172] Lou X W, Wang Y, Yuan C L, et al. Template-Free Synthesis of SnO2HollowNanostructures with High Lithium Storage Capacity[J]. Advanced Materials,2006,18(17):2325-2329.
    [173] Xu J Q, Wang D, Qin L P, et al. SnO2Nanorods and Hollow Spheres:Controlled Synthesis and Gas Sensing Properties[J]. Sensors and Actuators B:Chemical,2009,137(2):490-495.
    [174] Mackenzie J D, Claussen W F. Crystallization and Phase Relations of BoronTrioxide at High Pressures[J]. Journal of the American Ceramic Society,1961,44(2):79-81.
    [175] Ui K, Kawamura S, Kumagai N. Fabrication of Binder-Free SnO2Nanoparticle Electrode for Lithium Secondary Batteries by ElectrophoreticDeposition Method[J]. Electrochimica Acta,2012,76:383-388.
    [176] Chen J J, Yano K. Highly Monodispersed Tin Oxide/Mesoporous StarbustCarbon Composite as High-Performance Li-Ion Battery Anode[J]. ACSapplied materials&interfaces,2013,5(16):7682-7687.
    [177] Han S J, Jang B, Kim T, et al. Simple Synthesis of Hollow Tin DioxideMicrospheres and Their Application to Lithium-Ion Battery Anodes[J].Advanced Functional Materials,2005,15(11):1845-1850.
    [178] Ye J F, Zhang H J, Yang R, et al. Morphology-Controlled Synthesis of SnO2Nanotubes by Using1D Silica Mesostructures as Sacrificial Templates andTheir Applications in Lithium-Ion Batteries[J]. Small,2010,6(2):296-306.
    [179] Xia G F, Li N, Li D Y, et al. Preparation of Novel SnO2-B2O3core-shellNanocomposite and Their Lithium Storage Ability[J]. Materials Letters,2012,79:58-60.
    [180] Wu X D, Wang Z X, Chen L Q, et al. Increment of Li Storage Capacity inB2O3-Modified Hard Carbon as Anode Material for Li-Ion Batteries[J].Journal of The Electrochemical Society,2004,151(12): A2189.
    [181] Wu G, Mack N H, Gao W, et al. Nitrogen-Doped Graphene-Rich CatalystsDerived from Heteroatom Polymers for Oxygen Reduction in NonaqueousLithium-O2Battery Cathodes[J]. ACS nano,2012,6(11):9764-9776.
    [182] Zhou X Y, Zou Y L, Yang J. Carbon Supported Tin-Based Nanocompositesas Anodes for Li-Ion Batteries[J]. Journal of Solid State Chemistry,2013,198(0):231-237.
    [183] Zhang B, Tian Y, Zhang J X, et al. The Structural and Electrical Studies onthe Boron-Doped SnO2Films Deposited by Spray Pyrolysis[J]. Vacuum,2011,85(11):986-989.
    [184] Chen Z, Dai C, Wu G, et al. High Performance Li3V2(PO4)3/C CompositeCathode Material for Lithium Ion Batteries Studied in Pilot Scale Test[J].Electrochimica Acta,2010,55(28):8595-8599.
    [185] Dai C S, Chen Z Y, Jin H Z, et al. Synthesis and Performance ofLi3(V1xMgx)2(PO4)3Cathode Materials[J]. Journal of Power Sources,2010,195(17):5775-5779.
    [186] Reddy M V, Yu T, Sow C H, et al. α-Fe2O3Nanoflakes as an Anode Materialfor Li-Ion Batteries[J]. Advanced Functional Materials,2007,17(15):2792-2799.
    [187] Reddy M V, Madhavi S, Subba Rao G V, et al. Metal Oxyfluorides TiOF2and NbO2F as Anodes for Li-Ion Batteries[J]. Journal of Power Sources,2006,162(2):1312-1321.
    [188] Tan K, Reddy M, Rao G, et al. Effect of AlPO-Coating on CathodicBehaviour of Li(NiCo)O[J]. Journal of Power Sources,2005,141(1):129-142.
    [189] Zhang T, Fu L J, Gao J, et al. Nanosized Tin Anode Prepared byLaser-Induced Vapor Deposition for Lithium Ion Battery[J]. Journal ofPower Sources,2007,174(2):770-773.
    [190] Wang G X, Yang L, Chen Y, et al. An Investigation of Polypyrrole-LiFePO4Composite Cathode Materials for Lithium-Ion Batteries[J]. ElectrochimicaActa,2005,50(24):4649-4654.
    [191] Cui L F, Shen J, Cheng F Y, et al. SnO2Nanoparticles@PolypyrroleNanowires Composite as Anode Materials for Rechargeable Lithium-IonBatteries[J]. Journal of Power Sources,2011,196(4):2195-2201.
    [192] Fujihara S, Maeda T, Ohgi H, et al. Hydrothermal Routes to PrepareNanocrystalline Mesoporous SnO2Having High Thermal Stability[J].Langmuir,2004,20(15):6476-6481.
    [193] Liu J W, Qiu J X, Miao Y Q, et al. Preparation and Characterization ofPt-Polypyrrole Nanocomposite for Electrochemical Reduction of Oxygen[J].Journal of materials science,2008,43(18):6285-6288.
    [194] Cho G, Fung B M, Glatzhofer D T, et al. Preparation and Characterization ofPolypyrrole-Coated Nanosized Novel Ceramics[J]. Langmuir,2001,17(2):456-461.
    [195] Wen Z, Wang Q, Zhang Q, et al. In Situ Growth of Mesoporous SnO2onMultiwalled Carbon Nanotubes: A Novel Composite with Porous-TubeStructure as Anode for Lithium Batteries[J]. Advanced Functional Materials,2007,17(15):2772-2778.
    [196] Li Y M, Lv X J, Lu J, et al. Preparation ofSnO2-Nanocrystal/Graphene-Nanosheets Composites and Their LithiumStorage Ability[J]. The Journal of Physical Chemistry C,2010,114(49):21770-21774.
    [197] Li Z P, Wang J Q, Niu L Y, et al. Rapid Synthesis of Graphene/CobaltHydroxide Composite with Enhanced Electrochemical Performance forSupercapacitors[J]. Journal of Power Sources,2014,245:224-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700