用户名: 密码: 验证码:
城市河流底泥污染与原位稳定化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内多数城市河流在城市化进程中受到了严重污染,底泥中沉积了大量的耗氧性物质、氮磷营养物、有机污染物和重金属污染物,想从根本上改善河水水质,不仅要切断外部污染源,还必须解决水体底泥的内部污染问题。论文以上海市苏州河为例,为解决溶解氧含量偏低、氮磷污染物超标两个突出存在的问题,从控制沉积物污染的角度研究了苏州河底泥的污染特征、耗氧机理以及污染物释放规律,并对受污染底泥进行了原位稳定化的实验研究。得出以下结论:
     苏州河底泥中氨氮、凯氏氮、总有机碳和酸挥发性硫化物等污染物的纵向分布基本为驼峰状,表层底泥的污染物含量相对较低,淤泥层底泥的含量最高,黄泥层底泥的含量最低。淤泥层底泥的污染物含量从上游到下游呈逐渐升高的趋势,其它泥层的污染物含量差异不大。参照相关底泥质量标准,苏州河表层、淤泥层底泥有机污染和氨氮污染均已达到严重污染的级别,总凯氏氮的污染程度较小,重金属污染物目前还不存在生物毒性。
     温度、扰动和溶解氧是影响底泥污染物释放的重要环境因素。低温条件下水体和底泥中的污染物较为稳定,温度越高底泥污染物的释放速度和转化速度越快,扰动会在短时间内引起底泥颗粒态污染物和溶解态污染物的快速释放,厌氧条件下底泥中铁、锰结合态磷以正磷酸盐的形式释放,含氮污染物主要以氨氮的形式释放,有机物厌氧矿化的中间产物会引起水体COD_(Cr)和TOC含量的增加。通过人为方式提高水体中溶解氧的含量,可以有效地抑制底泥中氮、磷和有机污染物向上覆水的释放。
     苏州河底泥中的耗氧物质主要包括硫化物、氨氮、有机物和低价金属,亚铁离子和硫化物向上覆水的释放能力最强,耗氧速率最快,氨氮次之,有机碳则最差最慢。苏州河淤泥层底泥的耗氧当量最高,其中有机碳的耗氧当量最大,但由于释放和矿化速度较慢而产生的直接耗氧较小,短时间内硫化物和氨氮对底泥耗氧的贡献最大,前者的耗氧速度快于后者。SOD模拟实验的结果表明,在夏季苏州河表层底泥的耗氧量从上游到下游呈逐渐增大的趋势,淤泥层底泥的SOD值最大,表层底泥的次之,黄泥层底泥的最小。SOD受温度的影响较大,冬季苏州河不同深度底泥的耗氧量均小于1gO_2/m~2·d,而夏季的SOD值则会明显上升。
     高锰酸钾、过氧化钙和硝酸钙都可以提高底泥的氧化还原电位,改善底泥的还原性环境,但是高锰酸钾和过氧化钙会同时增加底泥的碱度,4种稳定剂对水体溶解氧水平的提升作用并不明显。硝酸钙能够明显刺激底泥中异养微生物的活性,通过微生物的降解作用降低底泥中有机污染物的含量,对TOC的去除塞可达到18.72%。过氧化钙和硝酸钙能够将活性较高的NaOH-P转化成释放能力较低的HCl-P,从而有效地抑制底泥释磷,可将孔隙水中的PO_4~(3-)含量分别降低至0.003和0.094mg/L,这两种稳定剂主要通过化学沉淀作用来实现对磷元素的固定作用。4种稳定剂在早期均会不同程度地促进底泥释放氨氮,双氧水能在后期通过反硝化消减底泥的总氮含量,硝酸钙的投加会造成底泥向上覆水渗透硝酸盐氮。4种稳定剂都会降低酸挥发性硫化物的含量,对底泥的黑臭现象具有一定的改善作用,其中硝酸钙的效果最为明显,但是也会增大底泥的∑SEM/AVS比值,而使重金属的生物毒性有所升高。
Nowadays,most of urban rivers in China had been seriously polluted during the urbanization process.There are a large number of oxygen-consuming substances, nitrogen and phosphorus pollutants,organic pollutants and heavy metals pollutants in sediments,to radically improve the water quality,we should not only cut off external sources of pollution,but also address the internal pollution sources of sediments.In this paper,Suzhou creek was studied as an example.For resolving the two prominent problems of low dissolved oxygen and high nutrient content,the pollution characteristic of Suzhou creek sediments was investigated,the degree of pollution was assessed consulting some relevant sediment quality standards.Aiming at Suzhou Creek sediment characteristics,the release rule of pollutants from sediments and sediment oxygen-consuming mechanism were studied.To actively seek a solution,an in-situ stabilization experiment of Suzhou Creek contaminated sediments was conducted based on the previous experimental findings.
     The vertical distributions of ammonia nitrogen,Kjeldahl nitrogen,total organic carbon and acid volatile sulfide in Suzhou Creek sediments are basicly hump-shaped, the concentrations of pollutants in surface sediments are relatively low,the concentrations in Silt layer are the highest,the concentrations in original soil layer are the lowest.Pollutants contained in Silt layer are gradually increased from the upstream section to the downstream section along Suzhou Creek,the change trend of pollutants in other layer has little difference.According to the relevant sediment quality standards, organic pollution and ammonia nitrogen pollution in surface layer and silt layer all reach a serious pollution level,the total Kjeldahl nitrogen pollution degree is lower,the heavy metal toxicity do not exist.
     Temperature,disturbance and dissolved oxygen content of water body are important environmental factors,which effects the pollutants releasing from sediments. The pollutants in water and sediments will be more stable under low temperature condition,the higher temperature is,the releasing and transforming velocity of pollutants is faster.Disturbance can cause the rapid release of particulate pollutants and dissolved pollutants from sediments in a short time.Under anaerobic conditions,the iron/manganese-bound phosphorus will release in the form of orthophosphate,the nitrogen pollutants will release in the form of ammonia.The product of organic anaerobic mineralization will cause the increase of COD_(Cr) and TOC content in water body.Improving dissolved oxygen in water can effectively inhibit the the release of nitrogen,phosphorus and organic pollutants from sediments.
     The oxygen-consuming material in Suzhou Creek mainly consist of sulfide, ammonia,organic matter and low valence metal ion,the release capacity of ferrous ion and sulfide to overlying water is the strongest,the oxygen consumption rate is the fastest,ammonia follows by,organic carbon is the slowest worst.The oxygen equivalent of pollutants in Suzhou Creek silt layer sediment is maximum,in which oxygen consumption equivalent caused by organic carbon is the highest,but it can only consume less oxygen because of the slow release and mineralization.The oxygen consumption by sulfide and ammonia has the greatest contribution to sediments oxygen demanding,the oxygen consuming rate of sulfide is faster.The simulated Experiment results show that the SOD value of Suzhou Creek gradually increases from upstream to downstream,the SOD value in silt layer is the highest,the value in surface layer follows by,the value in original soil layer is the lowest.Temperature can remarkably influence the SOD value,the SOD values of Suzhou Creek are all less than 1gO_2/m~2·d in winter, but will obviously increase in summer.
     Potassium permanganate,calcium peroxide and calcium nitrate could increase the ORP in sediments,calcium peroxide and potassium permanganate would significantly increase the alkalinity of sediments.calcium nitrate could effectively reduced the organic pollutants content in sediment,the removal rate of TOC reached up to 18.72%. Calcium peroxide and calcium nitrate could effectively inhibit phosphorus release from sediments,the PO_4~(3-) content in interstitial water respectively reduced 0.003 and 0.094mg/L,and the inhibitory effect was quietly stable.Four kinds of stabilizer could not significantly improve dissolved oxygen content in water body,the stabilization effect of the four stabilizer on nitrogen pollutants in sediments was not ideal,in the early stage they would promote ammonia release from sediments at different degree, calcium nitrate could result in the nitrate infiltration upward to overlying water.Four kinds of stabilizer would reduce the content of acid-volatile sulfide in sediment, increase theΣSEM/AVS ratio,and enhance the biological toxicity of heavy metals.
引文
[1]阿伦(加)R.J.,贝尔(加)A.J.水和沉积物中有毒污染物评估[M].北京:中国环境科学出版社,1993.
    [2]鲍士旦.土壤农化分析(第3版),北京:中国农业出版社,2007.
    [3]包先明等.浮叶植物重建对富营养化湖泊氮磷营养水平的影响[J].生态环境,2005,14(6):807-811.
    [4]包先明等.种植沉水植物对富营养化水体沉积物中磷形态的影响[J].土壤通报,2006,37(4):710-715
    [5]陈家宝,刘文炜,梁雪强,范宇航.南宁市南湖沉积物磷释放的研究[J].广西大学学报(自然科学版),1998(03):69-73.
    [6]陈文松,宁寻安,李萍等.底泥污染物的环境行为研究进展[J].水资源保护,2007,23(4):1-5.
    [7]程晓东,郭明新.河流底泥重金属不同形态的生物有效性[J].农业环境保,2001,20(1):19-22.
    [8]董凌霄,吕永涛,韩勤有等.硫酸盐还原对氨氧化的影响及其抑制特征研究[J].西安建筑科技大学学报.2006,38(3):425-428.
    [9]范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物—水界而氮磷交换的影响[J].湖泊科学,1997,9(4):337-342.
    [10]方红卫.城市水环境与水生态建设[J].现代城市研究,2004,3:6.
    [11]付春平,钟成华,邓春光.pH值与三峡库区底泥氮磷释放关系的实验[J].重庆大学学报,2004,27(10):125-127.
    [12]国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.
    [13]国家技术监督局,海洋调查规范—海洋地质地球物理调查[M],GB/T13909-1992.
    [14]何清溪,张穗,方正信等.大亚湾沉积物中氮和磷的地球化学形态分配特征[J].热带海洋,1992,11(2):38-44.
    [15]洪祖喜等.受污染底泥易地处理处置技术[J].上海环境科学,2002,21(4):233-235
    [16]黄廷林.渭河沉积物中重金属释放的粒度效应[J].西安建筑科技大学学报,1995,27(4):381-385.
    [17]胡雄星,夏德祥,韩中豪.苏州河水及沉积物中有机氯农药的分布与归宿[J].中国环境科学,2005c,25(1):124-128.
    [18]胡雪峰等.上海市郊河流底泥氮磷释放规律的初步研究[J].上海环境科学,2001,20(2):66-70.
    [19]纪录,张晖.原位化学氧化法在土壤和地下水修复中的研究进展[J].环境污染治理技术与设备,2003,04(06):37-42.
    [20]金相灿,沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [21]金相灿.黄河中游悬浮物对铜、铅和锌的吸附与放释研究[J].中国环境科学,1984,4(4):54-6.
    [22]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究[J].农业环境科学学报,2003,22(2):170-173.
    [23]林家森.城市河流淤泥污染的治理对策[J].中国给水排水,2004,12(20):21-23.
    [24]林建伟,朱志良,赵建夫.硝酸钙对底泥有机物及氮磷迁移循环的影响[J].农业环境科学学报,2007,26(1):58-63.
    [25]林卫青,顾友直.苏州河底泥的耗氧量[J].上海环境科学,2001,20,(5):212-214.
    [26]刘富强,杞桑.珠江广州河段员村段的底泥耗氧[J].环境科学,1994,15(1):31-35.
    [27]梅小文,李洪.扬州市古运河底质耗氧研究[J].扬州工学院学报,1996,8(2):38-44.
    [28]裘祖楠,张仲燕,漆德瑶.苏州河底泥中污染物分布特征及相关性[J].上海环境科学.998,17(2):10-14.
    [29]石玉波.城市化地区水资源问题及其对策[J].北京水利,2001,1:19-20.
    [30]宋庆辉,杨志.对我国城市河流综合管理的思考[J].水科学进展,2002,13(3):378-382.
    [31]童昌华等.水生植物控制湖泊底泥营养盐释放的效果与机理[J].农业环境科学学报,2003,22(6):673-676.
    [32]汪家权,孙亚敏,钱家忠等.巢湖底泥磷的释放模拟实验研究[J].环境科学学报,2002,22(3):738-742.
    [33]魏俊峰,吴大清,彭金莲等.污染沉积物中重金属的释放及其动力学[J].生态环境,2003,12(2):127-130.
    [34]文湘华,HERBERT E A.乐安江沉积物酸碱特性及其对重金属释放特性的影响[J].环境化学,1996,15(6):510-515.
    [35]肖兰芳,何其锐.中国南海资源的开发及存在的问题[M].南海资源开发研究.广东:广东经济出版社,1998:451-461.
    [36]谢永明.环境水质模型概论[M].北京:中国科学技术出版社,1996.
    [37]徐祖信,刘立坤,张明旭.不同上覆水对SOD实验室测定影响分析[J].上海环境科学,2003.z1:46-49.
    [38]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2003.2.
    [39]许世远等著.苏州河底泥污染与整治[M].北京:科学出版社,2003.5年报表.
    [40]颜京松,王美玲.城市水环境问题的生态实质[J].现代城市研究,2005,4(8):7-10.
    [41]应太林,张国营,吴蕊.苏州河水体黑臭机理及底质再悬浮对水体底影响[J].上海环境科学,1997,16(1):23-26.
    [42]袁文权,张锡辉,张光明.底泥生物与化学需氧动力学模式探讨[J].上海环境科学,2003,22(12):921-925.
    [43]袁文权,张锡辉,张丽萍.不同供氧方式对水库底泥氮磷释放的影响[J].湖泊科学,2004,01:30-36.
    [44]曾祥英,张晓岚,钱光人,等.苏州河沉积物中多环麝香分布特点的初步研究[J].环境 科学学报,2008,28(1):180-184.
    [45]张明.硝化细菌应用技术研究.华东师范大学(博士学位论文),2003:11-12.
    [46]赵健,郑祥民,毕春娟,黄昌发.苏州河市效段底泥重金属污染特征及对河道疏浚的影响[J].农业环境保护,2001,20(1):27-30.
    [47]周启星,朱荫湄.西湖底泥不同供氧条件下有机质降解及CO_2与CH_4释放速率的模拟研究[J].环劈科学学报,1999,19(1):11-15.
    [48]周群英、高廷耀.环境工程微生物学[M],北京:高等教育出版社,2000.
    [49]宗栋良,张光明.硝酸钙在底泥修复中的作用机理及应用现状[J].中国农村水利水电,2006.4:52-54.
    [50]吴群河,曾学云,黄钥.溶解氧对河流底泥中三氮释放的影响[J].环境污染与防治,2005,27(1):49-55.
    [51]陈永红,陈军,王娟等.淮河(淮南段)底泥内源氮释放的模拟实验研究[J].土壤学报,2005,42(2):169-172.
    [52]Adams,W.J.,R.A.Kimerle,and J.W.Barnett,Jr.Sediment quality and aquatic life[J].Environ.Sci.Technol.1992,26:1865-1875.
    [53]A.Kleeberg,G.E.Dudel.A Changes in Extent of Phosphorus Release in a Shallow Lake due to Climatic Factors and Load[J].Marine Geology,1997,139:61-75.
    [54]Allen,H.S.,Fu,G.,Deng,B.Analysis of acid volatile sulfide(AVS) and simultaneously extracted metals(SEM) for estimation of potential toxicity in aquatic sediments[J].Environ.Toxicol.Chem.,1993,12:1441-1453.
    [55]Aminot.A.,Andrieux-Loyer.F.Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas[J].Estuarine,Coastal and Shelf Science,2001,52:617-629.
    [56]Ankly G T et al.Prediction of bioaccumulation of metals from contaminated sediments by the oligochatte,Lumbriculus Variegatus[J].Water Research,1994,28(5):1071-1076.
    [57]Bengtsson L,Hellstrom T.Wind-induced resuspension in a small shallow lake[J].Hydrobiologia,1992,241(3):163-172.
    [58]Berry,W.J.,M.G.Cantwell,P.A.Edwards,et al.Predicting toxicity of sediments spiked with silver[J].Environ.Toxicol.Chem.1999,18(1):40-48.
    [59]Boers,P C M.The influence of pH on phosphate release from lake sediments[J].Water Res.,1991,25(3):309-311.
    [60]Brouwer H,Murpby TP.Volatile sulfides and their toxicity in freshwater sediments[J].Environ Toxicity.Chem.,1995,14(2):203-208.
    [61]B.A.Whitton,S.L.J.Grainger,G.R.W.Hawley,J.W.Simon.Cellbound and extracellular phosphatase activities of cyanobacterial isolates[J].Microbial Ecology,1991,21:85-98.
    [62]Belanger T V.BentfⅡc oxygen demand in lake Apopka.Flordia[J].Wat.Res.,1981,15(2):2S7~274.
    [63]Berner,R.A..Early Diagenesis:A Theoretical Approach[M].Princeton University Press,Princeton,NJ,1980,241 pp.
    [64]Besser J M,Kubitz J A,Ingersoll C G.Influences on copper bioaccumulation,growth,and survival of the midge,Chironomus tentans,in metal-contaminated sediments[J |.Aquatic Ecosystem Health,1995,4(3):157~168.
    [65]Bohn&K ershner,Bohn,B.A.,J.L.Kershner.Establishing aquatic restoration priorities using a watershed approach[J].Environmental Management.2002,64:355~363.
    [66]Bostrom,B.Relations between chemistry,microbial biomass and activity in sediments of a polluted vs.a nonpolluted eutrophic lake[J].Verh.Int.Ver.Limnol.,1988,23:451~-459.
    [67]Bourbonniere R A and P A Meyers.Characterization of sedimentary humic mater by alkaline hydrolysis[J].Organic Geochemistry,1983,5(3):131~142.
    [68]Brewer,W.S.,Abernathy,A.R.,Paynter,M.J.Oxygen consumption by freshwater sediments[J].Wat.Res.,1977,11:471~473.
    [69]Brian E.Haggard,Thomas S.Soerensc.Sediment phosphorus release at a small impoundment on the Illinois River,Arkansas and Oklahoma,USA[J].Ecological engineering,2006,28:280~287.
    [70]Buresh R J and W H J Patrick.Nitrate Reduction to Ammonium and Organic Nitrogen in an Estuarine Sediment[J].Soil Biology Biochemistry,1981,13:279~283.
    [71]Call D J,Polkinghorne C N,Markee T P,et al.Silver toxicity to Chironomus tenlans in two freshwater sediments[J].Environmental Toxicology Chemistry,1999,18(1):30~39346.
    [72]Carlson A.R.,G.L.Phipps,V.R.Mattson,P.A.et al.The role of acid volatile sulfide in determining cadmium bioavailability and toxicity in freshwater systems[J].Environ.Toxicol.Chem.1991,10(10):1309~1319.
    [73]Chapman P M,Wang F,Adams W J,et al.Appropriate applications of sediment quality values for metals and metalloids[J].Environ Sci Tech,1999,33(22):3937~3941.
    [74]Choi Jung Hyun,Park seok soon,Jaffe PeterR.Simulating the dynamics of sulfur s;pecies and zinc in wetland sediments[J].Ecological Modelling,2006,199(3):315~323.
    [75]Christophoros Christophoridis and Konstantinos Fytianos.Conditions Affecting the Release of Phosphorus from Surface Lake Sediments[J],Environ.Qual.,2006,35:1181~1192.
    [76]Cooper D.C,Morse J.W.Extractability of metal sulfide minerals in acidic solutions:application to environmental studies of trace metal contamination within anoxic sediments[J].Environ.Sci.Technol,1998,32:1076~1078.
    [77]D'Angelo E M and KR Reddy Diagenesis of organic matter in a wetland,receiving hypereutrophic lake water:I.Distribution of dissolved nutrients in the soil and water column[J].Environmental Quality,1994,23(5):928~936.
    [78]D'Angelo E M and K R Reddy.Diagenesis of organic matter in a wetland receiving hypereutrophic lake water:Ⅱ.Role of inorganic electron acceptors in nutrient release[J].Environmental Quality,1994,23(5):937~943.
    [79]Danny D.Reible.Field Demonstration of Active Caps:Innovative Capping and In—Situ Treatment Technologies[J].Project Status Report April,2004 to March,2005.
    [80]Di Toro DM,O'Connor D J,Thomann R V.Analysis of the fate of chemicals in receiving waters,phase 1 prepared for the chemical manufacturers association aquatic research task group[J].Washington D C,By HydroQual Inc Mahwah N J,1981.
    [81]Di Toro,D.M.,J.D.Mahony,D.J.Hansen,K.J.Scott,M.B.Hicks,S.M.Mays,and M.S.Redmond.Toxicity of cadmium in sediments:The role of acid-volatile sulfide[J].Environ.Toxicol.Chem.1990,9:1487~1502.
    [82]Di Toro D M et al.Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments[J].Env Sci Technol,1992,26:91~ 101.
    [83]Dominic M.Ditoro.Sediment Flux modeling[M].New York:a John Wiley & sons,INC.Publication,2001.
    [84]Dominic M.Di Toro,Joy A.Predicting Sediment Metal Toxicity Using a Sediment Biotic Ligand Model:Methodology and Initial Application.Environmental Toxicology and Chemistry,2005,24(10):2410-2427.
    [85]Dr.Nancy E.Kinner etc.Natural and Enhanced In—Situ Bioremediation of Petroleum Contaminated Salt Marshes[J].2003,September,24.
    [86]Edwards R.W.,Rolley H.L.J.Oxygen consumption of river muds[J].Ecol.,1965,53:1~19
    [87]Froelich,P.N.,Klinkhammer G.P.,Bender,M.L..Early Oxidation of Organic Matter in Pelagic Sediments of the Eastern Equatorial Atlantic:suboxic diagenesis,Geochim.Cosmochim.Acta.,1979,43:1075~1090.
    [88]Gale P M and K R Reddy.Carbon flux between sediment and water column of a shallow,subtropical,hydroeutrophic lake[J].Environmental Quality,1994,23(5):965~972.
    [89]Gerhardt.A Review of Impact of Heavy Metals on Stream Invertebrates with Special Emphasis on Acid Conditions[J].Water Air Soil Pollutiom,1993,16 (34):289~ 314.
    [90]GIBBS R J.,Transport phase of transition metals in the Amazon and Yukon river[J].Geology Society of American Bullion,1977,88(6):829~843.
    [91]Golterman H L.Fractionation of sediment phosphate with chelating compounds:a simplification,and comparison with other methods[J].Hydrobiologia,1996,335:87~95.
    [92]Gomez E,Durillon C.Phosphate adsorption and release from sediments of brackish lagoons:pH,02and loading influence[J].Water Research,1999,33(10):2437~2447.
    [93]Gonsiorczyk,T.,Casper,P.,Koschel,R.Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin:importance of the permanently oxic sediment surface[J].Arch.Hydrobiol.,2001,151(2):203~219.
    [94]Gostelow P,Parsons S A.Sewage treatment works odour measurement[J].Water Science and Technology,2000,41(6):33~40.
    [95]Gupta A.B.Thiosphaeera Pantotrophra sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification[J].Enzyme and Microbile Technology,1997,21(8):589~595.
    [96]HANES,N.B.,IRVINE R.L.Oxygen uptake rates of benthal systems by a new technique[J].Proc.21st Ind.Waste Conf.Purdue Univ.Ext.Ser.1966,121:468~475.
    [97]Hagerman L..Physiological flexibility;a necessity for life in anoxic and sulphidic habitats[J].Hydrobiologia,1998:373/376:241~254.
    [98]Hakanson L.An ecological risk index for aquatic pollution control:a sedimentological approach[J].Water Research,1980,14:975~1001.
    [99]Havlin J L.Technical basis for quantifying phosphorus transport to surface and groundwaters[J].Anim.Sci.,2004,82(E.Suppl.):277~291.
    [100]Hull,J.and C.Stephens.Field-Scale Testing of a Composite Particle Sediment Capping Technology[J].EPA Tech Trends,2000,February.
    [101]Hieltjes A H M,Lambertus Lijklema.Fraction of inorganic phosphates in calcareous sediments[J].Environ Qual,1980,9(3):405~407.
    [102]Jaagumagi R.Development of the Ontario Provincial Sediment Quality Guidelines for Arsenic,Cadmium,Chromium,Copper,Iron,Lead,Manganese,Mercury,Nickel,and Zinc[R].Toronto,Ontario,1990:3~7.
    [103]Jenne E A.In:Chappel W K,Peterson K.Trace element sorption by sediments and soi~sites and process[J].Symposium on Molybdenum in the Envi,New York:Dekker,1977:425~553.
    [104]Jensen,H.S.,P.Kristensen,E.Jeppesen.lron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes[J].Hydrobiologia,1992,235/236:731~743.
    [105]Jia Z B,Lam K CH,Liu F W.Effect of aeration of HongKong sediment on lead binding[J].Acta Scientiarum Naturalium Universitatis Pekinensis,1999,35(6):834~ 841.
    [106]J.J.Gonz(?)lez Medeiros,B.P(?)rez Cid,E.Fern(?)ndez G(?)mez.Analytical phosphorus fractionation in sewage sludge and sediment samples[J].Analytical and Bioanalytical Chemistry,2005,381(4):873~878.
    [107]Johnson A,Plotnikoff R.Review of sediment quality data for the Similkameen River[J].Washington State Department of Ecology,Environmental Assessment Program,Olympia, Washington,2000:98504~7710.
    [108]JΦrgensen,B.B,SΦrensen,J.Seasonal cacles of O_2,NO_3~ AND SO_4~(2-)reduction in estuarine sediments:the significance of an NO_3~-reduction maximum in spring[J].Mar.Eclo.Prog.Ser,1985,24:65~74.
    [109]Jorgensen,B.B.Processes at the sediment-water interface[M].In the major biogeochemical cycles and their interactions,1983.
    [110]Karl J.,Rockne S.Biodegradation of Bicyclic and Polycyclic Aromatic Hydrocarbons in Anaerobic Enrichments[J].Environ Sci Technol,1998,32:3962~3967.
    [111]K.C.Ruttenberg,Limnol.Development of a sequential extraction method for different forms of phosphorus in marine sediments[J].Limnology and Oceanography,1992,37(7):1460~1482.
    [112]K.J.Purdy,D.B.Nedwell,T.M.Embley.Analysis of the Sulfate-Reducing Bacterial and Methanogenic Archaeal Populations in Contrasting Antarctic Sediments[J].Applied and Environmental Microbiology,2003,69(6):3181~3191.
    [113]Kleeberg,A,and Kozerski H P.Phosphorus release in Lake Grober Muggelsee and its implications for lake restoration[J].Hydrobiologia,1997,342/343(17):9~26.
    [114]Lee-Hyung Kim,Euiso Choi,Michael K Stenstrom.Sediment characteristics,phosphorus types and phosphorus release rates between river and lake sediments[J].Chemosphere,2003,50:53~61.
    [115]Lucotte M,D'anglejan B.Processes controlling phosphate adsorption by iron hydroxides in estuaries[J].Chem.Geol.,1988,67:75~83.
    [116]Lucassen ECHET,Smolders AJP,Roelofs JGM.Potential sensitivity of mires to drought,acidification and mobilization of heavy metals:the sediment S/(Ca+Mg)ratio as a diagnostic tool[J].Envrionmental Pollution,2002,120:635~646.
    [117]Martens,C.S.,Harris,R.C.Inhibition of apatite precipitation in the marine environment by magnesium ions.Geochim.Cosmochim[J].Acta.,1970,34:621~625.
    [118]Meyer,J.S.,W.Davison,B.Sundby,et al.Synopsis of discussion session:The effects of variable redox potentials,pH,and light on bioavailability in dynamic water-sediment environments.In Bioavailability physical,chemical,and biological interactions,proceedings of the 13th Pellston Workshop.1994:155~170.Lewis Publishers,Boca Raton,FL.
    [119]Michael R.Palermo.A State of the Overview of Contaminated Sediment Remediation in the United States[J].International Conference on Remediation of Contaminated Sediments,2001,October(10~12),Venice,Italy.
    [120]Miretzky P,Saralegui A,Cirelli A,et al.Aquatic macrophytes potential for the simultaneous removal of heavy metals[J].Chemosphere,2004,57:997.
    [121]Mountfort,D.O.and Asher,R.Roles of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet,Nelson,New,Zealand[J].Appli. Environ.Microbiol,1981,42:252-258.
    [122]Murphy T,Lawon A,Kumagai M,et al.Review of emerging issues in sediment treatment[J].Aquatic Ecosystem Health and Management,1999,2:419-434.
    [123]Nedwell D B.Life in the cooler-starvation in the midst of plenty and implications for microbial polar life.Proceedings of the 8~(th) international symposium on microbial ecology,1999.
    [124]National Research Council.Contaminated Sediments in Ports and Waterways:Cleanup Strategies and Technologies.National Academy Press,Washington D.C.1997.
    [125]O'Day P.A,Carroll S.A.,Randall S,et al.Metal Speciation and Bioavailability in Contaminated Estuary Sediments,Alameda Naval Air Station,California[J].Environmental Science & Technology,2000,34(17):3665-3673.
    [126]Pardieck D.L.,Bouwer E.J.,Stone A.T.Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers:A review[J].Contam.Hydrol.,1992,9:221-242.
    [127]P.Pardo,G.Rauret.Analytical approaches to the determination of phosphorus partitioning patterns in sediments[J].Environmental Monitoring,2003,5:312-318.
    [128]Park,S.S.,and Jaffe,P.R..A numerical model estimate sediment oxygen levels and demand[J].Environ.Qual.,1999,28:1219-1226.
    [129]Patricia Pardo,Gemma Rauret,Jos(?) Fermin L(?)pez-S(?)nchez.Shortened screening method for phosphorus fractionation in sediments-A complementary approach to the standards,measurements and testing harmonised protocol[J].Analytica Chimica Acta,2004(508):201-206.
    [130]Paludan,C.,Jensen,H.S..Sequential extraction of phosphorus in freshwater wetland and lake sediment:significance of humic acids.Wetlands,1995,15:365-373.
    [131]Peters G T and F S Colwell Elects of stream order and season on mineralization of 14C-phenol in streams[J].Hydrobiologia,174(1),1989:79-87.
    [132]Pizarro,J.,Belzile,N.,Filella,M.,Leppard,G.G.,Negre,J.C.,Perret,D.Coagulation/sedimentation of submicron iron particles in a eutrophic lake[J].Water Research,1995,29(2):617-632.
    [133]Proctor L.M.,Toy E.,Lapham L.et al.Enhancement of Orimulsion Bidegradation through the Addition of Natural Marine Carbon Substrates[J].Environ.Sci.Techol.,2001,35:1420-1424.
    [134]Redshaw C.J.,Mason C.F.,Hayes C.R.and Roberts R.D.Factors influencing phosphate exchange across the sediment-water interface of eutrophic reservoirs[J].Hydrobiologia,1990,192:233-245.
    [135]R.J.Allan,A.J.Ball,An Overview of Toxic Contaminants in Water and Sediments of the Great Lakes.[J]Water Quality Research Journal of Canada,1990,25(4):387-505.
    [136]Ripl W.Biochemical oxidation of polluted lake sediment with nitrate-A new restoration method[J].Ambio,1976,5:132-135.
    [137]Roden,E.E.,Edmonds,J.W.Phosphate mobilization in iron-rich anaerobic sediments:microbial Fe(Ⅲ)oxide reduction versus iron-sulfide formation[J].Arch.Hydrobiol,1997,139(3):347~378.
    [138]Rutherford JC,Wilcock RJ,Hickey CW.Deoxygenation in a mobile-bed river:I.Field studies[J].Water Res,1991,25(12):1487~1497.
    [139]Schulz,R.S.Mercury Fixation in Contaminated Sediments as a Management Option at Albany,West Australia[J].Water Science Technology,1989,21(2):45~51.
    [140]Showers,Showers K.B.Water scarcity and urban afica:an overview of urban-rural water linkages[J].World Development,2002,30(4):621~648.
    [141]Skrabal S.A.,Donat J.R.,Burdige D.J..Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments[J].Geochim.Cosmo chimi.Ac,2000,64:1843~1857.
    [142]Song Yigang,Müller German.Sediment-Water Interactions in Anoxic Freshwater Sediments:Mobility of Heavy Metals and Nutrients[J].Springer,1999:3~4.
    [143]Stone M and Droppo 1 G.Distribution of lead,copper and zinc in size-fractionated river bed sediment in two agricultural catchments of southern Ontario,Canada[J].Environmental Pollution,1996,93(3):353~362.
    [144]Storkholm Peter.Sulphate reduction and sulphur cycling in lake sediments:a review[J].Freshwater Biology,2001,46:431~451.
    [145]Stumm W,Morgan J J.Aquatic chemistry:An introduction emphasizing chemical equilibria in natural waters(2nd ed)[M].New York:John Wiley and Sons,1981.
    [146]S(?)dergaard M,Jeppesen E,Jensen J P.Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake[J].Journal of Lake and Reservoir Management,2000,16:195~204.
    [147]Takayuki Sumi et al.Estimation of Ammoniflcation and Ammonium Assimilation in Surficial Coastal and Estuarine Sediments[J].Limnology and Oceanography,1990,35(2):270~286.
    [148]The Incidence and Severity of Sediment Contamination in Surface Waters of the United States:National Sediment Quality Survey,Second Edition[R].EPA-823-R-04-007,2004,11.
    [149]Tessier A,Cambell P G C,Bisson M.Sequential extraction procedure for the speciation of particulate tracemental[J].Analysis Chemistry,1979,27(4):844-851.
    [150]Tiedje J.M.Ecology of Denitrification and Dissimilatory Nitrate Reduction to Ammonium[J].Biology of Anaerobic Microorganism,1988:179-243.
    [151]Todd M.Thornburg and Steve Garbaciak Hart Crowser,Inc.Natural Recovery of Contaminated Sediments—Examples from Puget Sound.National Conference on Management and Treatment of Contaminated Sediments.1997,May,13~14.
    [152]Tohru Seiki,Hirofumi Izawa,Etsuji Date,et al.Sediment oxygen demand in Hiroshima bay[J].Wat.Res.,1994,28(2):385~393.
    [153]Tsui Tack-sang,Leung Kin Man.Bioremediation of sediment of shing mun river,Hong Kong[R].Government of hong kong special adiministrative region,China,2002.
    [154]US EPA.In-Situ Chemical Oxidation.Engineering Issue.Office of Research and Development.EPA/600/R-06/072.2006.
    [155]US EPA,An overview of sediment quality in the United States.Office of Water Regulations and Standards,Washington D C,and EPA Region 5,Chicago,1987,EPA-905-88-002.
    [156]US EPA.ARCS Remediation Guidance Document.Great Lakes National Program Office,Chicago,IL.1994,EPA 905-R-94-003.
    [157]US EPA.Contaminated Sediments:Relevant Statutes and EPA Program Activities.Office of Water,Washington,D.C.1990,EPA 506/6-90/003.
    [158]US EPA.Monitored natural attenuation:USEPA research program-an EPA science advisory board review.Office of the administrator science advisory board.Washington,DC.2001,EPA-SAB-EEC-01-004.
    [159]US EPA.Selecting Remediation Techniques For Contaminated Sediment.Office of Water,Washington,D.C.1993,EPA 823-B93-001.
    [160]US EPA.The Incidence and Severity of Sediment Contamination in Surface Water of the United States-Volume 1:National Sediment Quality Survey.Office of Water,Washington,D.C.1997,EPA 823-R-97-006.
    [161]US EPA,Assessment and Remediation of Contaminated Sediments(ARCS) Program,Remediation documents.1994,EPA 905-194-003.
    [162]Van Derveer W D and Canton S P.Engineering,McMaster University,Ontario,Canada.Selenium sediment toxicity thresholds and derivation of water quality criteria for freshwater biota of western streams[J].Environmental Toxicology Chemistry,1997,16(6):1260-1335.
    [163]Wallschlager D,Desai M V M,Wilken R D.M Spengler.Mercury speciation in floodplain in foodplain soils and sediments along a contaminated river transect[J].Environment Quality,199827(5):1034-1044.
    [164]welsh,B.L.,Eller,F.C..Mechanisms controlling sumertime oxygen depletion in western Long Island Sound Estuaries[M],1991,14(3):265-278.
    [165]Williams,J D H,Jaquet J M,and Thomas R L.Forms of phosphorus in the surficial sediments of Lake Erie[J].Fish.Res.Board Can.,1976,33:413-429.
    [166]Wilkin Richard T,Bischoff Kelly J.Coulometric determination of total sulfur and reduced inorganic sulfur fractions in environmental samples[J].Talanta,2006,70(4):766-773.
    [167]Winfrey,M.R.and Zeikus,J.G.Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments[J].Appli.Environ.Microbiol,1977,33:275-281.
    [168]Yamada,H.,Mitsu,K.,Kazuo,S.,Hara,M.Suppression of phosphate liberation from sediment by using iron slag[J].Water Research,1987,21:325~333.
    [169]Yamagchi T,Moldrup P,Rolston D E,et al.Nitrification in porous media during rapid unsaturated water flow[J].Wat.Res.,1996,30(3):531~540.
    [170]Yu Kuang-Chung,Tsai Li~Jyur,Chen Shih-Hsiung,et al.Chemical binding of heavy metals in anoxic river sediments[J].Water Research,2001,(17):086~4094.
    [171]Zhuang,Y.,H.E.Allen,and G.Fu.1994.Effect of aeration of sediment on cadmium binding[J].Environ.Toxicol.Chem.,13(5):717~724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700