用户名: 密码: 验证码:
潜孔锤反循环钻进孔底气固两相流场数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产资源是人类社会进步与经济发展的物质基础。随着经济的高速发展,人类社会对资源的需求日益增加,而矿产资源的储量却越来越少。经过多年的开发利用,露矿、浅层矿、易识别矿已勘探殆尽,矿产勘查的方向逐渐转向寻找隐伏矿、深部矿、难识别矿。由于勘探难度和成本日益加大,传统的钻探工艺手段已经不能满足当前矿产勘查的需要。
     贯通式潜孔锤反循环连续取心钻进技术集潜孔锤冲击回转碎岩、循环介质全孔反循环、钻进中同步获取岩矿心三种工艺方法于一身,是一种先进的钻探工艺方法。经过多年的发展,该项技术已得到了一定的应用与推广,但在实际应用中也发现,对于在裂隙发育、漏失地层钻进时,存在反循环能力不足、岩屑采取率低等问题。
     本文针对贯通式潜孔锤反循环钻进技术在实际应用过程中出现的问题,利用计算流体动力学软件(FLUENT)对现有引射式反循环钻头孔底气固两相流场特性进行了数值模拟研究;基于人工诱发龙卷风的形成机理,设计了新型旋风式反循环钻头,并对比分析了引射式反循环钻头与旋风式反循环钻头两者间的反循环效果;采用数值模拟和室内实验方法,分析了旋风钻头反循环效果与旋喷孔结构参数的关系。本文研究取得了以下主要结论:
     (1)野外试验表明,应用引射式反循环钻头在裂隙发育、漏失地层钻进时,由于钻头与孔底岩石不能形成良好的引射结构,引射钻头反循环能力降低,孔底岩屑(样)不能上返至地表,岩心采取率低。
     (2)反循环钻进所得岩屑颗粒的粒度分布具有一定的规律。从岩屑样品的粒度累积曲线来看,岩屑颗粒的级配较差,其中粒径小于2mm的组分含量较多,颗粒不均一。采用Rosin-Rammler函数对岩屑样品的粒度分布进行描述,从拟合结果来看,岩屑颗粒符合R-R分布。
     (3)引射钻头孔底流场的数值模拟结果表明,随孔底钻进条件的不同,钻头底面下部流场边界条件发生改变,孔底流场内气相流体的速度、压力、湍流特征的流场参数变化明显。从流场内气相流体特征来看,完整地层条件下,孔底气体能够形成良好的反向循环,对环空内流体也有一定的抽吸作用;裂隙地层钻进时,一部分气流由裂隙进入地层中,气量损失严重;提钻条件下,钻头距离钻孔底面距离增大,钻头卷吸能力下降。
     引射钻头携岩能力与岩屑进入流场的位置、颗粒直径、孔底条件密切相关。从岩屑颗粒的注入位置来看,引射钻头对于底面中心附近的岩屑的抽吸携带能力较强,而对于底面圆周附近的岩屑不具备反循环能力;从岩屑颗粒直径来看,钻头携岩能力的从大到小依次为0.1mm>1mm>5mm;从不同孔底条件来看,钻头反循环能力由大到小依次为完整地层>裂隙地层>提钻。
     (4)旋风钻头孔底流场的数值模拟结果表明,随钻进条件的不同,孔底流场的变化主要表现在钻头底面下部气体流动特征的变化。从孔底流场内气体流量变化来看,旋风钻头对孔底流体抽吸能力较强,同时受孔底流场条件的影响较小,钻头中心孔流量为钻进注入量的2倍以上。
     旋风钻头携岩能力保持在较高水平,受岩屑进入流场位置、颗粒直径和孔底流场条件影响不明显,均表现出较强的反循环能力,其在完整地层条件下的携岩效果接近100%,整体携岩效率也高于90%。
     (5)对比旋风钻头和引射钻头两者孔底流场内气固两相流场特性,旋风钻头反循环能力优于引射钻头,前者表现出地层适应性好,携岩能力强,最小携岩注气量要求低等优点。
     (6)旋风钻头旋喷孔主要结构参数包括三个:旋喷孔直径、旋喷孔倾角和旋喷孔高度。旋风钻头反循环效果随三个结构参数的变化规律为:随旋喷孔直径的增大,环空流量呈二次抛物线变化,在直径为5mm位置达到最大值;随旋喷孔角度的不断增大,环空流量单调递减;旋喷孔高度对环空流量的影响较小,随旋喷孔高度的增加,环空流量稍有增加,两者呈线性关系。
The mineral resources are the material basis of the progress of human society andeconomic development. With the rapid economic development, the demand for resources ofthe human society is increasing, but the reserve of the mineral resources is less and less.After years of development and utilization, the exposed mine, the shallow ore and the easyto identify mineral have already been explorated away, so the mineral exploration graduallychange to find the concealed ore, the deep mine, the difficult identified mine. With thedifficulty and cost of exploration increasing, the traditional drilling technology methods cannot meet the needs of the current mineral exploration.
     Hollow-through DTH hammer reverse circulation continuous coring technology is anadvanced drilling technology, which sets DTH hammer impact and rotary broken rock,circulating medium full-hole reverse circulation and synchronization acquisition rock coresduring drilling three processes in one. After years of development, the technology has beenused in practical applications, but it is found that when drilling in the fractured and dropoutstratigraphic, there are some problems such as reverse circulation insufficient capacity, lowcore recovery.
     In this paper, aiming at the problems of hollow-through DTH hammer reversecirculation drilling technology applied in the actual field, the characteristics of the holebottom gas-solid flow field of the ejector reverse circulation bit is studied by thecomputational fluid dynamics software (FLUENT). Based on mechanism for generation ofarticficial tornado, a new type of reverse circulation bit is designed with a name of cyclonebit, and the reverse circulation effect between the ejector bit and the cyclone bit iscontrasted. By numerical simulation and laboratory experiments, the relation between thereverse circulation effect of the cyclone bit and the structure parameters of cyclone nozzleis analyzed. In this paper, main conclusions are as follows:
     (1)Field tests showed that when used ejector bit drilling in crack stratum, the effect ofreverse circulation is poor, so the cuttings at the hole bottom can not be transported to thesurface, and the core recovery is reduced. The reason of this phenomenon is that a goodejector structure is not be made up by the bit and the rock of drilling hole.
     (2)The cuttings of the reverse circulation drilling are regular in grain size distribution.From the grain size cumulative curve of the cuttings samples, it is showed that thegradation of cuttings is poor, and the quality of cuttings under2mm is more than the others.Using the Rosin-Rammler function, the cuttings samples is described, and the grain sizedistribution of cuttings is in conformity with R-R distribution.
     (3)The numerical simulation results of the hole bottom flow field of the ejector bitshow that, with the different bottom hole drilling conditions, the flow field boundaryconditions of the drilling hole is changed, and the parameters of gas fluid chang obviously,such as velocity, pressure, turbulence characteristics. From characteristics of the gas fluid, itis known that with drilling in complete formation conditions, the gas at the hole bottom iscapable of forming a good reverse circulation, and it also has a suction effect on the annulusfluid. With drilling in crack stratum, a portion of the airflow into the formation by fractures,so the air loss is serious. When the bit is lift from the bottom of the hole, the capacity ofentrainment of the bit is reduced.
     The capacity of carrying cuttings of the ejector bit are closely related to the location ofcuttings entering into the flow field, the particle diameter and the hole bottom conditions.For the injection position of the cutting particles, the bit can carry the cuttings near thecenter of the bottom into the center channel of the bit, but unable to convey the cuttingsaround the circumference of the hole bottom. For the diameter of the cutting particle, theability of carrying cuttings of the ejector bit with descending order is that0.1mm>1mm>5mm. For the different hole bottom condition, the reverse circulation capacity of the ejectorbit in descending order is that complete stratum> crack stratum> the drilling tool lift.
     (4)The numerical simulation results of the cyclone type reverse circulation bit holebottom flow field show that, with the different bottom hole drilling conditions, the changesof the flow field are focus on the gas flow characteristics in the bottom of the drilling hole. For the changes of the gas flow in the hole bottom, the pumping capacity of the cyclone bitis strong, and less affected by the hole bottom flow field conditions. The mass flow rate ofthe center hole of the cyclone bit is2times more than the amount of injected mass flowrate.
     The capacity of carrying cuttings of the cyclone type reverse circulation bit keeps in ahigh level, and there is no significant effect on the capacity by the location of the cuttingsentering into the flow field, the particle diameter and the hole bottom flow field conditions.The cyclone bit has strong reverse circulation ability, and the capability of carrying cuttingsin the complete stratum conditions is close to100%, and the portability efficiency ofcarrying cuttings for all of drilling conditions is higher than90%.
     (5)Contrast the gas-solid flow field characteristics of the ejector type reversecirculation bit and the cyclone type reverse circulation drill bit, the reverse circulationcapacity of the cyclone bit is better than that of the ejector one. The cyclone bit has theadvantages such as well-adapted for different stratum conditions, strong capacity forcarrying cuttings and less mass flow rate for carrying cuttings than ejector bit.
     (6)The main reverse circulation structure parameters of the cyclone reverse circulationbit include three: the diameter of the cyclone nozzle, the inclination of the cyclone nozzle,the height of the cyclone nozzle. The variation law of the reverse circulation effect of thecyclone bit by the structural parameters of cyclone nozzle is as follows. With the diameterof cyclone nozzle increasing, the mass flow rate of annulus varies as a quadratic parabola,and achieves the maximum value in diameter of5mm. With the angle of cyclone nozzleincreasing, the mass flow rate of annulus monotonically decreasing. The height of cyclonenozzle exercises a smaller influence on the mass flow rate of annulus. There is a slightincrease in the mass flow rate of annulus with the value of the height increasing, and theresi a linear relationship between them.
引文
[1]梅艳雄,龚羽飞,胡如权,等.全球矿产资源勘查开发的基本态势[J].中国矿业,2009,18(10):5-7.
    [2]宋瑞祥.中国矿产资源报告[M].北京:地质出版社,1997.
    [3]中国矿产资源紧缺能保证2020年需求的只有6种[J].化工矿产地质,2004(2):128.
    [4]梅艳雄,杨德凤,叶锦华,等.中国矿产资源战略问题[J].中国矿业,2008,17(6):11-13.
    [5]张伟.地质钻探技术发展有关问题的思考[J].探矿工程(岩土钻掘工程),2007(1):1-3.
    [6]冯培忠,曲选辉,吴小飞.关于我国矿产资源利用现状及未来发展的战略思考[J].中国矿业,2004,13(6):12-16.
    [7]张照伟,李文渊.矿产资源的最适耗竭与可持续发展[J].地质科学与环境学报,2007,29(4):387-392.
    [8]王瑞江,王义天,王高尚,等.世界矿产勘查态势分析[J].地质通报,2008,27(1):154-162.
    [9]耿瑞伦,方啸虎.在我国危机矿山接替资源勘查工作中探矿工程新技术的应用[J].探矿工程(岩土钻掘工程),2005,(S1):5-10.
    [10]曹新志,张旺生,孙华山.我国深部找矿研究进展综述[J].地质科技情报,2008,28(2):104-108.
    [11]滕吉文,杨立强,姚敬全,等.金属矿产资源的深部找矿、勘探与成矿的深层动力过程[J].地球物理学进展,2007,22(2):317-332.
    [12]邹永生.全球矿产资源勘查形势及中国矿业的未来发展[J].中国矿业,2005,14(10):5-7.
    [13]刘国平,汪东波,祝新友,等.生产矿山深部及外围找矿潜力巨大——夹皮沟金矿区勘查历史的启示[J].地质与勘探,2001,37(2):37-40.
    [14]邹永生.矿山外围找矿方法探讨[J].地质找矿论丛,2009,24(2):106-110.
    [15]单海平.矿产资源产业与可持续发展[J].中国国土资源经济,2005,(12):16-18.
    [16]黄盛初,刘文革,赵国泉.中国煤层气开发利用现状及发展趋势[J].中国煤炭,2009,35(1):5-10.
    [17]孙茂远,刘贻军.中国煤层气产业新进展[J].天然气工业,2008,28(3):5-9.
    [18]王红岩,李景明,赵群,等.中国新能源资源基础及发展前景[J].石油学报,2009,30(3):469-474.
    [19]李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009,29(5):11-16.
    [20]陈尚斌,朱炎铭,王红岩,等.中国页岩气研究现状与发展趋势[J].石油学报,2010,31(4):689-694.
    [21]李丹梅,汤达祯,杨玉凤.油页岩资源的研究、开发与利用进展[J].石油勘探与开发,2006,33(6):657-661.
    [22]张永勤.国外天然气水合物勘探现状及我国水合物勘探进展[J].探矿工程(岩土钻掘工程),2010,37(10):1-8.
    [23]张洪涛,张海启,祝有海.中国天然气水合物调查研究现状及进展[J].中国地质,2007,34(6):953-961.
    [24]贾承造,郑民,张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发,2012,39(2):129-136.
    [25]廖忠礼,张予杰,陈文彬,等.地热资源的特点与可持续开发利用[J].中国矿业,2006,15(10):8-11.
    [26]郑秀华.世界地热资源开发应用现状[J].探矿工程(岩土钻掘工程),2001(1):6-7.
    [27]郭丽华.地热资源开发产业投资基金研究[D].长春:吉林大学,2009.
    [28]丁雷,宋绍军,关键,等.地热资源勘探方法技术的应用与展望[J].吉林地质,2004,23(4):113-117.
    [29]张祖培,殷琨,蒋荣庆,等.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [30]王茂森,殷琨,陈宝义,等.复杂地层钻进中贯通式潜孔锤的应用及反循环钻头的改进[J].煤田地质与勘探,2005,33(5):79-80.
    [31]王文龙,王禹,李永哲,等.贯通式潜孔锤反循环连续取心(样)钻进工艺在新疆某矿区复杂地层中的应用[J].探矿工程(岩土钻掘工程),2006(2):54-56.
    [32]郝树青,殷琨,高科,等.气动贯通式潜孔锤反循环连续取心取样钻进新技术在河南钼矿中的应用[J].钻采工艺,2006,29(4):1-3.
    [33]博坤,殷琨,王茂森,等.贯通式潜孔锤反循环钻进技术在矿区勘探中的应用研究[J].金属矿山,2009(3):133-136.
    [34]张晓西.中心取样钻探技术(一)[J].探矿工程,2000(1):63-65.
    [35]张晓西.中心取样钻探技术(二)[J].探矿工程,2000(2):58-60.
    [36]张晓西.中心取样钻探技术(三)[J].探矿工程,2000(3):57-59.
    [37] Lyons W C,Guo B,Seidel F A. Air and gas drilling manual[M].New York:McGraw-Hill,2001.
    [38] Boyle D R,Cox D L,Vandebeek R R. Groundwater sampling methodology for mineral exploration inglaciated terrain using reverse circulation overburden drilling[J].Journal of GeochemicalExploration,1993,49(3):213-231.
    [39] Graham R L,Foster J M,Amick P C. Reverse circulation air drilling can reduce well bonedamage[J].Oil&Gas Journal,1993,91(12):85-94.
    [40] Wayland D Elenburg. Well drilling method: United States,3419092[P/OL].1968-12-31.
    [41]韩烈祥,孙海芳.气体反循环钻井技术发展现状[J].钻采工艺,2008,31(5):1-5.
    [42] Mackay P.反循环钻井避免损害低压气层[J].徐合献译.国外油田工程,2003,19(3):19.
    [43] Mackay P. Reverse circulation drilling avoids damage to low-pressure gas reservoirs [J].World Oil,2003,224(3):71.
    [44]王运美,李琛,马建民.反循环钻井技术在浅层气开发中的应用[J].石油机械,2007,35(5):59-61.
    [45]博坤.贯通式潜孔锤钻头反循环钻进技术钻具优化及应用研究[D].长春:吉林大学,2009.
    [46]范黎明.贯通式潜孔锤钻头反循环机理研究及结构优化[D].长春:吉林大学,2011.
    [47]殷琨,王茂森,彭枧明,等.冲击回转钻进[M].北京:地质出版社,2010.
    [48]王存新,孟英峰,邓虎,等.气体钻井注气量计算方法研究进展[J].天然气工业,2006,26(12):97-99.
    [49] Angel R R. Volume requirements for air or gas drilling [R].SPE873,1957.
    [50] Ikoku C U, Azar J J,Williams C R. Practicle apractical approach to volume requirements for air andgas drilling [R]. SPE9445,1980.
    [51] Mitchell R F. Simulation of air and mist drilling for geothermal wells [J]. Journal of PetroleumTechnology,1983,35(11):2120-2126.
    [52] Puon P S, Ameri S. Simplified approach to air drilling operations [R]. SPE13380,1984.
    [53] Wolcott D S, Sharma M P. Analysis of air drilling circulating systems with application to air volumerequirement estimation [R]. SPE15950,1986.
    [54] Sharma M P. A microcomputer model for cutting transport in air drilling [R]. SPE16500,1987.
    [55] Adewumi M A, Tian S. Hydrodynamic modeling of wellbore hydraulics in air drilling[R]. SPE19333,1989.
    [56] Adewumi M A, Tian S. Analysis of air drilling hydraulics [R]. SPE21277,1990.
    [57] Adewumi M, A, Tian S. A new method of estimating mixture density in air drilling [R]. SPE24960,1992.
    [58] Tian S, Adewumi M A. Development of hydrodynamic-model-based air-drilling design procedures [J].SPE Drilling Engineering,1992,7(4):241-246.
    [59] Adewumi M A, Tian S. Determination of optimal air flow rate in air drilling[J]. Journal of PetroleumScience and Engineering,1992,8(1):1-11.
    [60] Adewumi M A, Tian S. Multiphase hydrodynamic analysis of pneumatic transportation of drill cuttingsin air drilling[J]. Powder Technology,1993,75(2):133-144.
    [61] Ramadan A, Skalle P, Johansen S T, et al. Mechanistic model for cuttings removal from solid bedinclined channels[J]. Journal of Petroleum Science and Engineering,2001,30(3-4):129-141.
    [62] Guo B, Ghalambor A. Gas volume requirements for under balanced drilling: deviated holes [M]. Tulsa:PennWell Corporation,2002.
    [63]郝俊芳等.空气钻进参数设计.石油钻探技术,1991,19(1):54-56
    [64]胡小房.干空气钻井中环空携岩理论研究[J].石油钻井工程,1996,3(2):1-7.
    [65]崔之健.计算空气钻井参数的新方法[J].江汉石油学院学报,1996,18(4):64-68.
    [66]郭文才,刘绘新.空气钻井计算方法及应用软件[J].钻采工艺,2001,24(1):8-12
    [67]唐贵,孟英峰,王存新等.气体钻井过程中井内不稳定流动与现场试验研究[J].天然气工业,2005,25(2):75-77.
    [68]唐贵,雷桐,舒秋贵等.气体钻井井筒与地层流动耦合分析[J].石油钻采工艺,2005,27(4):15-17.
    [69]王忠生,廖兵.双壁钻杆反循环空气钻井循环参数的分析与计算[J].钻采工艺,2005,31(3):1-4.
    [70]宋洵成,管志川,陈绍维.斜井岩屑运移临界环空流速力学模型[J].中国石油大学学报,2009,33(1):53-56.
    [71]李士斌,陈晓华,唐玉龙,等.空气钻井最小注气量的计算及其影响参数[J].科学技术与工程,2009,9(22):6634-6637.
    [72]祝效华,刘少胡,童华.气体钻井钻杆冲蚀规律研究[J].石油学报,2010,31(6):1013-1017.
    [73]黄勇,殷琨,朱丽红.风动潜孔锤反循环钻井最小注气量模型[J].中国石油大学学报:自然科学版,2011,35(5):65-69.
    [74]练章华,孟英峰,唐波,等.反循环空气钻井钻头结构设计及其流场分析[J].石油机械,2003,31(S1):15-17.
    [75]孟英峰,练章华,梁红,等.气体钻水平井的携岩CFD数值模拟研究[J].天然气工业,2005,25(7):50-52.
    [76]郭建华.气体钻井环空气固两相流动数值模拟研究[D].成都:西南石油大学,2006.
    [77]姚建林.气体钻井环空环空流场分析及岩屑对管柱的冲蚀特性研究[D].上海:上海大学,2010.
    [78]祝效华,凌玉梅,童华.空气钻井潜孔钻头气固两相流数值模拟[J].中南大学学报:自然科学版,2011,42(10):3040-3047.
    [79]郝树青.贯通式潜孔锤反循环取心(取样)钻进孔底流场数值模拟与实验研究[D].长春:吉林大学,2007.
    [80]刘建林.气体钻井用贯通式潜孔锤关键技术研究[D].长春:吉林大学,2009.
    [81]朱丽红.油气勘探风动潜孔锤反循环钻井系统流体动力学参数研究[D].长春:吉林大学,2010.
    [82]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000,12(2):208-216.
    [83]周光坰,.多相流体力学的发展现状及其展望[J].力学与实践,1989,11(2):37-40.
    [84]刘大有.关于二相流、多相流、多相流模型和非牛顿流等概念的探讨[J].力学进展,1994,24(1):66-74.
    [85]周力行.湍流气粒多相流数值模拟理论的最近进展[J].燃烧科学与技术,1995,1(1):10-15.
    [86]胡建新,夏智勋,刘君.颗粒轨道模型中颗粒追踪与定位算法研究[J].弹道学报,2005,17(1):82-87.
    [87] Gidaspow D. Multiphase flow and fluidz-ation[M]. San Diego Academic Press,1993.
    [88]欧阳洁,李静海.模拟气固流化系统的数值方法[J].应用基础与工程科学学报,1997,7(4):335-345.
    [89] Ladd A J C, Nquyen N Q. Lubrication corrections for lattice-Boltzma-nn simulations of particlesuspensions[J]. Physical Review E-Statistical Physics, Plasmas, Fluids, and Related InterdisciplinaryTopics,2002,66,(42):046708/1-046708/12.
    [90]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(1):1-11.
    [91]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007.
    [92] Gidaspow D. Multiphase Flow and Fluidization-Continuum and Kinetic Theory Descriptions. NewYork: Academic Press,1994.
    [93]林建忠,阮晓东,陈邦国,等.流体力学[M].北京:清华大学出版社,2005.
    [94]连桂森.多相流动基础[M].杭州:浙江大学出版社,1989.
    [95] Lannder B E, Spalding D B. Lecturcs in mathematical models of turbulence. London: AcademicPress,1972.
    [96] Elghobashi SE, Abou-Arab TW. A two-equation turbulence model for two-phase flows[J]. Phys, Fluids,1983,26(4):931-938.
    [97] Yakhot V, Orzag S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal ofScientific Computing,1986,1(1):3-51.
    [98] Shih T H, Liou W W, Shabbir A, et al. A new k-[epsilon] eddy viscosity model for high reynoldsnumber turbulent flows[J]. Computers&Fluids,1995,24(3):227-238.
    [99] Tabakoff W, Hamed A. Aerodynamic Effects on Erosion in Turbo machinery[C].TSME and ASMEPaper70Proceedings of the1977Joint Gas Turbine Congress, Tokyo, Japan, May1977,574-581.
    [100] Fluent uer’s guild. Fluent Inc, Lebanon, USA,2005.
    [101]黄勇,朱丽红,殷琨,等.潜孔锤反循环钻进岩屑粒度分布规律[J].吉林大学学报:地球科学版,2012,42(4):1119-1124.
    [102]徐小荷,余静.岩石破碎学[M].北京:煤炭工业出版社,1984.
    [103]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [104] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer inthree-dimensional parabolic flows[J]. International Journal of Heat and MassTransfer,1972,15(10):1787-1806.
    [105] Jang D S, Jetli R, Acharya S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for thetreatment of the pressure–velocity coupling in steady flow problems[J]. Numerical Heat Transfer,Part B: Fundamentals,1986,10(3):209-228.
    [106]王振东.龙尾不卷曳天东——漫话龙卷风[J].力学与实践,2010,32(4):112-115.
    [107]纪文君,刘正奇,郭湘平,等.龙卷风生成机制的探讨[J].海洋预报,2003,20(1):14-19.
    [108]张景松.人造龙卷风形成机理[J].煤炭学报,1996,21(4):403-406.
    [109]张景松,周世宁.人造龙卷风控制抽吸[J].中国矿业大学学报,2012,42(4):1119-1124.
    [110]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700