用户名: 密码: 验证码:
三峡水库营养盐分布特征与滞留效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,流域内各种人类活动强烈地冲击着河流原有的生物地球化学过程,其中尤以水利工程的影响最为人们关注。长江三峡水利工程是当今世界最大的水利枢纽工程,其产生的“水库效应”不仅影响了三峡水库的物质循环,还可能对长江中下游、河口乃至近海生态系统产生深远的影响。本文以三峡水库为研究对象,系统研究了蓄水后三峡水库典型水域营养盐的分布特征、三峡水库干、支流水体混合过程等,并在此基础上,分析了蓄水前后三峡水库营养盐收支与滞留效率。主要结论如下:
     (1)135m蓄水后,三峡水库坝前水域营养盐浓度的季节变化明显,硝酸盐、亚硝酸盐、氨氮、磷酸盐浓度在平水期高、丰水期低;而溶解硅浓度在丰水期高、平水期低。坝前水域水化学参数分布均一,没有分层现象,控制其分布的主要机制为水动力学因素。
     (2)135m蓄水后,对悬浮颗粒物中磷的赋存形态分析表明,经过三峡水库后,水体悬浮颗粒物中磷的赋存形态及其含量发生了一定的变化,表现为弱吸附态磷、有机磷以及铁结合态磷等生物可利用的磷含量升高,而碎屑磷灰石磷以及非活性有机磷含量降低。悬浮颗粒物中磷的赋存形态组成的变化将改变颗粒态营养盐的输送规律。水库“淤粗排细”作用对悬浮颗粒物粒径产生显著影响,这可能是控制其变化的主要因素。
     (3)156m蓄水后,三峡水库营养盐垂向差异较小,没有分层现象;沿水流方向,溶解硅、颗粒态氮、颗粒态磷浓度有明显的降低趋势。平水期,硝酸盐是总氮主要组成部分,其次是溶解有机氮,颗粒氮所占份额较小;磷则以磷酸盐为主要组成部分,其次为溶解有机磷,颗粒态磷对总磷的贡献量不大。
     (4)三峡水库入库水体中亚硝酸盐、氨氮、溶解有机氮、磷酸盐浓度普遍高于出库水体,而硝酸盐、溶解有机磷浓度普遍低于出库水体;入库、出库硅酸盐浓度差异不大,且存在明显的季节变化规律。在2007年,输入到水库中的氮、磷及溶解硅总量分别为8.14×105t、1.34×104t和1.24×105t;自水库向下游输送的氮、磷及溶解硅总量分别为6.83×105t、1.01×104t和1.25×105t。受流量控制,入库、出库营养盐通量的60%左右是在丰水期输送的,通量季节变化明显。
     (5)对三峡水库进行了营养盐收支及滞留效应研究。结果表明,135m蓄水前总氮、总磷入库负荷与出库负荷相当;135m蓄水后,约18%的总氮、15%的总磷和10%溶解硅滞留于水库中,分别占长江入海总量的6%、4%、5%左右。156m蓄水后,三峡水库对亚硝酸盐、氨氮、溶解有机氮、溶解总氮、磷酸盐存在滞留现象,其表观滞留量分别为3.2×103t、6.39×103t、0.63×105t、0.21×105t、0.5×103t,对应滞留效率分别为62%、43%、31%、3%、30%。考虑水库内支流输入、点源排放等的贡献,对156m蓄水后滞留效率进行校正后,三峡水库对亚硝酸盐、氨氮、溶解有机氮、颗粒氮、总氮、磷酸盐和总磷实际滞留效率分别为67%、50%、37%、71%、16%、36%和7%。由于三峡水库的滞留效应导致的长江磷酸盐、溶解硅、总氮、总磷入海通量减少18%、2%、8%和4%。除磷酸盐外,三峡水库对长江入海营养盐通量影响有限。
     (6)对库区典型支流库湾的研究表明,常量离子在干、支流的混合过程中表现为保守,可以有效地指示库湾混合过程。干流水体的逆向“顶托”是控制支流库湾水体理化性质的主要物理机制。在库湾(香溪河库湾和大宁河库湾)混合过程中,生源要素表现出不保守的特征,其中硅酸盐、硝酸盐、磷酸盐表现为移出,而亚硝酸盐、氨氮表现为加入。支流库湾出现明显的富营养化现象。
The Three Gorges Project (TGP) on the Yangtze River, the largest hydropower- complex project ever built in the world, completed its Phase-II construction and Phase-I water storage in 2003, finally elevating the pool level to about 135 m above mean sea level at the dam. The potential eco-environmental problems induced by the TGP are widely concerned in the world. Material transport research in particular is one of the most important concerns about the TGP. Reservoir effect will affect the biogeochemical processes of the Changjiang River. It is necessary and urgent to examine the reservoir effects of the TGR water storage on the Yangtze River material transport, which has important practical and theoretical significance.
     The main results in the thesis were drawn as follows:
     After the first stage of the TGR impoundment (135m), parameters of nutrient and water quality showed a uniform distribution, indicating that dynamics was the major fator to control nutrient and other parameters. However, sediment retention in the TGR had great influence on different phosphorus forms. Concentration of exchangeable P, iron-bound P, and organic P increased greatly in particles after across the TGR, while Detrital P decreased largely in particles. The retention effect of the large particles in TGR was the key factor controlling different phosphorus forms.
     In the TGR, nitrate was the main component of DIN, and DIN was the major parts of total nitrogen, while the contribution of DON and particle N is only of minor importance. Additional, phosphate was the major part of total phosphrous in the common period.
     During June to September in 2007, more than 60% fluxes of nutrient were transferred to downstream at Guizhou and Fuling station.
     Collected the history dates of nutrients in the past ten years in the Changjiang River of the Three-Gorge areas from the pubic documents and combined our studies in this region, a preliminary nutrient budget for the TGR was proposed to be used as first attempt to quantify the behavior of nutrients entering this reservoir after the second impoundment. As control, a budget was analyzed before the impoundment of the TGR. The nutrient budget showed that the Three-Gorge Reservoir was a net sink of total nitrogen and phosphorus after impoundment. The dam was responsible for removing around 18% of nitrogen and 15% of phosphorus entering the reservoir, which would be have significant downstream ecological and social implications. The deposition of particle nutrients and absorbed by phytoplankton would be responsible for this case of reducing nutrient as a result of a new dam.
     After the third filling of the TGR, more than 36% for phosphate, 4% for silica, 16% for total nitrogen and 7% for total phosphrous were retented by TGR, which would reduce nutrient fluxes of the Changjiang River to the East Sea (18% for phosphate, 2% for silica, 8% for total nitrogen and 4% for total phosphrous). So the TGR influenced phosphate thansport great than other nutrients.
     Inorganic ions and nutrients were measured in different layers of the Xiangxi and Daning Rivers to explore the mixing processes of representative bays in the TGR. Bicarbonate and calcium are the dominant ions. Carbonate weathering is the most important mechanism controlling the water chemistry. However, important differences exist between the main channel and its tributaries. Major ion levels in the TGR bays depend on hydrological mixing. Results show that the major ions of calcium, magnesium, sodium, potassium, strontium, sulfate, and chloride demonstrate chemically conservative behaviors during transit throughout the bays of the TGR. This means the ions can be used as tracers in the same way that salinity is used in estuaries to explore other non-conservative elements and to indicate specific source waters. These tracers could then be used to analyze nutrients in the mixing zone, where they are not conserved The reverse effect of the main channel on tributaries’backwater reach was the key factor controlling nutrient distribution in the Xiangxi and Daninghe Bays, with biological utilization acting as a secondary factor.
引文
[1]Admiraal W, Breugem P, D M L H A Jacobs, et al. Fixation of dissolved silicate and sedimentation of biogenic silica in the lower Rhine during diatom blooms [J]. Biogeochemistry, 1990, 9: 175-185.
    [2]Admiral W, D M L H A Jacobs, P Breugem, et al. Effects of phytoplankton on the elemental composition (C, N, P) of suspended particulate material in the lower river Rhine [J]. Hydrobiologia, 1992, 235/236: 479-489.
    [3]Alexandre A, J-D Meunier, F Colin, and J-M Koud. Plant impact on the biogeochemical cycle of silicon and related weathering processes [J]. Geochim. Cosmochim. Acta, 1997, 61: 677-682.
    [4]Bartoli F. The biogeochemical cycle of silicon in two temperate forest ecosystems [J]. Ecol. Bull., 1983, 35: 469-476.
    [5]Behrendt H, Opitz D. Retention of nutrients in river systems: dependence on specific runoff and hydraulic load [J]. Hydrobiologia, 1999, 410: 111-122.
    [6]Bencala K E, Kimball B A, McKnight D M. Use of variation in solute concentration to identify interactions of the substream zone with instream transport. In U.S. Geological Survey Toxcis Substances Hydrology Program Proceedings of the technical meeting, Mallard G E and Aronson D A. U.S. Geological Survey Water-Resources Investigations Report, 1991, 91-4034: 377-379.
    [7]Benitez-Nelson C R. The biogeochemical cycling of phosphorus in marine systems [J]. Earth Sicence Review, 2000, 51: 109-135.
    [8]Bennekom V A J, Salomons W. Pathways of nutrients and organic matter from land to ocean through rivers [A]. In: Martine J M, Burton J D, Eisma D, eds. River Inputs to Ocean Systems[C]. Rome: UNEP/UNESCO, 1981: 33-51.
    [9]Bennet E M, Carpenter S R and Caraco N F. Human impact on erodable phosphorus and eutrophication: a global perspective [J]. BioScience, 2001, 51, 227-234.
    [10]Berner R A. The rise of plants and their effect on weathering and atmospheric CO2 [J]. Science, 1997, 276: 544-546.
    [11]Bert Bolin and Robert B. Cook, eds. The major biogeochemical cycles and their interactions [R]. SCOPE Rep 21. New York: John Wiley, 1983
    [12]Beusen A H W, Dekkers A L M, Bouwman A F, et al. Estimation of global river transport of sediments and associated particulate C, N, and P [J].Global Biogeochem. Cycles, 2005, 19, GB4S05, doi:10.1029/2005GB002453.
    [13]Bien G S, Contois D E, Thomas W H, et al. The removal of soluble silica from water entering the sea [J]. Geochemica et Cosmochimica Acta, 1958, 14:35-54.
    [14]Billen G, Garnier J. Nitrogen transfer through the Seine drainage network: a budget based on the application of the RIVERSTRAHLER model [J]. Hydrobiologia 1999, 410:139-150.
    [15]Billen G, Lancelot C, Maybeck M. N, P and Si retention along the aquatic continuum from land to ocean.In: Mantoura R F C, Martin J M and Wollast R eds. Ocean Margin Processes in Global Change [M]. Wiley & Sons, Chichester, 1991: 19-44.
    [16]Blair N E, Leithold E, FORD S T, et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system [J]. Geochimica et Cosmochimica Acta, 2003, 67: 63-73.
    [17]Bodeanu N. Microbial blooms in the Romanian area of Black Sea and contemporary eutrophication conditiones. In: Toxic Phytoplankton Blooms in the Sea [M]. Smayda, T.J. and Shimizu, Y. (eds.). Elsevier, 1993, 203-209.
    [18]Bouwman A F’Drecht V, KNOOP G, et al. Exploring changes in river nitrogen export to the world's oceans [J]. Global Biogeochemical Cycles, 2005: 19-21, GB1002, doi: 10.1029/ 2004GB002314.
    [19]Brimblecombe P. and D H Stedman, Historical evidence for a dramatic increase in nitrate component of acid rain [J]. Nature, 1982, 298: 460-462.
    [20]Burton J D, and Liss P S. Processes of supply and removal of dissolved silicon in the oceans [J]. Geochemica et Cosmochimica Acta, 1973, 37: 1761-1773.
    [21]Caraco N F, Cole J J. Human impact on nitrate export: An analysis using major world rivers [J]. Ambio, 1999, 28: 167-170.
    [22]Chen J S, Wang F, Xia X, Zhang L. Major element chemistry of the Changjiang (Yangtze River) [J]. Chemical Geology, 2002, 187: 231-255.
    [23]Cole T. M. and H H Hannan. Dissolved oxygen dynamics. Pages 71-107. in Thornton K W,B L Kimmel, and F E Payne, editors. eds. Reservoir Limnology: Ecological Perspectives [M]. Wiley-Interscience. New York, 1990.
    [24]Conley D J, Stalnache P, Pitkanen H, et al. The transport and retention of dissolved silicate by rivers in Sweden and Finland [J]. Limnol. Ocenogr, 2000, 45: 1850-1853.
    [25]Conley D J. Riverine contribution of biogenic silica to the oceanic silica budget.Limnology Oceanography, 1997, 42(4): 774-777
    [26]Conley D J. The biogeochemical silica cycle: Elemental to global scales [J]. Oceanis, 2002b, 28: 353-368
    [27]Conley D J. Terrestrial ecosystems and the global biogeochemical silica cycle [J]. Global Biogeochem. Cycles, 2002a, 16(4), 1121, doi: 10.1029/2002GB001894.
    [28]D’angelo D J, Webster J R, Benfield E F. Mechanisms of stream phosphorus retention: an experimental study [J]. J N Am Benthol Soc, 1991, 10: 225-237.
    [29]Daniel F M, Serghei B, Cristian T, et al. Silica retention in the Iron Gate I Reservoir on the Danube River: The role of side bays as nutrient sinks [J]. River Res Applic, 2006, 22: 441-456.
    [30]Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands [J]. Geology, 1998, 26: 535-538.
    [31]Degens E T, Kempe S, Richey J E, et al. Biogeochemistry of Major World Rivers [M]. SCOPE Rep. 42, John Wily & Sons, New York, 1991.
    [32]Degens E T, Kempe S. Soliman S. Herrera R. Gan W, eds. Transport of Carbon and Minerals in Major World Rivers[M]. Vol. 1-6. Mitt Geo-PalaeoInst Univ Hamburg, SCOPE/UNEP Sponsored, 52. Universitat Hamburg, 1982-1994
    [33]Dillon P J, Rigler F H. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water [J]. J Fish Res Board Can, 1974, 31: 1771-1778.
    [34]Ding T, Wan T, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China [J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
    [35]Duan S W, Xu F, Wang L J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries [J]. Biogeochemistry, 2007, 85: 215-234.
    [36]Duce R A, LaRoche J, Altieri K et al. Impacts of Atmospheric anthrogenic nitrogen on theopen ocean [J]. Sicence, 2008, 320: 893-897.
    [37]Duce R A. The atmospheric input of trace species to the world's ocean [J]. Global Biogeochem. Cycles, 1991, 5, 193-59.
    [38]Dumont E, J A Harrison, C Kroeze, E J Bakker, and S P Seitzinger. Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model [J] Global Biogeochem. Cycles, 2005, 19, GB4S02, doi:10. 1029/2005GB002488.
    [39]Dynesius M, Nilsson C. Fragmentation and Flow Regulation of River Systems in the Northern Third of the World [J]. Science, 1994, 266(4): 753-762.
    [40]Edmond J M, et al. Chemical dynamics of the Changjiang estuary [J]. Continental Shelf Research, 1985, 4(1/2): 17-36.
    [41]Emily H S, MARTIN W D. A geomorphic perspective on nutrient retention following dam removal [J]. Bioscience, 2002, 52(8): 693-701.
    [42]Faure G. 1991. Priniciples and applications of inorganic geochemistry [J]. Prentice-Hall: New York.
    [43]Ford D E. Reservoir transport processes. In: Thornton K. W., Kimmel B. L. & Payne F. E. (eds). Reservoir Limnology: Ecological Perspectives [M]. John Wiley & Sons, New York, 1990: 15-41.
    [44]Friedl G, Teodoru C, Wehrli B. Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? [J]. Biogeochemistry, 2004, 68: 21-32.
    [45]Friedl G, Wuest A. Disrupting Biogeochemical Cycles– Consequences of Damming [J]. Aquatic Sciences, 2002, 64: 55-65.
    [46]Galloway J N, Cowling E B. Nitrogen and the world [J]. Ambio, 2002, 31: 64-71.
    [47]Galloway J N, William H Schlesinger, Hiram Levy H. et al. Nitrogen fixation: anthropogenic enhancement-environmental response [J]. Global Biogeochemistry Cycles, 1995, 9(2): 235-252.
    [48]Garnier J, Leporcq B, Sanchez N, et al. Biogeochemical mass-balance(C, N, P, Si) in three large reservoirs of the Seine Basin (France) [J]. Biogeochemistry, 1999, 47: 119-146.
    [49]Garnier J, Billen G, Hannon E, et al. Modelling the transfer and retention of nutrients in the drainage network of the Danube River. Estuarine [J]. Coastal and Shelf Science, 2002, 54,285-308.
    [50]Gibbs R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170: 1088-1090.
    [51]Goto N, Iwata T, Akatsuka T, et al. Environmental factors which influence the sink of silica in the limnetic system of the large monomictic Lake Biwa and its watershed in Japan [J]. Biogeochemistry, 2007, 84(3): 285-295.
    [52]Grassholf K, Kremling K, Ehrhardt M. Methods of Seawater Analysis [M]. 3rd edn. Weinheim: Wiley-VCH Verlag GmbH, 1999, 159-226.
    [53]Halim Y. The impact of human alterations of the hydrological cycle on ocean margins. in Mantoura R F C, Martin J M, Wollast R, eds. Ocean Margin Processes in Global Change[M]. Chichester (UK): John Wiley & Sons, 1991: 301-327.
    [54]Hedges J I, Clark W A, Quay P D, Richey J E, Devol A, Santos U. Composition and fluxes of particulates organic material in the Amazon River. Limnology and Oceanography, 1986, 31(4): 717-738.
    [55]Heinze C, A Hupe, E Maier-Reimer, N Dittert, and O Ragueneau. Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations [J]. Global Biogeochem. Cycles, 17(3), 1086, doi:10.1029/2002GB001943, 2003
    [56]Heiskanen A S, and Keck A. Distribution and sinking rates of phytoplankton, detritus, and particulate biogenic silica in the Laptev Sea and Lena River (Arctic Siberia) [J]. Marine Chemistry, 1996, 53: 229-245
    [57]Ho K C, Hodgkiss I J. Characteristics of red tieds caused by Alex andrium catenel la (Whedon & Kofoid) balech in Hong Kong [A]. Smayda T J, Shimizu Y. Toxic Phytoplankton Blooms in the Sea [C].Net herlands: Elsevier Science Publishers, 1993. 263-268.
    [58]Howarth R W, Billen G, Swaney D, Townsend A, et al. Regional nitrogen budgets and riverine N andP fluxes for the drainages to the North Atlantic Ocean: natural and human influences [J]. Biogeochemistry, 1996, 35: 75-139.
    [59]Howarth R W, Jensen H, Marino R, and Postma H. Transport to and processing of P in. near-shore and oceanic waters. In: Tiessen H (Ed) Phosphorus in the Global Environment [M]. Wiley & Sons, Chichester, 1995, 323-345.
    [60]Hu M H, Stallard R F, and Edmond J M. Major ion chemistry of some large Chinese rivers [J].Nature, 1982, 298: 550-553.
    [61]Humborg C, Coley D J, Rahm L, et al. Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments[J]. Ambio, 2000, 29(1): 45-50.
    [62]Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biochemistry and ecosystem structure [J]. Nature, 1997, 386: 385-388.
    [63]Humborg C, Smedberg E, M?rth C-M, et al. Dissolved silica dynamics in boreal and arctic rivers: vegetation control over temperature? in: The Silicon Cycle[M], edited by: Ittekkot V, Unger D, Humborg C, eds. Washington DC, Island Press, 2006b, 53-69.
    [64]Humborg C, Pastuszak M, Juris A, et al. Decreased Silica Land-sea Fluxes through Damming in the Baltic Sea Catchment Significance of Particle Trapping and Hydrological Alterations[J]. Biogeochemistry, 2006a, 77(2): 265-281.
    [65]Humborg C, Blomqvist S, Avsan E, et al. Hydrological alterations with river damming in northern Sweden: Implications for weathering and river biogeochemistry [J]. Global biogeochemical cycles, 2002, 16(3): 12.1-12.13.
    [66]Jarvie H P, Neal C, Leach D V, Ryland G P, House W A, Robson A J. Major ion concentrations and the inorganic carbon chemistry of the Humber rivers[J]. Science of the Total Environment, 1997, 194/195: 285-302.
    [67]Jennerjahna T C, Ittekkot V, Klópper S, et al. Biogeochemistry of a tropical river affected by human activities in its catchment: Brantas River estuary and coastal waters of Madura Strait, Java, Indonesia [J]. Estuarine, Coastal and Shelf Sicence, 2004, 60: 503-514.
    [68]Jensen H S, Mcglathery K J, Marino, et al. Forms and availability of sediment phosphorus in carbonate sand of Bermuda seagrass beds [J]. Limnol Oceanogr, 1998, 43(5): 799-810.
    [69]Jossette G, Leporcq B, Sanchez N, Philippon N. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France)[J]. Biogeochemistry, 1999, 47: 119-146.
    [70]Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of rive dominated coastal waters: stoichiometric nutrient balance and its consequences [J]. Estuarine Coastal and Shelf Sci, 1995, 40: 339-356.
    [71]Kawara O, Yura E, Fujii S, et al. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam Reservior [J]. Hydrobiologia, 1998, 37: 245-252.
    [72]Kelly C A, Rudd J W M, Hesslein R H, et al. Prediction of biological acid neutralisation in acid sensitive lakes [J]. Biogeochemistry, 1987, 3: 129-141.
    [73]Kelly V J. Influence of reservoirs on solute transport: a regional-scale approach. Hydrological Processes [J]. 2001, 15: 1227-1249.
    [74]KennedY R H, Walker W W. Reservoir nutrient dynamics. in THORNTON K W, KIMMEL B L, PAYNE F E, eds.Reservoir Limnology: Ecological Perspectives[M]. John Wiley & Sons, Inc. New York, 1990: 109-132.
    [75]Kimmel B L, Lind O T, Paulson L J. Reservoir primary production. In:Thornton, K W, B L Kimmel and F E Payne, eds. Reservoir limnology: Ecological perspectives[M]. John Wiley & Sons, Inc. New York, 1990: 133-194.
    [76]Kronvang B, Hezlar J, Boers P, et al. Nutrient Retention Handbook[C]. Software Manual for EUROHARP NUTRET and Scientific review on nutrient retention, EUROHARP report 9-2004, NIVA report SNO 4878/2004, Oslo, Norway, 2004, 103.
    [77]Li M T, Xu K X, Watanabe M, Chen Z Y. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem[J]. Estuar. Coast. Shelf Sci, 2007, 71: 3-12.
    [78]Liss P S, Pointon. Removal of dissolved boron and silicon during estuarine mixing of sea and river waters [J]. Geochemica et Cosmochimica Acta, 1973, 37: 1493-1498.
    [79]Liss P S, Spencer C P. Abiological processes in the removal of silicate from sea water[J]. Geochemica et Cosmochimica Acta, 1970, 34: 1073-1088.
    [80]Liu C, Wang Q X, Watanabe M. Nitrogen transported to Three Gorges Dam from agro- ecosystems during 1980-2000[J]. Biogeochemistry, 2006, 81: 291-312.
    [81]Liu S M, Zhang J, Chen H T, et al. Nutrients in the Changjiang and its tributaries[J]. Biogeochemistry, 2002, 00:1-18.
    [82]Mackenzie F T, Ver L M, Sabine C, Lane M and Lerman A. In: Wollast R, Mackenzie F T and Chou L (eds), Interactions of C, N, P and S Biogeochemical Cycles and Global Change [M], NATO ASI Series 1, vol. 4, 1-61. Berlin: Springer-Verlag, 1993.
    [83]Malle K G. Cleaning up the River Rhine [J]. Scientific American, 1996, 70-75.
    [84]McGinnis D F, Bocaniov S, Teodoru C, et al. Silica retention in the Iron Gate I reservoir on the Danube River: The role of side bays as nutrient sinks [J]. River Research andApplications, 2006, 22: 441-456.
    [85]Mchenry J R, Cooper C M, Ritchie J C. Sedimentation in Wolf Lake, lower Yazoo River basin, Mississippi [J]. Journal of Freshwater Ecology, 1982, 1: 547-558.
    [86]Meunier J D, F Colin, and C Alarcon. Biogenic silica storage in soils [J]. Geology, 1999, 27: 835-838.
    [87]Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers [J]. American J Science, 1982, 282: 401-450.
    [88]Milliman J D, Quraishee G S, Beg M N A. Sediment discharge from the Indus river to the ocean: Past, present and future, in HAQ BU, MILLIMAN JD, eds. Marine Geology and Oceanography of the Arabian Sea [M]. New York: Van Nostrand Reinhold, 1984: 65-70.
    [89]Milliman J. Blessed dams or dammed dams [J]. Nature, 1997, 386: 325-327.
    [90]Milliman J D, Quraishee G S, Beg M N A. Sediment discharge from the Indus river to the ocean: Past, present and future. In Marine Geology and Oceanography of the Arabian Sea [M], Haq BU, Milliman JD (eds). Van Nostrand Reinhold: Ney York, 1984, 65-70.
    [91]Moreira-Turcq P F, Seyler P, Guyot J L, Etcheber H. Characteristics of organic matter in the mixing zone of the Rio Negro and Rio Solim?es of the Amazon River. Hydrological processes, 2003, 17(7): 1393-1404.
    [92]Morris G L, Fan J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs and Watersheds for Sustainable Use [M]. McGraw-Hill, New York, 1998.
    [93]Neal C, Christopherson N. Inorganic aluminium-hydrogen ion relationships for acidified streams: the role of water mixing processes [J]. Science of The Total Environment, 1989, 80: 195-203.
    [94]Newbold J D. Cycles and spirals of nutrients. In: PETTSM, G.E., CALOW, P. (Eds.), River Flows And Channel Forms [M]. Blackwell Science, Oxford, U. K., 1996.
    [95]Nilsson C, ReidY C A, Dynesius M, Revenga C. Fragmentation and flow regulation of the world’s large river systems[J]. Science, 2005, 308: 405-408.
    [96]Officer C B, and Ryther J H. The possible importance of silicon in marine eutrophication [J]. Mar. Ecol. Progr. Ser. 1980, 3: 383-391.
    [97]Olness A, Rausch D. Callahan Reservoir: III Bottom Sediment Water Phosphorus Relationships [J]. Transaction of the ASAE, 1977, 20: 291-297, 300.
    [98]Paerl H W, and D R Whitall. Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: Is there a link? [J]. Ambio, 1999, 28: 307-311.
    [99]Paerl H W, Boynton W R, Dennis R, et al. Atmospheric deposition of nitrogen in coastal waters: biogeochemical and ecological implications. In: Nitrogen Loading in Coastal Water Bodies. An Atmospheric Perspective [M]. Valigura R A, Alexander R B, Castro M S, Meyers T P, Paerl H W, Stacey P E, and Turner R E(eds). Coastal and Estuarine Studies 57, American Geophysical Union, Washington, D.C., 2000, 11-53.
    [100] Paerl H W. Enhancement of marine primary productivity by nitrogen enriched rain. Nature 1985, 315: 747-749.
    [101]Pandey S K, Singh A K, Hasnain S I. Weathering and geochemical processes control- ing solute acquisition in Ganga Headwater-Bhagirathi River, Garhwal Himalaya, India [J]. Aquatic Geochemistry, 1999, 5: 357-379.
    [102]Panin N, Jipa D C, Gomoiu M T, et al. Importance of sedimentary processes in environmental changes: Lower River Danube Delta Western Black Sea System. In: S. T. BESIKTEPE, U. UNLUATA, A. S. BOLOGA (eds.), Environmental Degradation of the Black Sea: Changes and Remedies [M]. NATO Science Series, Kluwer Academic Publishers, Dordrecht, 1999, 23-42.
    [103]Paul L. Nutrient elimination in pre-dams: results of long term studies [J]. Hydrobiologia, 2003, 504: 289-295.
    [104]Perkins R G, Underwood G J C. The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate [J]. Water Res, 2001, 35(6): 1399-1406.
    [105]Petz T R, Faure G. 1997. Mixing of water in Streams: Big Walnut Creek and its Tributaries, Ohio [J]. OHIO J. SCI., 97(5): 113-115.
    [106]Pütz K, Benndorf J. The importance of pre-reservoirs for the control of eutrophication of reservoirs [J]. Wat Sci Technol, 1998, 37(2): 317-324.
    [107]Rabalais N N, Atilla N, Normandeau C, et al. Ecosystem history of Mississippi River2influenced continental shelf revealed through preserved phytoplankton pigments [J]. Mar Poll Bull, 2004, 49 (728): 537-547.
    [108]Ragueneau O, Conley D J, Leynaert A, et al. Responses of coastal ecosystems to anthropogenic perturbations of silicon cycling. in: The Silicon Cycle [M]. edited by: Ittekkot V, Unger D, Humborg C, eds. Washington DC, Island Press, 2006, 197-213.
    [109]Raymond P A, Bauer J E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean[J]. Nature, 2001, 409: 497-500.
    [110]Reschke S. Biogeochemische Variabilit?ten in der Schwebstofffracht der Donau und deren Einflu? auf das Sedimentations geschehen im nordwestlichen Schwarzen Meer[D]. Ph. D. thesis, Hamburg, 1999.
    [111]Reynolds R C, Johnson N M. Major element geochemistry of lake Powell. Lake Powell Research Project Bulletin, 5, University of California Los Angeles, 1974.
    [112]Ronald J. Bibbs. Water chemistry of the Amazon River. Geochinica et Cosmoshinica Acta, 1972, 36: 1061-1066
    [113]Russell M A, D E Walling, B W Webb, R Bearne. The composition of nutrient fluxes from contrasting UK river basins [J]. Hydrological processes, 1998, 12(9): 1461-1482.
    [114]Ruttenberg K C. Phosphorus Cycle. In: Encyclopedia of Ocean Sciences [M]. Academic Press 2001, 2149-2162.
    [115]Sarin M M, Krishnaswamy S, Dilli K, Somayajulu B L K, Moore W S, 1989. Major ion chemistry of Ganga–Brahmaputra River system: weathering processes and fluxes of the Bay of Bengal [J]. Geochimica et Cosmochimica Acta, 53: 997-1009.
    [116]Seitzinger S P, Kroeze C, Bouwman A F, et al. Global Patterns of Dissolved Inorganic and Particulate Nitrogen Inputs to Coastal Systems: Recent Conditions and Future Projections[J]. Estuaries, 2002, 25 (4): 640-655.
    [117]Seitzinger S P, Styles R V, Boyer E W, Alexander R B and Billen G. Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A.[J]. Biogeochemistry, 2002, 57(1): 199-237.
    [118]Seitzinger S P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance [J]. Limnol Ocean, 1988, 33: 702-724.
    [119]Shen Z L, Liu Q, Zhang S M, et al. A nitrogen budget of the Changjiang River catchment[J]. Ambio, 2003, 32 (1): 65-69.
    [120]Singh A K, Hasnain S I. Major ion chemistry and weathering control in a high altitude basin:Alaknanda River, Garhwal Himalaya, India [J]. Hydrological Sciences-Journal-des Sciences Hydrologiques, 1998, 43(6), 825-844.
    [121]Singh A K, Hasnain S I. Environmental geochemistry of Damodar River basin east coast of India [J]. Environmental Geology, 1999, 37: 124-136.
    [122]Singh A K, Hasnain S I. Aspects of weathering and solute acquisition processes controlling chemistry of sub-Alpine proglacial streams of Garhwal Himalaya, India. Hydrological Process, 2002, 16: 835-849.
    [123]Singh A K, Mondal G C, Singh P K, et al. Hydrochemistry of reservoirs of Damodar River basin, India: weathering processes and water quality assessment [J]. Environmental Geology, 2005, 48: 1014-1028.
    [124]Smayda T J. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Anderson D M, Edler L. and Sundstr?m B G (eds), Toxic Marine Phytoplankton [M]. Elsevier Science Publishing Co. Inc., New York, 1990, 29-40.
    [125]Soballe D M, Kimmel B L. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments [J]. Ecology, 1987, 68:1943-1954.
    [126]Stanley E H, Doyle M W. A geomorphic perspective on nutrient retention following dam removal [J]. Bioscience, 2002, 52: 693-701.
    [127]Svendsen L M, Kronvang B, Kristensen P, and Graesbùl P. Dynamics of phosphorus compounds in a lowland river system: importance of retention and non-point sources [J]. Hydrological Process, 1995, 9: 119-142.
    [128]Syvitskl J P M, V?r?smarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308: 376-380.
    [129]Teodoru C, Wehrli B. Retention of sediments and nutrients in the Iron Gate I reservoir on the Danube River [J]. Biogeochemistry, 2005, 76: 539-565.
    [130]Thomton K W. Sedimentary processes. In: Thornton K. W., Kimmel B. L. & Payne F. E. (eds). Reservoir Limnology: Ecological Perspectives [M]. John Wiley & Sons, New York, 1990: 1-14, 43-70.
    [131]Tréguer P, D M Nelson, A J Van Bennekom, et al. The silica balance in the world ocean: A reestimate [J]. Science, 1995, 268: 375-379.
    [132]Triplett L D, Engstrom D R, Conley D J, et al. Silica fluxes and trapping in two contrastingnatural impoundments of the upper Mississipi River [J]. Biogeochemisty, 2008, 87: 217-230.
    [133]Turner R E, Rabalais N N. Changes in the Mississippi River water quality this century implications for coastal food webs [J]. BioScience, 1991, 41: 140-147.
    [134]Turner R E, Laws E A, Andharris R C. Nutrient retention and transformation in relation to hydraulic flushing rate in small impoundment [J]. Freshwater Biology, 1983, 13:113-127.
    [135]Turner R E, Qureshi N, Rabalsis N N, et al. Fluctuating silicate: nitrate ratios and coastal plankton food webs [J]. Proc Nail Acad Sci, 1998, 95:13048-13051.
    [136]Turner R E, Rabalais N N. Linking landscape and water quality in the Mississippi river basin for 200 years [J]. Biosicence, 2003, 53: 563-572.
    [137]Uhlman D, Hupfer M, Paul L. Longitudinal gradients in the chemical and microbial composition of the bottom sedimentation in a channel reservoir(Saidenbach, Saxony)[J]. Int Revueges Hydrobiol, 1995, 80:15-25.
    [138]Uhlman D, Hupfer M, Paul L. Longitudinal gradients in the chemical and microbial composition of the bottom sedimentation in a channel reservoir (Saidenbach, Saxony) [J]. Int. Revueges. Hydrobiol, 1998, 0: 15-25.
    [139]Vink S, Chambers R M, Smith S V. Distribution of phosphorus in sediments from Tomales Bay California [J]. Marine Geology, 1997, 139:157-179.
    [140]Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle: sources and consequences[J]. Ecological Applications, 1997, 7: 737-750.
    [141]Vollenweider R A. M?glichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen[J]. Arch. Hydrobiol., 1969, 66: 1-36.
    [142]V?r?smarty Charles J., Keshav P.Sharma, Balazs M.Feket, et al.The storage and aging of continental runoff in large reservoir systems of the world [J]. Ambio, 1997, 26 (4): 210-219.
    [143]Walling D E and Woodward J C. Use of a field-based water elutriation system for monitoring the in situ particle size characteristics of fluvial suspended sediment [J]. Water Research, 1993, 22(9): 1413-1420.
    [144]Ward P R B. Sediment transport and a reservoir siltation formula for Zimbabwe-Rhodesia[J]. Die Siviele Ingenier in Suid-Afrika. Januarie, 1980, 113-143.
    [145]Webster J R. Analysis of potassium and calcium dynamics in stream ecosystems on three southern Appalachian watersheds of contrasting vegetation [D]. Ph. D. thesis, University ofGeorgia, Athens, 1975.
    [146]Westlake D F. Primary production. In LECREN AND R. H. LOWE-MCCONNELL, eds. The functioning of freshwater ecosystems [J]. Cambridge Univ. Press, London, 1980.
    [147]Whaby S D, Bishara N F. The effect of River Nile on Mediterranean water before and after the construction of the High Dam at Aswan. In: River Inputs to Ocean Systems[C] (Martin J M, Burton J D, Eisma D, eds). UNEP, IOC, SCOR, United Nations, New York, 1980, 311-318.
    [148]Windolf J, Jeppesen E, Jensen J P, Kristensen P. Modelling of seasonal variation in nitrogen retention: a four-year mass balance study in 16 shallow lakes [J]. Biogeochemistry, 1996, 33: 25-44.
    [149]Wollast R. Interactions of carbon and nitrogen cycles in the coastal zone [A]. in Wollast R, Mackenzie F T, Chou L. Interactions of C, N, P and S Biogeochemical Cycles and Global Change, NATO ASI series I: Global Environmental Change[C]. Berlin: Springer Verlag, 1993, 195-210.
    [150]Xing G X, Zhu Z L. Regional nitrogen budgets for China and its major watersheds [J]. Biogeochemistry, 2002, 57/58: 405-427.
    [151]Yang S L, Zhao Q, and Belkin I M. Temporal variation in the sediment load of the Yangtze River and the influences of the human activities [J]. J Hydrol, 2002, 263: 56-71.
    [152]Yang S L, J Zhang, S B Dai, M Li, and X J Xu. Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River [J].J. Geophys. Res., 2007, 112, F02005, doi: 10.1029/2006JF000484.
    [153]Yu Z G, Mi T Z, Yao Q Z, et al. The nutrients concentration and the changes in decade-scale in the central Bohai Sea [J]. Acta Oceanologica Sinica, 2001, 20(1): 65-75.
    [154]Zeng H, Song L R, Yu Z G, et al. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons [J]. Science of the Total Environment, 2006, 367: 999-1009.
    [155]Zhang J, Zhang Z F, Liu S M, et al. Human impacts on the large world rivers: Would the Changjiang (Yangtze R iver) be an illustration? [J]. Global Biogeochemical Cycles, 1999, 13(4): 1099-1105.
    [156]Zhang J, Huang W W, Liu M G, Zhou Q. Drainage basin weathering and major element transport of two large Chinese rivers (Huanghe and Changjiang) [J]. Journal of GeophysicalResearch, 1990, 95: 13277-13288.
    [157]毕言锋.中国东部沿海的大气营养盐干、湿沉降及其对海洋初级生产力的影响[D].青岛:中国海洋大学, 2006.
    [158]曹承进,秦延文,郑丙辉,黄民生.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学,2008, 29(2): 310-315.
    [159]曹明,蔡庆华,刘瑞秋,等.三峡水库库首初期蓄水前后理化因子的比较研究[J].水生生物学报, 2006a, 30(1): 12-19.
    [160]曹明,蔡庆华,刘瑞秋,渠晓东,叶麟.三峡水库及香溪河库湾理化特征的比较研究[J].水生生物学报,2006b, 30 (1): 21-25.
    [161]长江水利委员会江勘测规划设计研究院.三峡工程设计论文集(上、下册)[M].中国水利水电出版社, 2003
    [162]陈洪涛,张欣泉,米铁柱,等.悬浮颗粒物中生物硅测定方法的改进与应用[J].海洋学报, 2007, 29:156-160.
    [163]陈静生,高学民,夏星辉,何大为.长江水系河水氮污染[J].环境化学, 1999, 04: 3-7
    [164]陈静生,夏星辉,蔡绪贻.川贵地区长江干支流河水主要离子含量变化趋势及分析[J].中国环境科学, 1998, 18(2): 131-135.
    [165]陈静生.中国河流水质原理[M].科学出版社, 2006, 1-17.
    [166]程和琴,李茂田.河流入海溶解硅通量的变化及其影响--以长江为例[J].长江流域资源与环境, 2001, 10(6): 558-563.
    [167]程香菊,陈永灿,高千红,陈燕.三峡水库坝身泄流超饱和复氧分析[J].水力发电学报, 2005, 24(6): 62-67.
    [168]重庆市环境监测中心.长江三峡库区城市江段水质监测报告[R].重庆:重庆市环境科学研究院, 2000, 2-13.
    [169]段水旺,章申.中国主要河流控制站氮、磷含量变化规律初探[J].地理科学, 1999, 19 (5): 411-416
    [170]段水旺.长江营养元素输送规律及来源的研究[D].北京:中国科学院地理科学与资源研究所, 2000.
    [171]方涛,付长营,敖鸿毅,邓南圣.三峡水库蓄水前后香溪河氮磷污染状况研究[J].水生生物学报,2006, 30(1): 26-30.
    [172]方子云,周家祥,郑连生.中国水利百科全书:环境水利分册[M].北京:中国水利水电出版社,2004.
    [173]付春平.三峡库区氮磷沉积与释放规律试验研究[D].重庆大学硕士论文,2004.
    [174]顾慰祖,陆家驹,赵霞,等.无机水化学离子在实验流域降雨径流过程中的响应及其示踪意义[J].水科学进展, 2007, 18(1): 1-7.
    [175]郭鸿博.三峡水库硅的分布特征及其收支与循环[D].青岛:中国海洋大学硕士论文,2008.
    [176]国家环境保护总局.长江三峡工程生态与环境监测公报[R].中华人民共和国环境保护部, 1997-2006.
    [177]国务院三峡工程建设委员会办公室泥沙课题专家组,中国长江三峡工程开发总公司工程泥沙专家组编.长江三峡工程泥沙问题研究(1996 - 2000),第八卷,长江三峡工程“九五”泥沙研究综合分析.北京:知识产权出版社, 2002.
    [178]洪一平,叶闽,臧小平.三峡水库水体中氮磷影响研究[J].中国水利, 2004, 20: 23-24.
    [179]胡明辉,杨逸萍,等.长江口浮游植物生长的磷酸盐限制[J].海洋学报, 1989, 11(4): 439-443
    [180]黄清辉,沈焕庭,刘新成,傅瑞标.人类活动对长江河口硝酸盐输入通量的影响[J].长江流域资源与环境, 2001, 10(6): 564-569.
    [181]黄真理,李玉梁,陈永灿,等.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社, 2006a, 107.
    [182]黄真理.三峡水库上游入库污染负荷背景值研究[A].见:中国环境水力学2006[C].北京:中国水利水电出版社, 2006b, 177-183.
    [183]况琪军,毕永红,周广杰,等.三峡水库蓄水前后浮游植物调查及水环境初步分析[J].水生生物学报,2005, 29 (4): 253-358.
    [184]赖利J P,斯基罗G,切斯特R.化学海洋学第二卷(第二版)[M].北京:海洋出版社, 1982: 268.
    [185]李崇明,黄真理,张晟,等.三峡水库藻类“水华”预测[J].长江流域资源与环境, 2007, 16(1): 1-6.
    [186]李崇明,黄真理.三峡水库入库污染负荷研究[J].长江流域资源与环境, 2005, 14(5): 777-783.
    [187]李崇明,黄真理.三峡水库入库污染负荷研究(Ⅱ)[J].长江流域资源与环境, 2006, 15(1): 97-106.
    [188]李凤清,叶麟,刘瑞秋,曹明,蔡庆华.三峡水库香溪河库湾主要营养盐的入库动态[J].生态学报, 2008, 28(5): 2073-2079.
    [189]李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展, 2005, 16(6): 777-783.
    [190]李茂田,程和琴.近50年来长江入海溶解硅通量变化及其影响[J].中国环境科学, 2001, 21(3): 1-5.
    [191]李学礼.水文地球化学[M].北京:原子能出版社, 1988, 16-27.
    [192]梁常德,龙天渝,李继承等.三峡库区非点源氮磷负荷研究[J].长江流域资源与环境, 2007, 16(1): 26-30.
    [193]刘丛强.生物地球化学过程与地表物质循环-西南喀斯特流域侵蚀与生源要素[M].北京:科学出版社, 2007: 387-443.
    [194]刘鹏霞.三峡水库蓄水至135米后库区和长江干流各形态磷的分布特征研究[D].青岛:中国海洋大学硕士论文, 2007.
    [195]刘瑞秋.三峡大坝截流前后长江中上游江段水化学特征的初步调查[J].水生生物学报, 2000, 24(5): 446-450.
    [196]刘信安,湛敏,马艳娥.三峡库区流域藻类生长与营养盐吸收关系[J].环境科学, 2005, 26(4): 95-99.
    [197]吕怡兵,宫正宇,连军,等.长江三峡库区蓄水后水质状况分析[J].环境科学研究, 2007, 20(1): 1-6.
    [198]罗峰.三峡库区次级河流富营养化趋势研究[D].重庆:重庆大学, 2004.
    [199]罗专溪,张远,郑丙辉,等.三峡水库蓄水初期水生态环境特征分析[J].长江流域资源与环境, 2005, 14(6): 781-785.
    [200]蒙万轮,钟成华,邓春光,李永建,王德蕊.库区蓄水后大宁河神女溪富营养化调查与评价[J].云南环境科学2005,24(增刊): 136-13.
    [201]孟伟,于涛,郑丙辉,等. 2007.黄河流域氮磷营养盐动态特征及主要影响因素[J].环境科学学报, 27 (12): 2046-2051.
    [202]沈志良,刘群,张淑美,等.长江和长江口高含量无机氮的主要控制因素[J].海洋与湖沼, 2001, 32(5): 465-473.
    [203]沈志良,刘群,张淑美.长江总氮和有机氮的分布变化与迁移[J].海洋与湖沼, 2003, 34(6): 577-588.
    [204]沈志良.长江氮的输送通量[J].水科学进展, 2004, 15(6): 752-759.
    [205]沈志良.长江干流营养盐通量的初步研究.海洋与湖沼, 1997, 28(5): 522-527
    [206]石孝洪.三峡水库消落区土壤磷释放特征及环境风险[D].西南农业大学硕士论文, 2004.
    [207]史德明.长江流域水土流失与洪涝灾害关系剖析[J].土壤侵蚀与水土保持学报, 1999, 5(1): 1-7.
    [208]水利部长江水利委员会.长江泥沙公报[R].武汉:水利部长江水利委员会,2000~2007.
    [209]宋飞.长江口海域富营养化的氮同位素特征研究[D].青岛:中国科学院海洋研究所,2006.
    [210]孙阳,王里奥,袁辉.三峡水库氮磷污染贡献率估算[J].重庆大学学报, 2004, 27(10): 138-141.
    [211]孙志高,刘景双,王金达.三江平原典型湿地系统大气湿沉降中氮素动态及其生态效应[J].水科学进展, 2007, 18(2): 182-192.
    [212]谭加强,于志刚,林桂炽,米铁柱.过硫酸盐氧化法测定海水中溶解总磷[J].青岛海洋大学学报, 2001, 31(2): 256-262.
    [213]滕衍行.三峡库区消落区土壤磷释放规律研究[D].同济大学硕士论文,2006.
    [214]汪福顺.长江流域水质演化与流域人为活动[D].华东师范大学博士后研究工作报告, 2005, 21-39.
    [215]王佳宁,晏维金,贾晓栋,等. 2006.长江流域点源氮磷营养盐的排放、模型及预测[J].环境科学学报, 26 (4): 658– 666
    [216]王明远,赵桂久,章申.长江碳、氮、磷、硫输送量的研究.见:化学元素水环境背景值研究[M].北京:测绘出版社. 1989: 121~131
    [217]王鹏,高超,姚琪,等.环太湖丘陵地区农田磷素随地表径流输出特征[J].农业环境科学学报, 2006, 25(1): 165-169.
    [218]翁立达,袁弘任,王俊超,等.三峡工程生态环境影响研究[M].湖北科学技术出版社, 1997.
    [219]熊强,幸治国,钟成华,邓春光,彭昱.三峡库区总磷污染现状及防治措施[J].云南环境科学, 2004, 23 (4): 49 -51.
    [220]徐开钦,林城二,牧秀明,等.长江干流主要营养盐含量的变化特征[J].地理学报,2004, 59(1): 118-124.
    [221]徐小清,肖邦定,方涛,等.三峡水库非线性延迟的环境效应及其防止对策[J].长江流域资源与环境, 2002, 11(1): 74-78.
    [222]阎伍玖,王心源.巢湖流域非点源污染初步研究[J].地理科学, 1998, 18 (3): 263-267.
    [223]晏维金,章申,王嘉慧.长江流域氮的生物地球化学循环及其对输送无机氮的影响[J].地理学报, 2001, 56(5): 505-514.
    [224]杨官仁.三峡库区重金属污染分析及防治对策探讨.环境与开发[J]. 1995, 12(2): 23-27.
    [225]杨志达[美]著.李文学,等译.泥沙输送:理论与实践[M].北京:中国水利水电出版社, 2000: 181-210.
    [226]姚庆祯.痕量元素砷、硒在长江流域及河口的生物地球化学行为探讨[D].华东师范大学,2005, 78-84.
    [227]叶麟,韩新芹,蔡庆华.香溪河库湾春季水华期间可溶性碳动力学研究[J].水生生物学报,2006b, 30(1): 80-84.
    [228]叶麟,徐耀阳,蔡庆华.香溪河库湾春季水华期间硝酸盐、磷酸盐的时空分布[J].水生生物学报,2006a, 30 (1): 75-79.
    [229]叶绿.三峡库区香溪河水华现象发生规律与对策研究[D].河海大学, 2006, 28-33.
    [230]虞孝感.长江流域可持续发展研究[M].北京:科学出版社, 2003.
    [231]禹雪中.三峡库区泥沙对水体磷影响的模拟研究[D].北京:北京师范大学,2008
    [232]张恩仁,张经.三峡水库对长江N、P营养盐截留效应的模型分析[J].湖泊科学, 2003, 15(1): 41-48.
    [233]张立诚,佘中盛,章申.长江水系水环境化学元素系列专著(2):水环境化学元索研究[M].北京:中国环境科学出版社, 1996.
    [234]张经.中国河口地球化学研究的若干进展[J].海洋与湖沼, 1994, 25(4): 438-445.
    [235]张晟,刘景红,张全宁,等.三峡水库成库初期氮、磷分布特征[J].水土保持学报, 2005, 19(4): 123-126.
    [236]张晟,李崇明,郑丙辉,翟崇志,郑坚,张芹.三峡库区次级河流营养状态及营养盐输出影响[J].环境科学, 2007, 28(3): 500-505.
    [237]张晟,刘景红,张全宁,等.三峡水库成库初期丰水期水环境化学特征[J].水土保持学报, 2005a, 19(3): 118-121.
    [238]张欣泉.长江干流及河口硅的生物地球化学研究[D].青岛:中国海洋大学硕士论文, 2006.
    [239]张远,郑丙辉,刘鸿亮,等.三峡水库蓄水后氮、磷营养盐的特征分析[J].水资源保护,2005, 21(5): 22-26.
    [240]张远,郑丙辉,刘鸿亮.三峡水库蓄水后的浮游植物特征变化及影响因素[J].长江流域资源与环境, 2006, 15(2): 254-258.
    [241]张远,郑丙辉,刘鸿亮,富国,罗专溪.三峡水库蓄水后氮、磷营养盐的特征分析[J].水资源保护, 2005, 21(6): 23-26.
    [242]郑丙辉,曹承进,秦延文,黄民生.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学, 2008, 29(1): 1-6.
    [243]中国环境监测总站.全国主要流域重点断面水质自动监测周报,www.cnemc.cn, 2004-2007.
    [244]中国科学院环境评价部和长江水资源保护科研所联合编制.长江三峡水利枢纽环境影响报告书[M]. 1991.
    [245]中国科学院三峡工程与环境科研项目领导小组.长江三峡工程对生态与环境影响及其对策研究论文集[C].北京:科学出版社, 1987.
    [246]中华人民共和国水利部.中国河流泥沙公报[C]. 2007.
    [247]钟成华.三峡库区水体富营养化研究[D].成都:四川大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700