用户名: 密码: 验证码:
微波催化氧化技术处理垃圾渗滤液的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液是一种危害较大的高浓度难降解有机废水,如未经处理或处理不当就排入环境势必对填埋场周围环境及地下水造成严重污染,从而直接或间接对生态环境和人体健康造成威胁。由于渗滤液水质水量变化大,其中难去除的物质多,目前国内、国外的垃圾填埋场还没有成熟和完整的工艺可以借鉴,现有工艺的处理效能也很少能真正满足卫生填埋场渗滤液的排放要求。因此需要开发投资省、效果好的渗滤液处理技术和工艺。论文立足于渗滤液实际处理的需要,以节约成本、提高渗滤液中有机物去除率,加快反应速率、缩短反应进程为目的,探索渗滤液处理新工艺—微波催化氧化技术。论文采用共沉淀法-焙烧法、浸渍-焙烧法、固相焙烧法制备、筛选了适合于微波催化氧化的催化剂并进行了表征;对处理渗滤液效能最佳的催化剂进行了改性和改形;采用动力学模型模拟有机物浓度降解趋势,采用分子量分级分析了渗滤液中有机物的分子量变化和采用全谱扫描分析了反应过程中有机物种类的变化。
     催化剂制备及筛选表明,Fe-Zr催化剂是共沉淀制备筛选出的效能最佳的催化剂,用Fe-Zr催化剂处理正丁酸模拟废水,TOC去除率为75%,该催化剂活性和稳定性比较好的主要原因是Zr对催化剂进行掺和改变了催化剂的物相; Fe-O/CeO_2催化剂是浸渍法制备、筛选出的效能最佳的催化剂,用该处理正丁酸模拟废水, COD_(Cr)去除率为67%,该催化剂中的活性成分Fe主要以α-Fe2O3形式存在,兼有少量的CeFe2;Ni-Co-Ce-O催化剂是固相-焙烧法制备、筛选出催化效能最佳的催化剂,用该催化剂处理正丁酸模拟废水,COD_(Cr)去除率为68%,与高温固相所得Ni-Co-Ce-O催化剂相比,该催化剂因其拥有更多孔洞,其催化活性更高。
     渗滤液的水质检测(长生桥垃圾填埋场的渗滤液)表明:COD_(Cr)平均含量为5736mg/L,有机物以分子量小于1000的为主,占54.55%;总固体平均浓度为5477.0 mg/L,总固体中溶解态固体含量最大,占87.33%;总氮含量为2163.16 mg/L,其中氨氮为1743.62 mg/L,占80.61%;镍、铁的平均含量分别为7.18 mg/L和1.98 mg/L。
     采用上述三种催化剂处理垃圾渗滤液,处理效能表明:Fe-O/CeO_2催化剂是处理垃圾渗滤液效能最佳的催化剂。其最佳处理工况为:Fe-O/CeO_2投加量10g/L、H2O_2投加量22.5mL/L、微波功率800w、微波作用时间8min和水样浓度5736 mg/L,此工况所得渗滤液COD_(Cr)去除率为69%。
     催化剂改性研究表明,圆形颗粒的流动性较好,改性催化剂以A物质为掺和剂,(掺和比40%)混入Fe-O/CeO_2催化剂中,搅拌均匀并挤压成型为直径4.5mm的球形颗粒,风干后在350℃条件下焙烧4h制得。改性催化剂的平均孔径为0.56nm,孔道主要以微孔为主。用改性催化剂处理渗滤液,出水COD_(Cr)浓度和氨氮浓度分别为257 mg/L和99.2 mg/L,处理效能分别为94.9%和94.7%。出水氨氮、COD_(Cr)浓度均满足城市污水的三级排放标准。
     单目标物质催化剂的机理分析表明,以空气为氧化剂时,Ni-O/CeO_2催化剂的催化效能高于以Fe-O/CeO_2催化剂的催化效能;以H_2O_2为氧化剂以Fe-O/CeO_2催化剂的催化效能高于Ni-O/CeO_2催化剂的催化效能;微波催化氧化反应与常温常压催化氧化反应和水浴催化氧化反应相比大大缩短了反应时间、提高了反应效率。
     改性催化剂的微波催化氧化处理渗滤液的机理分析表明,对富含颗粒态有机物的渗滤液,微波催化氧化能在短时间内达到很好的预处理效果,而对溶解态有机物为主的渗滤液,渗滤液经处理后出水能达到城市污水三级排放要求。分子量分级和GC-MS试验表明,渗滤液中有机物的种类随着反应时间逐级快速递减,但有机物的去除并不是按一定比例进行,而是随分子量不同而有所不同;渗滤液的微波催化氧化反应在低温条件下进行的是有机物与H_2O_2的直接反应,微波作用加快其反应速率;高温条件下则以“芬顿”反应为主,“芬顿”反应过程中,小分子物质既是优先进行反应的物质也是最难去除的物质;固态颗粒物的存在既消耗了微波能和H_2O_2,又阻碍了小分子物质与催化剂充分接触。有机物的降解不符合Elovich方程、双常数方程、一级动力学方程、抛物线扩散方程四种动力学模型,SPSS数据处理系统拟合出氨氮、COD_(Cr)的降解动力学方程分别为:Y=1852.4602-442.4124t+36.8971t~2-1.0152t~3;Y=216.5628+5060.8354exp(-0.5431t)。
Landfill leachate is a kind of toxic wastewater with high concentration of organic chemicals. It will do harm to the ecological environment and human while drain to the nearby environment without proper disposal. Effluent from domestic landfill leachate treatment process can hardly reach the demands of sanitary landfill leachate emission standards because of the geographical variability of the water quality and quantity, and feasible and applicable full-treatment techniques are lacking both at home and abroad. Economic and effective leachate treatment technology and process is in urgent demand. In order to save cost, enhance the removal efficiency of organic compounds, speed up the reaction rate and shorten the reaction process, and based on the practical need, a new technology—microwave catalytic oxidation process was applied in the thesis to treat the landfill leachate. Catalyst was obtained from different methods: coprecipitation - roasting method, impregnation - roasting method and solid phase calcination method. Compared from the lab scale experiment, a best method from the four above was selected to prepare the catalyst and characterized; modification and reshaping was applied to the catalystwith the purpose to upgrade theremoval efficiency; a kinetic model was set up to formulate the degradation trend of organic compounds, and molecular classification was used to analyze the change of organic matters molecular, besides, spectral scanning was used to analyze the change of types in organic matters.
     Research on catalyst preparation showed that, Fe-Zr catalyst was the best choice from coprecipitationin the degradation of n-Butyric acid analogous wastewater, the removal efficiency of total organic carbon (TOC) was 75%.Potential mechanism might be due to its enhanced activity and stability by the modified phase by doped technique; Fe-O/CeO_2 catalyst was the best one obtained by impregnation - roasting. Removal efficiency of TOC was 67%. The activated constituents wasα-Fe2O3, with CeFe2; Ni-Co-Ce-O catalysts from low-temperature performed the best one by solid phase calcination. Removal efficiency of TOC was 68% in the treatment of n-Butyric acid analogous wastewater. Compared with Ni-Co-Ce-O catalysts that obtained under high- temperature, this catalysts has higher activity due to its smaller grain diameter and more specific surface areas.
     Water quality of reallandfill leachate (from Changsheng Bridge landfill) were as follows: COD concentration was 5736mg/L, and the molecular weight of the majority organic matter was below 1000 and it took 54.55%; the total solid concentration was 5477.0 mg/L, among which the dissolved solid was 87.33%; total nitrogen concentration was 2163.16mg/L, among which 80.61% is ammonia, and its concentration was 1743.62 mg/L; the concentration of Ni and Fe was 7.18 mg/L and 1.98mg/L, respectively, and they existed in grain and dissolved types.
     Fe-O/CeO_2 catalyst was the best catalyst to treat real landfill leachate, and its best working condition was as follows: the Fe-O/CeO_2 dosage is 10g/L, H_2O_2 dosage is 22.5ml/L, microwave power was 800w, microwave irradiation time is 8min and when the COD concentration was 5736mg/L, the removal efficiency of COD_(Cr) was 69%.
     Study on catalytic modification showed that the fluidity of round granule was better than that of columnar one, the catalysts was formed from powdered to round with diameter of 4.5mm;matter a was a dope agent in the modified catalysts, which was prepared by roasting at 350℃in muffle furnace for 4h after extrusion forming and air drying . The average aperture was 0.56nm, and main duct were micropores. The leachate was filtered through 0.45μm filter after treated by modified catalysts, its effluent COD_(Cr) and ammonia concentration are 257mg/L and 99.2mg/L, which meets the municipal wastewater effluent standardsⅢ.
     Results of single-purpose matter catalysts experiment showed that the catalysis effectiveness of Ni-O/CeO_2 catalysts was higher than that of Fe-O/CeO_2; the catalysis effectiveness of Fe-O/CeO_2 catalysts was higher than that of Ni-O/CeO_2 when H_2O_2 served as oxidants. Compared with atmospheric pressure and ambient temperature catalytic oxidation and catalytic oxidation in a water bath, microwave catalytic oxidation has higher removal efficiency and greatly shortens the reaction time.
     The mechanism of modified Catalysts treating leachate through microwave catalytic oxidation showed that, for those rich in granular organic matters, microwave catalytic oxidation attains good pretreatment effect, while for those rich in dissolved organic matter, the effluent attained the municipal wastewater effluent standardsⅢafter treated; Molecular weigh cutting experiments showed that the removal efficiency of organic matter changes disproportionally with different molecular weight. In the early stage of catalytic reaction, compared with large molecule organic matters, the smaller one might much more easily removed by catalytic oxidation, after the catalytic oxidation reaction, large molecule organic matters in leachate were oxidized into smaller molecule organic compounds, carbon dioxide and water. Spectrum scanning was done before and after the leachate was treated, result show that the types of organic matters decreased quickly step by step as the proceeded. From the treatment efficiency, microwave catalytic oxidation is an efficient way to remove ammonia. General kinetic formular of organic degradation in this study did not show a goodness of fit with Elovich equation, Double constant equation, first-degree kinetic equation and parabola- diffusion equation. However, the fitted degradation equation by SPSS package were Y=1852.4602-442.4124t+36.8971t~2-1.0152t~3;Y=216.5628+5060.8354exp (-0.5431t).
引文
[1]陈玉成李章平,城市生活垃圾渗沥水的污染及全过程控制[J],环境科学动态, 1995, 4, 15–17.
    [2] Mattias Akesson and Peter Nilsson, Seasonal changes of leachate production and quality from test cells[J], Journal of environmental engineering, 1997, 123(9), 892—900.
    [3]郝一琴,程媛,李一卉,太原生活垃圾填埋渗滤液监测、处理的研究报告[J],环境卫生工程, 1995, 3(2), 3-6.
    [4]李广科.生活垃圾填埋场渗滤液生物毒效应研究[D].博士论文,同济大学, 2003环境工程.
    [5] F.Wang, D.W.Smith, G.M.E1-Din.Application pf advanced oxidation methods for landfill leachate treatment-a review[J].Environment Engineering Science, 2003, 2: 413-427.
    [6]张望军,王国生.城市垃圾卫生填埋场浸出液的处理[J].重庆环境科学, 1995, 4: 44-47.
    [7] Lee, G.F., Jones,R.A.Landfills and groundwater quality.Groundwater[J], 1991, 29(4): 482-486.
    [8]王罗春,赵由才,陆雍森.大型垃圾填埋场垃圾稳定化研究[J].环境污染治理技术与设备, 2001, 2(4.): 15-17.
    [9] Cecilia Oman & Per Ake Hymning. Identification of Organic Compounds in Municipal landfill leachates[J]. Enviromental Pollution, 1993, 80: 265-271.
    [10]郑曼英.垃圾渗滤液中有机污染物初探[J].重庆环境科学, 1996, 18 (4): 15-16.
    [11]张懿.城市垃圾填埋场渗滤液的处理技术综述[J].重庆环境科学, 2000, 22 (5): 63-65.
    [12]张兰英,韩静磊,安胜姬,等.垃圾渗沥液中有机污染物的污染及去除[J].中国环境科学, 1998, 18(2): 184-188.
    [13] Masood G. Characteristic of leachate from hazardous waste landfill,[J]. J Environ. Sci. Health. 1984, 19(5):579~620.
    [14]沈耀良,王宝贞.垃圾填埋场渗滤液的水质特征及其变化规律分析[J].污染防治技术, 1999, 12(1): 10-14.
    [15]周北海,王琪,董路.垃圾填埋场构造对渗滤液成分的影响研究[J].环境科学研究, 2000,13(3): 6-8.
    [16]沈耀良,赵丹.厌氧-好氧法处理渗滤液与城市污水混合废水的可行性[J].污染防治技术, 2000, 13(2): 63-65.
    [17]李庭刚,李秀芬,陈坚.渗滤液中有机化合物在电化学氧化和厌氧生物组合系统中的降解[J].环境科学, 2004, 25(5): 172-176.
    [18]刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备, 2003, 4(8): 31-33.
    [19]赵宗升,刘鸿亮,李炳伟,等.垃圾填埋场渗滤液污染的控制技术[J].中国给水排水, 2000,16(6): 20-23.
    [20]陈卫国,徐涛,彭玉凡等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液[J].中国环境科学, 2002, 79: 1043-1049.
    [21]赵由才,龙燕,张华.生活垃圾卫生填埋技术[M].北京:化学工业出版社, 2004.
    [22]刘疆鹰,赵由才,赵爱华,黄仁华.大型垃圾填埋场渗滤液COD的衰减规律[J].同济大学学报, 2000, 28(3): 328-332.
    [23]蒋海涛,周恭明,高延耀.城市垃圾填埋场渗滤液水质特征[J].环境保护科学, 2000, 28(111): 11-13.
    [24]唐家福,李国建.城市垃圾填埋场渗滤液处理工艺比较[J],环境卫生工程, 1992, 2, 15–19.
    [25] Nevenka Mikac, Bo?ena, Cosovic, et al, Assessment of groundwater contamination in the vicinity of a municipal solid waste landfill (zagreb.croatia) [J], Wat.Sci.Tech., 1998, 37(8), 37-44.
    [26]王宗平,陶涛,金儒霖.垃圾渗滤液处理研究进展[J],环境科学进展, 1999, 7(3), 32-39.
    [27] Susan C. Harper, Ramanathan Manoharan, Donald S. Mavinic, et al, Chromium and nickel toxicity during the biotreatment of high ammonia landfill leachate[J], Water Environ.Res., 1996, 68(19), 19-24.
    [28]齐文启,李国刚齐斐等,国外固体浸出液毒性试验研究现状[J],上海环境科学, 1995, 114(10): 1-4.
    [29]郑曼英李丽桃刑益和.垃圾浸出液对填埋场周围水环境污染的研究[J],重庆环境科学, 1998, 20(3), 17-20.
    [30]夏立江,温小兵.垃圾渗滤液对土壤铁锰有效性及地下水质的影响[J],土壤与环境, 2000, 11(1), 6-9.
    [31]赵万有,艾桂琴.垃圾填埋场对地下水污染的研究[J],环境科学, 1997, 14(5), 32–33.
    [32] Christensen.T.H, etal., Landfilling of Waste: Leachate[J], Elsevier Applied Science, 1992.
    [33]张晌,李淑敏,包一兵,周世伟,水中腐殖酸分析及其卫生意义[J],卫生研究, 1995, 24 (5): 275-277.
    [34]张祥丹,王家民.城市垃圾渗滤液处理工艺介绍[J],给水排水, 2000, 26(10): 9-14.
    [35]高庭耀主编.水污染控制工程,高等教育出版社, 1993.
    [36] Ahn W, Kang M, Yim S, et al. Advanced landfill leachate treatment using an integrated membrane process[J]. Desalination , 2002 , 149 : 109 - 114.
    [37] Trebouet D, Schlumpf J P, Jaouen P, et al . Stabilized landfill leachate treatment by combined physicochemical2nanofiltration processes [J] .Water Res , 2001 , 35(2) : 2935 - 2942.
    [38]郭志亮.兰州市城市垃圾渗滤液的处理方法研究[J],兰州大学硕士学位论文, 2007.
    [39]黄健平,鲍姜伶.垃圾渗滤液处理技术[J].环境科学与管理, 2008, 33(1): 93-95.
    [40]李平,韦朝海,吴超飞,等.厌氧/好氧生物流化床耦合处理垃圾渗滤液的新工艺研究[J].高校化学工程学报, 2002, 16 (3) : 345 - 350.
    [41]沈耀良,王宝贞,杨铨大,等.厌氧折流板反应器处理垃圾渗滤混合废水[J].中国给水排水, 1999, 15 ( 5) : 10 -13.
    [42]卢平,曾丽璇,张秋云,等.高浓度氨氮垃圾渗滤液处理方法研究[J].中国给水排水, 2003, 19(5): 44 - 45.
    [43]蒋建国.沸石吸附法去除垃圾渗滤液中氨氮的研究[J].给水排水, 2003, 29(3): 7-9.
    [44]于瑞莲,陈嫣,邓舟,等.用天然膨润土预处理垃圾渗滤液的试验研究[J].福建化工, 2002, (3): 7 - 9.
    [45]傅平青,万鹰昕,林剑,等.混凝-臭氧氧化预处理垃圾渗滤液的试验研究[J].环境科学与技术, 2002, 25(6): 26-30.
    [46]张富韬,方少明,松全元.钙基膨润土的组合改性及对垃圾渗滤液的处理[J].非金属矿, 2004, 27(5):39-41.
    [47]赵冰清,陈胜,孙德智,等. Fenton工艺深度处理垃圾渗滤液中难降解有机物[J].哈尔滨工业大学学报, 2007, 39(8): 1285-1288.
    [48]王喜全,刘学文. Fenton法处理中年垃圾渗滤液双氧水利用率及处理效率[J].环境工程, 2007, 25(2): 92-93.
    [49]邹长伟,黄虹,万金保.光催化氧化处理垃圾渗滤液的研究[J].贵州环保科技, 2003, 9(4): 44-46.
    [50]赵珊,王静,池勇志,等.光催化氧化法处理垃圾渗滤液特性研究[J].天津城市建设学院学报, 2006, 12(1): 43-46.
    [51]柯水洲,欧阳衡.城市垃圾填埋场渗滤液处理工艺及其研究进展[J].给水排水, 2004, 30(11): 26-32.
    [52]李小明,王敏,矫志奎,等.电解氧化处理垃圾渗滤液研究[J].中国给水排水, 2001, 17(8): 14-17.
    [53]王敏,阳小敏.垃圾渗滤液深度处理技术及其分析[J].江苏环境科技, 2002, 15(2): 32-34.
    [54]李海生,刘亮,李鱼,等.温度对WAO /CWAO处理垃圾渗滤液的影响[J].环境科学, 2004, 25(4): 134-138.
    [55] BAUERR, WALDNERG. The photo-Fenton reaction and theTiO2/UVprocess for waster water treatment-novel developments[J].CatalysisToday,1999, 53: 131-144.
    [56] QIAO Shijun, ZHAO Aiping, XU Xiaolian, et al. Study on ammonia nitrogen in wastewater degradation by TiO2 photocatalysis[J].Research of Environmental Sciences, 2005, 18(3):43-45.
    [57]温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术发展[J]. 1994, 15(5): 88-91.
    [58] Zimmermann FJ.New waste disposal process[J].Chemical Engineering,1958,25(8):117-120.
    [59] Luck F.Wet air oxidation:past,present and future[J].Catalysis Today,1999,53(1):81-91.
    [60]熊飞,陈玲,王华等.湿式氧化技术及其应用比较.环境污染治理技术与设备[J], 2003, 4(5): 66-69.
    [61] Gomes HT, Figueiredo JL,Faria JL.Catalytic wet air oxidation of low molecular weight carboxylic acids using a carbon supported platinum catalyst[J]. Applied Catalysis B: Environmental, 2000, 27(4): L217-L223.
    [62] Gomes HT, Figueiredo JL.Faria JL. Catalytic wet air oxidation of butyric acid solutions using carbon-supported iridium Catalysis[J] .Catalysis Today,2002,75(1-4):23-28.
    [63] Deiber G, Foussard JN, Debellefontaine H. Removal of nitrogenous compounds by catalytic wet air oxidation .Kinetic study.Environmental Pollution,1997,96(3):311-319.
    [64]杜鸿章,房廉清,江义等.难降解高浓度有机废水催化湿式氧化净化技术I .高活性、高稳定性的湿式氧化剂的研制[J].水处理技术, 1997, 23(2):83-87.
    [65]杜鸿章,房廉清,江义等.难降解高浓度有机废水催化湿式氧化净化技术II .反应工艺的研究[J].水处理技术, 1997, 23(3): 160-164.
    [66] Imamura S et al..Ind.Eng[J].Chem.Res..1988, 27(4):718.
    [67]胡克源等.国产催化剂用于湿式催化氧化水中有机物的可能性[J].环境科学.1981, 2(5): 9.
    [68]江义等.工业废水催化湿式氧化处理的研究[[J].环境科学.1990, 11(5): 34.
    [69]李田.光化学氧化的类型与研究进展[J] .环境污染与防治.1993, 15(1): 32.
    [70]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社, 2001.
    [71] M.Y.Tse, M.C.Depew and J.K.S.Wan, Res.Interm[D]., 1990, 13, 221.
    [72] Pollington S D, Bond G, Moyes R B, et al.The influence of microwaves on the rate of reaction of propan-l-ol with ethanoic acid[J].Org.Chem., 1991, 56: 1313.
    [73] G.Bond, R.S.Moyes and M.C.Depew, Res.Chem.interm., 1991, 16, 241.
    [74] C.Chen, P.Hong and S.Dai[J], Catal.Lett., 1997, 16, 175: 1997, 16, 181.
    [75] Shibata C, Kashima T.Obuchi K. Nonthermal influence of microwave power on chemical reactions .Jpn. [J].Appll.Phys., 1996, 35: 316-319.
    [76] Dayal B, Rapole K R, Salen G, et al.Microwave-induced rapid synthesis of bile acid conjugates[J]. Synlett, 1995: 861.
    [77]王真.吉林大学博士论文[D], 1994.
    [78]国伟林,高丽,姬广磊,等.甲基紫染料废水的微波诱导催化降解[J].济南大学学报(自然科学版), 2006, 20(3): 213-215.
    [79]张耀斌,全燮,薛大明,等.流动态微波催化反应器处理染料废水的工艺稳定性[J].中国环境科学, 2002,22(3): 235-238.
    [80]张徵晟,李光明,夏凤毅,等.高级氧化技术处理垃圾渗滤液的研究进展[J].四川环境, 2005, 24(5): 72-78.
    [81]王金成,薛大明,全燮,等.活性艳蓝KN-R染料溶液微波催化脱色研究[J].大连理工大学学报, 2001, 41(5): 545-548.
    [82] Banat F., Al-Asheh S., Al-Anbar S., et al. Microwave- and acid-treated bentonite as adsorbents of methylene blue from a simulated dye wastewater[J]. Bulletin of Engineering Geology and the Environment, 2007, 66(1): 53-58.
    [83] Liu Zuo-Hua, Tao Chang-Yuan, Liu Ren-Long, et al. Study on treatment of landfill leachate aided by microwave fenton process[J]. Piezoelectrics and Acoustooptics, 2007, 29(3): 344-349.
    [84]卜龙利,全燮,陈硕,等.微波辅助催化氧化高浓度含醛废水应用研究[J].大连理工大学学报, 2006, 46(1): 25-29.
    [85] Chih G, et al. Application of actived Carbon in a microwave radiation field to treat trichloroethylene [J]. Carbon,1998, 36 (11) : 1643-1648.
    [86]谢复青,何星存.钢渣吸附—微波降解法处理碱性品红废水[J].化工环保, 2006, 26(2): 129-132.
    [87]谢复青,何星存,黄智,等.钢渣/焦炭吸附—微波降解法处理阳离子染料废水[J].环境污染与防治, 2006, 28(7): 496-498.
    [88]田园,陈广春,陈帅.微波辐照处理高浓度邻苯二甲酸二辛酯生产废水[J].化工环保, 2007, 27(5): 449-451.
    [89]田园,陈广春,蒋成龙.活性炭-微波辐照处理丁腈胶乳生产废水的研究[J].环境工程学报, 2007, 1(9): 82-85.
    [90] Ai Z, Yang P,Lu X. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method [J]. J Hazard Mater, 2005, 124 (1-3): 147– 152.
    [91] Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrate microwave /UV illumination technique [J]. Journal of Photochemistry and Photobiology, 2004, 161: 221- 225.
    [92] LiuXitao, QuanXie, BoLongli, etal.Simultaneous pentachlorolphenol decomposition and granular activated carbon regeneration assisted by microwave irradiation[J].Carbon, 2004, (42): 415-422.
    [93]姜思朋,王鹏,张国宇,洪光,马慧俊.微波诱导氧化法处理BF-BR染料废水工艺[J].中国给水排水, 2004, 20(4): 13-15.
    [94] Jou CH, Tai HS. Application of granulated activated carbon packed-bed reactor in microwave radiation field to treat BTX[J]. Chemospher,1998,37(4):685-698.
    [95] Tai HS,Jou CH. Application of granular activated carbon packed-bed reactor in microwave radiation[J] field to treat phenol Chemosphere 1999,38(11):2667-2680.
    [96] G.Chih et al.Application of Actived carbona in Microwave Radiation Field to Treat Trichlore thylene [J].carbone 1998, 36(11) : 1643-1648.
    [97]邹宗柏,付大放,张璐.用微波辐照消除磺基水杨酸污染物[J].环境污染与防治, 1999, 21(1): 22-24.
    [98]夏立新,李坤兰,庞军,等.微波辐射技术在聚乙烯醇降解反应中的应用[J].环境化学, 2000, 19(6): 556-560.
    [99]王金成,薛大明,熊力,等.用微波照射处理活性艳蓝KN-R染料溶液的研究[J].环境科学学报, 2001, 21(5): 628-630.
    [100]张耀斌,全燮,薛大明,扬风林等.流动态微波催化反应器处理染料废水的工艺稳定性[J].中国环境科学, 2002, 22(3): 235-238.
    [101] Sanz J, Lombrana J I·DeLuis A M, et al.Microwave and Fenton's reagent oxidation of wastewater [J].Enironmental Chemistry Letters, 2003(3): 45-50.
    [102]陈孟林,农珍妮,何星存,等.微波-活性炭催化法处理亮绿溶液的研究[J].科技进展, 2003, 17(10): 31-34.
    [103]严莲荷,王剑虹,潘爱芹,周申范,陈守文,等.微波催化氧化法处理甲基橙废水[J].化工环保, 2004, 24(1): 38-40.
    [104]唐明明,梁敏,刘奎,等.用微波辐照消除甲基橙污染物[J].化工技术与开发, 2004, 33(5): 45-46.
    [105]张国宇,王鹏,姜思朋,等.微波辐照处理酯化废水的工艺技术研究[J].给水排水, 2004, 30(8): 61-64.
    [106]孙保平,王国喜,邓宇.酸性黄染料废水微波辐照处理方法的研究[J].河南大学学报, 2005, 35(3): 40-43.
    [107]孙保平,冯建敏,邓宇,等.微波辐照处理生活废水方法研究[J].安阳工学院学报, 2005 3(15): 1-2.
    [108]姚培正,邓宇,冯建敏,等.微波辐照酸性大红染料废水处理方法的研究[J].化学工程师, 2005, 120(9): 1-3.
    [109] Liu XT, Quan X , Bo LL et al. Simulaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon,2004,42(2):415-422.
    [110]王剑红,微波催化氧化处理有机废水的研究[M].硕士论文, 2002.
    [111] LiuYe, LuYong, Liu Pu, etal.Effects of microwaves in selective oxidation of toluene to benzoic acid over a V2O5/TiO2system[J]. Applied CatalysisA: General, 1998, (170): 207-214.
    [112] Hajek M, Radoin MT.Microwave activation of catalytic transformation of t-butylphenols.Journal of Molecular Catalysis A[J]:Chemical,2000,160(2):383-392.
    [113] Raquel Salvador, BlancaCasal, MalcolmYates, etal.Microwave decomposition of achlorinated pesticide(Lindane) supported on modified sepiolites[J]. Applied Clay Science, 2002, 22(3): 103-113.
    [114] Abramovitch RA,Capracotta M. Remediation of waters contaminated with pentachlorophenol. Chemosphere[J], 2003, 50(7): 955-957.
    [115]古昌红,傅敏,余纯丽等.在微波辐射下用处理吲哚溶液的试验研究[J]重庆环境科学2003, 25(3).
    [116]杨良玉,曾庆福,杨俊等.微波再生铁屑-活性炭处理染料废水[J].武汉科技学院学报, 2003, 16(5): 37-41.
    [117] Sivalingam G, Agarwal N,Madras G. Kinetics of microwave-assisted oxidative degradation of polystyrene in solution[J].AICHE Journal,2003,49(7):1821-1826.
    [118]姜思朋,张国宇,王鹏等.微波诱导氧化处理BF-BR染料废水[J].中国给水排水, 2004, 20(4): 13-15.
    [119]洪光,王鹏,张国宇等.改性氧化铝微波诱导氧化处理处理雅格素蓝BF-BR染料废水的研究[J].环境科学学报, 2005, 25(2): 254-258.
    [120]陈孟林,邹异红,李爱雯等.微波-活性炭催化处理结晶紫溶液的研究[J].广西师范大学学报(自然科学版), 2004, 22(3): 77-80.
    [121] Satoshi Horikoshi, HisaoHidaka, Nike Serpone.Environmental Remediation by an Integrated Microwave/UV-Illumination Method .I. Microwave Assisted Degradation of Rhodamine- BDye in Aqueous TiO2 Dispersions[J] .Environmental Science and Technology, 2002, 36(6): 1357-1366.
    [122]艾智慧,姜军清,杨鹏,等.微波辅助光催化降解4-氯酚的研究[J].工业水处理, 2004, 24(11): 41-44.
    [123] Horikoshi S, Hidaka H, Serpone N.Hydroxyl radicals in microwave photocatalysis.Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in aqueous TiO2 dispersions[J].Chemical Physics Letters,2003,376(3-4):475-480.
    [124] Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV- illumination method.Ⅰ. Microwave-assisted degradation of rhodamine-Bdye in aqueous TiO2 [J].Chemistr, 2001, 15(13): 169-173.
    [125] Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV- illumination method.Ⅱ. Characteristics of a novel UV-VIS-microwave integrated irradiation device in photodegradation processes.Journal of Photochemistry and Photobiology A[J]: Chemistr, 2002, 153(13): 185-189.
    [126] Horikoshi S,Hidaka H.Environmental remediation by an intergrated microwave/UV illumination technique.3. A microwave-powered plasma light source and photoreactor to degrade pollutants in aqueous dispersions of TiO2 illuminated by the emitted UV/visible radiation[J]. Environmental Science & Technology, 2002, 36(23): 5229-5237.
    [127] Horikoshi S,Hidaka H,Serpone N.Environmental remediation by an integrated microwave/UV- illumination technique:Ⅳ.Non-thermal effects in the microwave-assisted degradation of 2,4- dichlorphenoxyacetic acid in UV-irradiation TiO2/H2Odispersions[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2003, 159(3):289-300.
    [128] Horikoshi S,Saitou A, Hidaka H et al. Environmental remediation by an intergrated microwave/UV illumination method.V. Thermal and nonthermal effects of microwave radiation on the photocatalyst and on the photodegradation of rhodamine-B under UV/Vis radiation[J]. Environmental Science&Technology, 2003, 37(24): 5813-5822.
    [129] Horikoshi S, Hidaka H, Serpone N.Environmental remediation by an intergrated microwave/UV illumination technique:Ⅵ.A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004,161(23): 221-225.
    [130] Horikoshi S, Tokunaga A,Hidaka H et al. Environmental remediation by an intergrated microwave/UV illumination technique:Ⅶ. Thermal/non-thermal effects in the microwave- assisted photocatalyzed mineralization of bishenol-A[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004, 162(1): 33-40.
    [131] Horikoshi S, Hojo F, Hidaka H et al. Environmental remediation by an intergrated microwave/UV illumination technique:8.Fate of carboxylic acids, aldehydes,alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2 particles under UV irradiation[J].Environmengtal Science&Technology, 2004,38(7):2198-2208.
    [132]赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯[J].微波学报, 2003, 19(1): 85-90.
    [132]孙来九.微波加热技术与化学反应[J].现代工业, 1994,(9): 44-45.
    [133] Han DH,Cha SY,Yang HY.Improvemengt of oxidative decomposition of aqueous phenol by microwave irradiation in UV/H2O2 process and kinetic study[J].Water Research,2004,38(11): 2782-2790.
    [134] Mei JG,Yu SM.Cheng J.Heterogeneous catalytic wet peroxide oxidation of phenol over delaminated Fe-Ti-PILC employing microwave irradiation[J].Catalysis Communications, 2004, 5(8): 437-440.
    [135]刘军,鲍林发,汪苹.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4(8):31-33.
    [136]刘亮,李鱼,刘光辉,等.氧化剂对CWAO降解垃圾渗滤液中有机物的影响[J].吉林大学学报(理学版), 2005,43(4):541-545.
    [137]王健.催化湿式氧化降解垃圾渗滤液模拟废水的研究.中国优秀博士学位论文全文数据库, 2008.
    [138]王鹏.环境微波化学技术.北京-化学工业出版社环境科学与工程出版中心[M]. 2003, 44-45.
    [139]王伟,王建兵,祝万鹏,等. Ru/ZrO2-CeO2催化剂催化湿式氧化乙酸和苯酚的研究[J].分子催化, 2007, 21(5):401-405.
    [140] Barbier J Jr, Delano F, Jabouille F,et al. J. Catal.[J]. 1998,177: 378-385.
    [141]安志强.二氧化钛载体制备及性能研究.中国优秀硕士学位论文全文数据库, 2005. [142赵旭,罗来涛,刘成文,等.介孔CeO2的制备及其性能[J].南昌大学学报(理科版), 2007, 31(2): 139-142.
    [143]关业军,李灿.氧化铈的氧化还原性能对VOx/CeO2催化剂催化氯苯氧化性能的影响[J].催化学报, 2007,28(5):392-394.
    [144]海锋,李彦锋,白风荣,等. Au/CeO2催化剂的制备及其对CO催化氧化性能的研究[J].分子催化,2007,21(4):329-332.
    [145]吴洪达,贺德华. CuO-La2O3/ZrO2催化剂催化乙醇水蒸气重整制氢[J].石油化工, 2006, 35(12): 1134-1139.
    [146] Wang Hui, He Dehua, Dong Guoli. Steam reforming of ethanol over Cu/ZrO2 Catalysts’effects of the preparation parameters of the catalysts[J]. FuelChem Technol, 2005, 33(3): 344-350.
    [147]黎铉海,魏坤,梁信源.化学液相共沉淀法制备ITO纳米粉体的工艺研究[J].金属矿山, 2008, 115(09): 231-234.
    [148]黎铉海,魏坤,梁信源.化学液相共沉淀法制备ITO纳米粉体的新工艺研究[J].化工技术与开发, 2008, 116(10): 354-357
    [149]张久兴,张艳峰.液相共沉淀法纳米ITO粉体[J].稀有金属材料与工程, 2006, (03)
    [150]田久英,卢菊生,沐来龙等.共沉淀法制备Ce2-ZrO2纳米固溶体的研究[J]..精细化工中间体, 2006, (03); 257-260.
    [151]成建设,习小明,李远娥等.共沉淀法合成Li(1-2x)Ni(x)FePo4正极材料的研究[J].矿业工程, 2008, (04): 137-142.
    [152]杨贵进,李玲.CoFe2O4纳米颗粒的共沉淀法制备及其磁性能[J].电子元件与材料.2008,35(11); 659-662.
    [153]徐丽,王海波,王涛. CoFe2O4纳米微粒的共沉淀法制备和磁性质[J].无机化学学报, 2005, 21(5): 741-743
    [154]卢含锋,袁泉东,黄海风等.共沉淀法制备多孔TiO2-SiO2复合氧化物的结构特点[J].材料科学与工程学报.2008, 26(5): 713-715.
    [155] Chen Shou-gang, Yin Yang-Sheng, Wang Dao-ping. Experimental and theoretical investigation on the correlation between aquaous precursors structure and crystalling phase of Zirconia [J]. Joural pf Molecular structure , 2004,(190):181-187
    [156]田胜元萧曰嵘.试验设计与数据处理[M].中国建筑工业出版社. 2000(12): 146.
    [157]韩文峰,霍超,刘化章.钌基氨合成催化剂的TPD/R研究[J].高校化学工程学报, 2002,16(5): 565-569.
    [158]刘红梅,申文杰,刘秀梅,等.分子筛的酸处理对Mo/ HZSM25催化甲烷无氧芳构化反应性能的影响[J].催化学报,2004,25(9):688-692.
    [159]丁军委,江秀华.载体预处理对Pd /C催化剂催化性能的影响[J].工业催化,2007,15(7): 62-65.
    [160]王建梅,王榕,林建新,等.载体的酸处理条件对整体式钌—堇青石催化剂性能的影响[J].福州大学学报(自然科学版),2006,34(6):898-902.
    [161]贺启环,方华,高蓉菁,等.二氧化氯催化氧化用催化剂的制备与应用[J].复旦学报(自然科学版),2003,42(3):324-328.
    [162]刘海涛,杨郦,张树军等.无机材料合成[M].化学工业出版社2003年: 143
    [163] R.J.Gummow, M.M. Thackeray. AnInvestigation of Spinel-related and Orthorhombic Li MnOCathodes for RechargeableLithiumBatteries[J].Electrochem.Soc.,1994,141:1178-1182.
    [164] I.J.Davidson, R.S.Mcmillan, J.J.Murray,J.E.Greedan. Lithium-ion Cellbasedon Orthorhombic Li MnO2 [J].PowerSources,1995,54:232-235.
    [165]J.N.Reimers,E.W.Fuller,E.Rossen,J.R.Dohn.SynthesisandElectrochemicalStudiesofLiMnO2PreparedatLowTemperatures[J].Electrochem.Soc.,1993,140:3396-3401.
    [166]Y.S.Lee,Y.K.Sun,K.Adachi,M.Yoshio.SynthesisandElectrochemicalCharacteriazationofOrthorhombicLiMnO Material[J].ElectrochimicaActa,2003,48:1031-1039.
    [167]郑育英,黄惠民,周立清等.固相法制备Y-ZrO2粉体及其晶粒生长动力学.有色金属[J]. 2008, 60(3): 22-25.
    [168]范广新,刘宝忠,曾跃舞等.固相法制备正交LiMnO2的结果与电化学性能[J].佳木斯大学学报(自然科学版).2008, 26(5): 585-590.
    [169] Zolten N G.Leachate treatment in landfill[J]. Water Environment &Technoligy, 1991, 13(5): 63-66.
    [170]刘亚丽.SIPR-SBBR垃圾渗滤液处理工艺研究[D].博士论文,重庆大学.
    [171]楼紫阳,欧远洋等.老巷填埋场新鲜渗滤液性质研究[J].环境污染与防治, 2004, 26(1): 9.
    [172]何增耀.环境监测[M].中国农业出版社,北京, 1994: 41.
    [173]何纯,徐科峰,奚红霞等.均相和非均相Feton型催化氧化含酚废水[J].华南理工大学学报(自然版), 2003, 31(5): 51-55.
    [174]张亚平,韦朝海,吴超飞,钱湛.光Fenton反应的Ce-Fe/Al2O3催化剂制备及性能表征[J].中国环境科学,2006,26(3):320-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700