用户名: 密码: 验证码:
煤直接液化强制循环淤浆床反应器工程化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭资源丰富,煤炭直接液化技术不仅能提高煤炭资源的利用效率,弥补国内石油的空缺,而且可以减少煤炭直接燃烧对环境造成的污染,是解决当前我国能源短缺和石油安全的重要途径之一,具有重要的战略意义、现实意义和经济价值。为配合我国神华大型煤直接液化工业生产装置的建设,对神华煤直接液化反应器现有工程化实践进行理论分析和总结,且在应用基础方面开展深入研究,可为这类反应器的工程设计和放大、过程优化和控制提供理论基础和技术支持。鉴此,本文采用工程试验和模型化方法,针对神华煤直接液化反应工艺中强制循环淤浆床反应器的多相流动和反应性能,较为系统地开展了该类反应器的工程化应用基础研究。
     首先,通过对神华煤直接液化反应工艺及反应器技术的论证分析表明,采用浆相强制循环操作模式的淤浆床反应器在控制反应器内温度均匀,实现固体颗粒充分流化,以及减小器内气体滞留、提高反应器空间利用率等方面均具有优势。
     其次,在实验室尺度,分别以空气和水为气、液相,以玻璃珠和煤粉为固相,在φ200×2500mm的冷模反应器中实验测定了强制循环淤浆床反应器的流动性能,系统考察了反应器结构、操作条件及物性对器内流动性能的影响,揭示模拟重颗粒流化的“玻璃珠-水-空气”三相体系、模拟煤液化的“煤-水-空气”三相体系中的压强分布和脉动、相分散(床层整体气、固含率及局部分布)和浆相环流特性。而且,针对原料煤钙含量高、液化时易聚集问题的模拟侧壁放料试验表明,反应器中累积的密度较大的玻璃珠,可以通过侧壁放料有效排除。
     第三,在中试尺度(6吨干煤/天规模)的PDU装置上,开展了热态、真实反应条件下煤直接液化强制循环反应器的流动及反应性能的工程化试验,结果表明:1)PDU装置可用于热态反应条件下的反应器流动性能测试,连续运行过程中各项参数都达到了预期值;2)通过对PDU装置液化反应器底部气含率的测定,得出热模状态下第一液化反应器底部气含率关联式为:3)非反应状态下,内循环反应器和强制循环反应器内的返混强度远远大于鼓泡床反应器;非反应状态和煤直接液化反应状态下,内循环反应器和强制循环反应器有着相近的循环强度和返混强度;4)在操作条件接近的情况下,强制循环反应器和内循环反应器有着非常接近的原料煤转化率;其中,在试验操作条件下使用强制循环反应器可避免钙粒子的沉积现象。
     第四,应用商用计算流体力学(CFD)软件FLUENT,对PDU装置强制循环反应器的流动性能进行了CFD模拟,分析计算所得反应器模拟区域的气含率、湍动能、压力以及液相速度的分布,揭示了器内流动参数的局部分布特征;其中,预测整个区域气含率等,与冷模试验结果相近。
     最后,在基于对PDU装置煤液化反应器性能的基本假设上,建立了一个简单的神华煤直接液化强制循环反应器模型。计算初步表明,对于神华煤的两段反应器过程,长的平均停留时间,大的反应速率常数,均有助于提高对应组分的转化或生成;较之日本NEDOL工艺及所用煤种(印尼Tanitoharum煤),神华工艺及所用神华煤似有短停留时间、高转化率的特点。
Coal is the most abundant fossil fuel in China. Hence, it is strategically and economically important to develop coal liquefaction technologies as an effective way to solve the oil and energy shortage problem in our country, and in the meanwhile to avoid environmental pollution and wastes and utilize coal cleanly and effectively. Towards the end, a commercial plant of large scale production capacity has been constructed by Shenhua for producing the direct coal liquefaction oil. For the successful process design, scale up and its optimization and control, it is inevitable to derive process and engineering knowledge from the successful practice of the Shenhua direct coal liquefaction process, and implement further fundamental studies on the process. In this paper, a systematic engineering research was carried with a particular focus on the multiphase flow and reaction performances of forced recirculating slurry bed reactor used for the Shenhua coal liquefaction process.
     In the first place, a detailed analysis of the Shenhua direct coal liquefaction process and the reactor technology shows that a slurry bed reactor operated in the forced circulating mode of the slurry phase presents advantages such as uniform temperature distribution, good fluidization of large and heavy solid particles, and less degree of gas retention and thus effective utilization of reactor space, all of which are necessary for the highly exothermal coal liquefaction process.
     Secondly, on the lab scale, three phase flow hydrodynamics in a cold model slurry bed reactor of 2500 mm high and 200mm in diameter were experimentally studied, using air as the gas phase, water as the liquid phase, and glass beads or coal powders as the solid phase. The pressure distribution and its fluctuation, phase dispersion (overall and local gas and solid hold-ups) and liquid circulation velocity were measured in two systems, namely, the coal/water/air system that mimics the coal liquefaction suspensions, and the glass bead/water/air system that approximates the situation where deposition of minerals may occur during coal liquefaction; and the influence of reactor configuration, operation condition, and phase properties on the three phase flow hydrodynamics was systematically investigated. Besides, in view of the high content of calcium in Shenhua coal and tendency to solid deposition in liquefaction, simulating discharge experiments of high density glass beads via the reactor side wall were carried out and shown to be an effective method of solving the deposition problem in the liquefaction process.
     Thirdly, on the pilot plant scale, flow and reaction performances of a hot model forced circulation slurry bed reactor in a process supporting unit (PDU) with a capacity of 6 ton dry coal/day were investigated, and a collection and analysis of the process data was made. It is demonstrated that 1) the PDU system were successfully operated with process parameters attaining the desired ones, and properly designed for evaluating the flow and reaction performances of the PDU reactor; 2) the gas hold-up at the bottom of the PDU reactor was measured and determined by the following correlation 3) a comparison of slurry circulation intensity between three different liquefaction multiphase reactors, i.e., the PDU reactor of forced circulation of the slurry phase, a internal circulation reactor with a draft tube, and the conventional slurry bed reactor without internals, shows that the former two reactors are identical to each other and superior to the conventional one in terms of their circulation intensity; and 4) the former two reactors exhibit approximately the same coal conversions, and the PDU reactors were found to be nearly free of the calcium deposition problem owing to the intensive and forced slurry circulation.
     Fourthly, hydrodynamic performances of the PDU reactor were simulated by using the computational fluid dynamics (CFD) method and the FLUENT software. Spatial distribution of flow parameters, including the gas hold-up, turbulent kinetic energy, pressure and liquid velocity, was obtain and thereby used to ascertain the local distribution characteristics of flow parameter within the reactor. Predicted gas hold-up values are found to be close to those measured in the cold model reactor.
     Lastly, with basic assumptions, a simple reactor simulation model was developed for predicting the reaction performance of the two coal direct liquefaction reactors in the PDU process. It is shown that for the liquefaction of the Shenhua coal in the two reactors, longer mean residence time/higher reaction coefficients are favorable for the transformation or formation of corresponding product species; and compared to the NEDOL process and the Tanitoharumis used therein, the Shenhua process and the coal used exhibit characteristic of shorter residence time but higher conversions.
引文
[1]Lumpkin R E. Recent progress on the direct liquefaction of coal[J]. Science. 1988, 239: 873-877
    [2]Liu Z Y, Shi S D, Li Y W. Coal liquefaction technologies-development in China and challenges in chemical reaction engineering [J]. Chemical Engineering Science. 2010, 65: 12-17
    [3]张玉卓.中国煤炭液化技术发展前景[J].煤炭科学技术.2006,34(1):32-35
    [4]舒歌平,李克健,史士东.煤炭液化技术[M].煤炭工业出版社.2003,10
    [5]范传宏.煤直接液化工艺技术及工程应用[J].石油化工与炼制.2003,34(7):20-24
    [6]邓光君,张于喆,李昱岩等.煤变油技术产业化的可行性与对策分析[J].资源·产业.2004,6(3):34-37
    [7]马斌,郭朝华.煤炭直接液化技术前景分析[J].煤化工.2000,(2):8-12.
    [8]高晋生,张德祥,王晋平.21世纪煤化工技术发展展望[J].煤化工.2002,(10):2-5
    [9]房照增编译.各国煤炭液化的现状[J].中国煤炭.2006,32(7):75-77
    [10]马治邦.德国煤液化精制联合工艺-IGOR工艺[J].煤化工.1996,(3):25-30
    [11]马治邦.美国催化两段煤直接液化工艺技术[J].煤化工.1990,(4):12-16
    [12]李克健,史士东,李文博.德国IGOR煤液化工艺及云南先锋褐煤液化[J].煤炭转化.2001,24(3):13-16
    [13]Vick G K, Epperly W R. Status of the development of EDS coal liquefaction[J]. Science. 1982,217:4557
    [14]Clean coal technology programmer. Technology Status Report, 3-4 Oct, 1999
    [15]李杰,王东胜.煤炭直接液化工艺的探讨[J].煤洁净技术.2005,11(3):49-52
    [16]张银元,赵景联.煤直接液化技术的研究与开发[J].山西煤炭.2001,21(2):32-36
    [17]Duddy J E, Faupel T H. Direct coal liquefaction: ebullated-bed technology and economics [J].应用化工.2006(10):200-210
    [18]埃利奥特.煤利用化学(下)[M].北京:化学工业出版社.1991
    [19]吴春来,金嘉璐.煤炭直接液化技术及其产业化前景[J].中国煤炭.2002,28(1):35-37
    [20]Wilsonville J L.洁净煤研究中心的煤液化最新进展[J].煤炭综合利用译丛.1991,14(2):55-61
    [21]International Energy Agency Coal industry advisory board workshop report, IEA Headquarters in Paris. 2006,12
    [22]Ren X K, Fang D Y, Jin J L. Study on flow patterns in different types of direct coal liquefaction reactors[J]. Asia-Pac. J. Chem. Eng. 2009,4: 563-567
    [23]Shui H F. Non-covalent associative structure of coal [J]. Journal of Coal Science & Engineering(China). 2004,10(1): 60-64
    [24]郭崇涛.煤化学[M].北京:化学工业出版社.1992:125-134
    [25]Coughlin R W, Davoudzadeh F. Lignin depolymerizes coal at 300 ℃[J]. Nature.1983, 303:789-791
    [26]Haenel M W, Narangerel J, Richter U B. The first liquefaction of high-rank bituminous coals by preceding hydrogenation with homogeneous borane or iodine catalysts [J]. Angewandte Chemie International Edition.2006,45(7):1061-1066
    [27]胡树勋.神华煤直接液化催化剂及液化机理的研究[D].大连理工大学硕士学位论文.2007,6
    [28]Yang J L, Zhu J S, Xu L, et al. Promotion of the ferrous sulfate catalysts by sulfur for hydrogenation of coal[J]. Fuel.2002,81:1485-1489
    [29]Zhang L, Yang J L, Zhu J S, et al. Properties and liquefaction activities of ferrous sulfate based catalyst impregnated on two Chinese bituminous coals[J]. Fuel.2002,81:951-958
    [30]Zhu J S, Yang J L, Liu Z Y, et al. Study on use of industrial ferrous sulfate for direct liquefaction of Xianfeng, Shenmu and Yilan Coals[J]. Fuel Chem. Technol.2000,28: 496-502
    [31]Weller S, Pelipetz M G, Friedman S. Kinetics of coal hydrogenation conversion of asphalt[J]. Ind. Eng. Chem.1951,43:1575-1579
    [32]Pelipetz M G, Salmon J R, Bayer J. Uncatalyzed coal hydrogenolysis[J]. Ind. Eng. Chem. 1955,47:2101-2103
    [33]Curran G P, Struck R T, Gorin E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind. Eng. Chem. Process. Des. Dev.1967,6:166-173
    [34]Brunson R J. Kinetics of donor-vehicle coal liquefaction in a flow reactor[J]. Fuel.1979, 58:203-207
    [35]Cronauer D C. Kinetics of thermal liquefaction of Belle sub-bituminous coal[J]. Ind.Eng. Chem. Process. Des. Dev.1978,17(3):281-288
    [36]Mohan G, Silla H. Kinetics of donor-solvent liquefaction of bituminous coals in non-isothermal experiments [J]. Ind. Eng. Chem. Process. Des. Dev.1981,20:349-358
    [37]Gertenbach D D, Baldwin R M, Bain R L. Modeling of bench-scale coal liquefaction systems[J]. Ind. Eng. Chem. Process Des. Dev.1982,21:490-500
    [38]Gollakota S V, Guin J A, Curtis C W. Parallel thermal and catalytic kinetics in direct coal liquefaction[J]. Ind. Eng. Chem. Process. Des. Dev.1985,24:1148-1154
    [39]Angelova G D, Dimova K N. Kinetics of donor-solvent liquefaction of Bulgarian brown coal[J]. Fuel.1989,68(10):1343-1346
    [40]Pradhan V R, Holder G D, Wender I, et al. Kinetics modeling of direct liquefaction of Wyodak coal catalyzed by sulfated iron oxides[J]. Ind. Eng. Chem. Res.1992,31: 2051-2056
    [41]Onozaki M, Namiki Y, Ishibashi H. A process simulation of the NEDOL coal liquefaction process[J]. Fuel Processing Technology.2000,64:253-269
    [42]王勇.煤直接液化反应动力学的高压釜实验研究[D].煤炭科学研究总院.2007
    [43]Li X, Hu H Q, Zhu S W, et al. Kinetics of coal liquefaction during heating-up and isothermal stages[J]. Fuel.2008,87:508-513
    [44]Clean coal technologies in Japan Ryoichi Yoshida Energy Sources.1997,19(9):931-943
    [45]霍卫东.环流反应器在煤直接液化工艺中的应用研究[D].中国矿业大学(北京)/煤炭科学研究总院.博士学位论文.2008,4
    [46]李红星,黄海,谷奎庆等.连续内环流三相反应器局部流动特性[J].化工学报.2007,58(10):2493-2499
    [47]Moniz M J. Process studies of integrated two-stage coal liquefacton at wilsonville. In Proceedings of the 9th Annual EPRI Contractors'Conf on Coal Liquefaction. Palo Alto, CA,USA,8-10 May,1984
    [48]Gir S, Rhodes D E. Recent developments in the integrated two-stage coal liquefaction program at Kerr-McGee corporation. In Proceedings of DOE Direct Coal Liquefaction Contractors'Review Meetings. Palo Alto, CA, USA, November,1983
    [49]Rao A. Recent devlopments in two-stage coal liquefaction at Wilsonville. In Proceedings of DOE Direct Coal Liquefaction Contractors'Review Meeting. Palo Alto, CA, USA, November 1983
    [50]Comolli A G, MacArthur J B. Two-stage catalytic conversion of wyodak coal. In Proceedings of the 10th Annual EPRI Contractor's Conference on Clean Liquid and Solid Fuels. Palo Alto, CA, USA, October,1985
    [51]Robinson K K. Reaction engineering of direct coal liquefaction[J]. Energies.2009,2: 976-1006
    [52]Ramachandran P A. Three phase catalytic reactors[M]. New York:Gordon and Breach Science Publishers.1983
    [53]Nigam K D P. Three-phase sparred reactors. Amsterdam, The Netherlands:Gordon and Breach Publishers.1996
    [54]任欧旭,张少峰等.气(汽)-液-固三相流化床中的气(汽)泡行为研究进展[J].河北工业大学学报.2002,31(5):44-49
    [55]王铁峰,王金福,金涌等.三相循环流化床中气泡大小及其分布的实验研究[J].化工学报.2001,52(3):198-202
    [56]Ohnuki A, Akimoto H. Experimental study on transition of flow pattern and phase distribution in upward air-water two-phase flow along a large vertical pipe[J]. Int. J. Multiphase Flow.2000,26:367-386
    [57]Lucas D, Krepper E, Prasser H M. Prediction of radial gas profiles in vertical pipe flow on the basis of bubble size distribution[J]. Int. J. Therm. Sci.2001,40:217-225
    [58]Warstio A, Fan L S. Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography[J]. Chem. Eng. Sci. 2001,56:6455-6462
    [59]Santana D. Local bubble size distribution in fluidized beds[J]. AIChE J.2000,46(7): 1340-1347
    [60]Li H, Prakash A. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column[J]. Powder Tech.2000,113:158-167
    [61]Camarasa E, Vial C, Poncin E A. Influence of coalescence behavior of the liquid and of gas sparring on hydrodynamics and bubble characteristics in a bubble column[J]. Chem.
    Eng. Proc.1999,38:329-344
    [62]Luo X K, Lee D J, Lau R, et al. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns[J]. AIChE.1999,45(4):665-680
    [63]Krishna R, Baten J M, Ellenberger J. Scale effects in fluidized multiphase reactors[J]. Powder Technology.1998,100:137-146
    [64]Krishna R, Ellenberger J. Gas holdup in bubble column reactors operating in the churn-turbulent flow regime[J]. AIChE.1996,42:2627-2634
    [65]Onozaki M. A simulation of the accumulation of solid particles in coal liquefaction reactors based on the NEDOL process. Ind. Eng. Chem. Res.2000,39:2866-2875
    [66]Onozaki M. A Process simulation of the NEDOL coal liquefaction process. Fuel Process Technology.2000,64:235-269
    [67]张银元,赵景联.煤直接液化技术的研究与开发[J].山西煤炭.2001,21(2):34-36
    [68]李文华.东胜-神府煤的煤质特征与转化特性.煤炭科学研究总院博士论文.2001,12
    [69]Okuma O. Liquefaction process with bottom recycling for complete conversion of brown coal[J]. Fuel.2000,79(3):355-364
    [70]Hirano K. Outline of NEDOL coal liquefaction process development pilot plant program[J]. Fuel Processing Technology.2000,62:109-118
    [71]Yoshida H. Advanced clean coal technology international symposium.1998,10, (12-13): 198-207
    [72]Samira G, Morteza S. A comparison between two kinds of hydrodynamic models in bubble column slurry reactor during Fischer-Tropsch synthesis:Single-bubble class and two-bubble class. Chemical Engineering Research and Design.2009,87(12):1582-1588
    [73]Novica R, Muthanna H A, Duduvokic M P. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors[J]. Catalysis Today.2003, (79-80):211-218
    [74]Wang Y, Fan W, Liu Y. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors[J]. Chemical Engineering and Processing:Process Intensification.2008, 47(2):222-228
    [75]Eduardo C V T, Pedro L S, Maria R W M. Dynamic modeling of a three-phase catalytic slurry reactor[J]. Chemical Engineering Science.2001,56 (21-22):6055-6061
    [76]Maretto C, Krishina R. Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis[J]. Catalysis Today.1999,52(2-3):279-289
    [77]Gerard P L, Antonie A C M B, Rajamani K. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors[J]. Chemical Engineering Science.1999,54(21):5013-5019
    [78]Johannes G K, Dan L, Tiberiu M L. The boiling slurry reactor:Axial dispersion model. Chemical Engineering Science.1999,54(21):5021-5029
    [79]Laurent S, Romain L, Arsam B. Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer-Tropsch liquid hydrocarbons [J]. Journal of the Chinese Institute of Chemical Engineers.2008,39(2):169-179
    [80]Wang J H, Rayford G A, Aydin A. Mathematical simulations of the performance of trickle bed and slurry reactors for methanol synthesis[J]. Computers & Chemical Engineering. 2005,29(11-12):2474-2484
    [81]Matos E M, Guirardello R, Mori M. Modeling and simulation of a pseudo-three-phase slurry bubble column reactor applied to the process of petroleum hydrodesulfurization[J]. Computers & Chemical Engineering.2009,33(6):1115-1122
    [82]Adriano P M, Eduardo C V T, Jose M F S. Development of a software for simulation analysis of the phenomenon of phase change of three-phase catalytic slurry reactor[J]. Computers & Chemical Engineering.2005,29(6):1369-1378
    [83]Maria L S, Rodolfo J B, Alberto E C A. Scaling-up of slurry reactors for the photocatalytic degradation of 4-chlorophenol[J]. Catalysis Today.2007,129(1-2): 110-117
    [84]Isaac K G, John S H, Dimitri G. CFD models for methanol synthesis three-phase reactors: reactor optimization[J]. Chemical Engineering Journal.2003,93(2):103-112
    [85]Wu Y X, Dimitri G. Hydrodynamic simulation of methanol synthesis in gas-liquid slurry bubble column reactors [J]. Chemical Engineering Science.2000,55(3):573-587
    [86]Victor R A, Esly F C, Jorge E P, et al. A comprehensive mathematical model for the Fischer-Tropsch synthesis in well-mixed slurry reactors[J]. Chemical Engineering Science.2005,60(3):677-694
    [87]Zhu B C, Wang Y S, Wang H S. Modelling catalytic reaction-absorption coupling process of ethylene oxide synthesis in slurry reactor [J]. Chemical Engineering Science.1999, 54(10):1531-1534
    [88]Andrey A T, Franz Z. CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis[J]. Chemical Engineering Science.2009,64(5):892-903
    [89]Puneet G, Muthanna H A, Milorad P D. Comparison of single- and two-bubble class gas-liquid recirculation models-application to pilot-plant radioactive tracer studies during methanol synthesis[J]. Chemical Engineering Science.2001,56(3):1117-1125
    [90]Alberto E C, Orlando M A. Reaction engineering of suspended solid heterogeneous photocatalytic reactors[J]. Catalysis Today.2000,58(2-3):167-197
    [91]Antonio G M N, Marcelo F F, Marcio N. Modeling Ethylene/1-Butene copolymerizations in industrial slurry reactors[J]. Ind Eng Chem Res.2005,8(44):2697-2715
    [92]Inga J R, Morsi B I. A novel approach for the assessment of the rate-limiting step in Fischer-Tropsch slurry process[J]. Energy Fuels.1996,3(10):566-572
    [93]Fan F. Modeling and product grade optimization of Fischer-Tropsch synthesis in a slurry reactor[J]. Ind Eng Chem Res.2006,3(45):1047-1057
    [94]Wang G, Wang Y N, Yang J. Modeling analysis of the Fischer-Tropsch synthesis in a stirred-tank slurry reactor[J]. Ind Eng Chem Res.2004,10(43):2330-2336
    [95]Iliuta I, Larachi F, Anfray J. Comparative simulations of cobalt- and iron-based Fischer-Tropsch synthesis slurry bubble column reactors[J]. Ind Eng Chem Res.2008, 11(47):3861-3869
    [96]Rajashekharam V M, Raghunath V C. Hydrogenation of 2,4-Dinitrotoluene using a supported Ni-catalyst:reaction kinetics and semi-batch slurry reactor modeling[J]. Ind Eng Chem Res.1999,3(38):906-915
    [97]Masaki O, Yasuki N, Hirohito I. Steady-state thermal behavior of coal liquefaction reactors based on NEDOL process[J]. Energy Fuels.2000,2(14):355-363
    [98]Burke F P, Brandes S D, McCoy D C, et al. Summary report of the DOE direct liquefaction process development campaign of the late twentieth century. DOE/PC 93054-94.2001(7):27-41
    [99]Clean coal technology programmer:program update 2009.2009,6
    [100]Hiraide M, Itoh H, Kidoguchi A. Coal liquefaction reactor simulator. Proceedings of 1999 international symposium on fundamentals for innovative coal utilization, Sapporo. 1999:103-106
    [101]Jakobsen H A. Chemical reactor modeling:multiphase reactive flows[M]. Berlin Heidelberg:Springer-Verlag.2008,757-806
    [102]Ranade V V. Flow in bubble column:Some numerical experiments[J]. Chemical Engineering Science.1992,47:1857-1869
    [103]Lain S, Broder D, Sommerfeld M. Experimental and numerical studies of the hydrodynamics in a bubble column[J]. Chemical Engineering Science.1999,54: 4913-4920
    [104]Lapin A, Lubbert A. Numerical simulation of the dynamics of two phase gas/liquid flows in bubble column[J]. Chemical Engineering Science.1994,49:3661-3674
    [105]Devanathan N, Dudukovic M, Lapin P A. Chaotic flow in bubble column reactors[J]. Chemical Engineering Science.1995,50:2661-2667
    [106]Delnoij E, Kuipers J A M, van Swaaij W P M. Dynamic simulation of gas/liquid two-phase flow:Effect of column aspect ratio on the flow structure[J]. Chemical Engineering Science.1997,52:3759-3772
    [107]Delnoij E, Kuipers J A M, van Swaaij W P M. A three dimensional CFD model for gas-liquid bubble columns[J]. Chemical Engineering Science.1999,54:2217-2226
    [108]Delnoij E, Lammers F A, Kuipers J A M. Dynamic simulation of dispersed gas/liquid two-phase flow using a discrete bubble model [J]. Chemical Engineering Science.1997, 52:1429-1458
    [109]Masaki O, Yasuki N, Naohide S. Dynamic simulation of gas-liquid dispersion behavior in coal liquefaction reactors[J]. Chemical Engineering Science.2000,55:5099-5113
    [110]Yatish T S. Reaction engineering in direct coal liquefaction. Addison-Wesley Publishing Company.1981
    [111]倪双跃,高晋生,朱之培等.我国年轻煤加氢液化研究:几种年轻煤液化性能的考察[J].燃料化学学报.1985,13(4):334-342
    [112]朱晓苏,金嘉璐.我国煤炭直接液化技术及其工业应用前景[J].煤炭转化.1998,21(2):17-19
    [113]朱晓苏.中国煤炭直接液化优选煤种的研究[J].煤化工.1997,3:32-39
    [114]吴春来.发展适合我国煤种与国情的煤转化技术[J].煤炭转化.1994,17(3):9-15
    [115]俞珠峰,李宝山,吴立新.中国城市清洁能源和技术的合理选择[J].能源政策研究.
    2006(1):38-46
    [116]范维唐.关于中国能源的可持续发展[J].能源政策研究.1997(2):6-9
    [117]杜铭华,舒歌平.我国煤炭液化技术产业化前景展望[J].现代化工.2002,22(9):1-5
    [118]Kim D, Robinson K K, Gutberlet L C, et al. Catalyst development for coal liquefaction. EPRI Contract 408(1):Report AF-1235. EPRI:Palo Alto, CA, USA,1979
    [119]Stohl F V, Stephens H P. A comparative study of catalyst deactivation in integrated two-stage direct coal liquefaction processes[J]. Industrial & Engineering Chemistry Research.1987,26(12):2466-73
    [120]易海波,王亚明,陈秋玲.煤直接液化催化剂研究进展[J].化工时刊.2006,20(10):52-55
    [121]范立明,高俊文,张勇.煤直接液化催化剂研究进展[J].工业催化.2006,14(11):17-22
    [122]张玉卓.中国神华煤直接液化技术新进展[J].中国能源科技专辑.2006,32-35
    [123]叶青.神华集团煤直接液化示范工程[J].煤炭科学技术.2003,31(4):1-3
    [124]黄永春,唐军,谢清若等.计算流体力学在化学工程中的应用[J].现代化工.2007,5(27):65-70
    [125]苏铭得,黄素逸.计算流体力学基础[M].清华大学出版社.1997
    [126]Mudde R F, van Dan Akker H E A.2D and 3D simulations of an internal airlift loop reactor on the basis of a two-fluid model[J]. Chemical Engineering Science.2001,56: 6351-6358
    [127]Vial C, Poncin S, Wild G. Experimental and theoretical analysis of the hydrodynamics in the riser of an external loop airlift reactor[J]. Chemical Engineering Science.2002,57: 4745-4762
    [128]Froment G F.固定床反应器基础设计的进展[M].都拉斯瓦梅,马歇卡尔编.世界化学工程新进展.北京:烃加工出版社.1984:3-26
    [129]李绍芬.化学与催化反应工程[M].北京:化学工业出版社.1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700