用户名: 密码: 验证码:
钢结构损伤诊断实用方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土木工程结构在长期的服役过程中不可避免地遭受损伤,损伤将导致结构抗力衰减,极端情况下会引发工程事故,造成重大的人员伤亡和财产损失。因此对结构的损伤识别法进行深入的研究意义重大。目前,结构损伤识别研究虽然已取得了一些成果,但可用于工程实践的损伤识别方法却很少。究其原因,多数损伤识别方法存在两个重要缺陷,一是现有的工程检测技术无法为损伤识别方法的实施提供精确的并且数量足够的实测数据,二是多数损伤识别法缺少用于判断结构损伤的代表结构健康状态的基准。针对上述问题,本文提出了三种实用结构损伤诊断方法,并利用钢桁架、钢壳等结构模型的试验初步验证了这些方法的有效性。以下是本文的主要工作。
     1、提出并总结了三种用于结构损伤识别的新方法:对称信号法,动静结合法和乐音准则法。(1)对称信号法是基于对称信号法基本原理的损伤识别方法,该方法适用于结构中满足对称条件的杆件间的损伤识别,它是基于局部检测的损伤识别方法,损伤识别的灵敏度高并可实现结构的损伤定位。(2)动静结合法适用于满足对称条件的多个梁式结构间的损伤诊断,动静结合法本质上实施的是整体结构的静力检测法,但动静结合法依据动、静参数的相关关系可以实现动力测试等代静力检测的效果,从而增强了静力检测法的实用性,其健康基准是我国现行规范中结构变形的限值。(3)乐音准则法是一种基于结构频谱分布规律的损伤识别方法,此方法适用于均质、规则结构的损伤诊断。规则结构的频谱分布具有谱图清晰、峰点分布呈梳齿状的特征,类比乐音现象将这一频谱特征定义为结构的乐音准则。乐音准则即为乐音准则法的结构健康基准。以上三种损伤新方法均具有严格的工程适用条件,无需复杂的反演计算,具备判别损伤的结构健康基准,用于损伤识别的结构参量具有较高的工程测试精度,因此这些方法具有良好的工程实用前景。
     2、对一个典型的梁式钢桁架结构进行了损伤相关的试验研究。设计建造了一个8米长的钢桁架结构,通过不同截面杆件的轮换可构造出多种损伤工况。通过试验获取了钢桁架结构的刚度、固有频率、阻尼、振型等基本结构参数。在参数识别的精度和可靠性上,一阶频率和刚度明显优于其它参数,并且二者的改变量与桁架的损伤程度单调对应,因此用其作为结构损伤识别法研究的损伤标识量。
     3、通过钢桁架的动、静力联合试验验证了动静结合法的有效性。通过杆件组合构造了12个具有不同损伤的桁架结构样本,用试验方法获取了各样本结构的刚度和一阶频率,采用一元正态线性回归的数学模型建立了代表刚度与一阶固有频率相关性的数值关系式。初步验证了动静结合法的有效性。
     4、对称信号法的试验验证及单裂缝损伤模式下两端固支梁的固有频率解析式推导。在钢桁架上选取若干对称杆件进行了四种损伤工况的动力测试,试验结果显示对称信号法能轻易地识别杆件的各类损伤,具有很高的灵敏度。采用一个质量忽略不计的抗扭弹簧来模拟梁中的裂缝损伤,推导了单裂缝固支梁的频率方程,并以钢桁架损伤试验中一根损伤杆为算例,验证了该频率方程的计算效果。
     5、通过三个钢质壳体结构的损伤试验验证了乐音准则法的有效性。用三个相同的钢质壳体结构进行试验,通过振动测试获得了三个钢壳的频谱分布规律。无损的钢壳结构的频谱具有谱图清晰、峰点分布呈梳齿状等特征,这与乐音准则法中乐音准则的特征相符。实施损伤识别时仅需将三个钢壳的频谱置于一个坐标系下进行对比即可轻易地发现结构的损伤。
     6、空间钢网架屋面结构的工程健康诊断。结合两个实际工程的健康检测的实施过程,对网架结构健康诊断中的若干问题进行了总结与分析。对于承载力存在问题的网架结构采用静力加载法可以获得满意的健康诊断效果。振动检测用于结构振动问题的分析十分有效。
The civil engineering structure suffers damage inevitably in the long-term service process. Damage will make the structural resistance weaken and cause some project accidents in the extreme case. Then it will cause great personnel casualties and property losses. Therefore, studying on structural damage identification has significant values. At present, although there are some achievements in damage identification for structures, they couldn’t meet the needs of engineering practices. There are two obvious defects in most damage identification method: 1.Current engineering inspection techniques cannot provide accurate and adequate measured data for the application of damage identification 2.Most of damage identification methods lack baseline which judge structural damage and represent structure in good condition. Based on problems mentioned above, three experimental structural damage detection methods are proposed in the paper, and in order to verify the effectivity of the methods proposed, experiments on the steel structure prototype and steel shell are carried out. The main tasks can be summarized as follows:
     1. It is advanced and summarized three new damage identification methods. These methods are symmetrical signal method, dynamic and static combining method and Musical tone rule method.(1)Symmetrical signal method is a damage identification method based on the basic theory of symmetrical signal. The method based on local detection is applicable to identifying damage in the symmetric member system of structure. The method is of high sensibility, and it can localize the structural damage.(2)Dynamic and static combining method is apply to damage diagnosis involving more beam-type structures which meet the symmetry conditions. It conducts inherently the static detecting method of integral structure. However, based on the correlation between dynamic and static parameters, the effect of complication on static detecting prior to dynamic test can be realized by dynamic and static combining method. So it amplifies the practicality of the static detecting method. Its healthy standard is the allowable deformation of structure in current national code.(3)Musical tone rule method is a damage identification method based on spectrum distribution of structure. This method is applicable to the damage diagnosis of homogeneous and regular structure. The spectrum distribution of regular structure shows the characteristic of clear spectrum and comb-like distribution of peak points. Make an analogy to musical phenomenon, the characteristic is defined as the musical tone rule of structure. The rule is the structural healthy standard for musical tone rule method.
     Three new methods about damage identification are applied with strict engineering conditions. Without complicated inversion Calculation, these methods have the structural healthy standard of damage identification. The structure parameters used in damage identification possess higher precision in engineering tests, so these methods have good practical engineering prospects.
     2. A research for the damage-related experiment on a typical beam steel truss structure has been made. An 8-meter-long steel truss structure is designed and built. Through the rotation of members with different section, it could construct many damage conditions. Through the experiment, stiffness, natural frequency, damping, displacement model, and other basic structural parameters of the steel truss structure are obtained. Based on the accuracy and reliability of parameter identification, the stiffness and first step frequency obviously excel the others. And there is a monotonic relation between the change of them and the damage degree of truss. So the stiffness and first step frequency are proposed for the signature of damage detection in the research of structural damage identification.
     3. The validity of the dynamic static integrated method was verified by the static and dynamic combined experiment of steel truss. Through the members combined, the research constructed twelve truss samples with different damage and acquired the stiffness and first natural frequency of each sample. Then combining the measured results into the dynamic and static parameter general formula of the dynamic static integrated method using unitary normal distribution model, the numerical relation formulas which represent the correlation between the stiffness and first natural frequency were established successfully. All of which have proved the effectivity of this method.
     4. Symmetrical signal method is verified by experiment. The analytical solution of natural frequencies of a beam with two fixed supports is also obtained. The beam was tested under the single crack damage mode. The test selected several symmetrical members on the steel truss, and carried out dynamic test of four damage conditions. The experiment showed that symmetrical signal method could identify various damages easily. The method has very high sensibility. The test analogue the crack damage in a rock with one anti-torsion spring which neglected weight, and deduced the frequency equation of simply supported beam with one crack. When the boundary of the symmetric member meets the doubly-clamped conditions, the roughly region of damage could be inferred by this equation.
     5. The validity of musical tone rule method was verified by the damage experiment of three steel shells. The test used three same steel shells. Through the vibration test, the spectral distribution rule of these shells has been obtained. The frequency spectrum of these steel shells without destructive shows the characteristics of clear spectrum and comb-like distribution of peak points. This is in accordance with the feature of musical tone rule. Implementation of the damage identification could only be placed in a coordinate system, and the structural damage can be found easily.
     6. The project with spatial steel truss structures is diagnosed healthily. The combination of two detecting processes of engineering cases, some problems of health detection in spatial grid structure have been summarized and analyzed. The results of the spatial grid structure detection indicated that static loading method based on structural integral identification can obtain satisfied engineering diagnosis effects. Due to the lack of healthy standard, vibration detecting method is confined in the application of structure Health Diagnosis. Vibration detection for structural vibration analysis is very effective.
引文
[1]王国周,瞿履谦.钢结构原理与设计[M].北京:中国建筑工业出版社,1983.
    [2]高赞明,孙宗光,倪一清.基于振动方法的汲水门大桥损伤检测研究[J].地震工程与工程振动, 2001,21 (4):17-124.
    [3]秦权.桥梁结构的健康监测[J].中国公路学报,2000,13(2):37-42.
    [4]李家伟,陈积懋主编.无损检测手册[M].机械工业出版社,2002.
    [5]马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527.
    [6]韩大建,王文东.基于振动的结构损伤识别方法的近期研究进展[[J] .华南理工大学学报(自然科学版),2003,31 (1): 91-96.
    [7]陈建林,郭杏林.基于神经网络的简支梁损伤检测研究[J].烟台大学学报(自然科学与工程版), Jul. 2001, 14(3):217-223.
    [8]薛松涛,钱宇音,陈镕,王远功.采用二阶频率灵敏度的损伤识别和试验[J].同济大学学报, Mar. 2003, 31(3):263-267.
    [9]朱宏平,雷晓春.运用波传播和子结构技术检测结构损伤[J].振动测试与诊断, Mar. 2003, 23(1):21-25.
    [10]郭国会.桥梁结构动力损伤诊断方法研究[D] .长沙:湖南大学上木工程学院,2001.
    [11]李德葆,陆秋海,秦权.承弯结构的曲率模态分析[J].清华大学学报(自然科学版), 2002, 42(2):224-227.
    [12]邓焱,严普强.桥梁结构损伤的振动模态检测[J].振动测试与诊断, 1999, 19(3):157-163.
    [13]邓炎,严普强.梁及桥梁应变模态与损伤测量的新方法[J].清华大学学报(自然科学版), 2000, 40(11):123-127.
    [14]任淑芳,郭国会.连续梁桥损伤诊断的单元模态能量比法研究[J].昆明理工大学学报, 2002, 5(6):110-114.
    [15]李国强,郝坤超,陆烨.弯剪型悬臂结构损伤识别的柔度法[J].地震工程与工程振动,1999,19(1):31-37.
    [16]綦宝晖,邬瑞峰,李桂华等.基于柔度阵悬臂弯剪型建筑结构损伤识别方法[J].工业建筑,2000, 30 (4) : 64-65.
    [17]綦宝晖,邬瑞峰,蔡贤辉等.一种桁架结构损伤识别的柔度阵法[J].计算力学学报,2001, 18(1):42-47.
    [18]赵媛,陆秋海.简支梁桥多位置损伤的检测方法[J],清华大学学报(自然科学版), 2002, 42(4):434-438.
    [19]曹晖,Michael I. F.基于模态柔度曲率的损伤检测方法.工程力学[J],2006, 23 (4) : 33-3.
    [20]段忠东,闫桂荣,欧进萍等.结构比例柔度矩阵[J].哈尔滨工业大学学报,2006, 38 (8) :1236-1238.
    [21]袁颖,林皋,闫东明等.基于柔度投影法和遗传算法的结构损伤识别方法研究[J].振动与冲击,2006, 25 (3) :61-65.
    [22]杨华.基于柔度矩阵法的结构损伤识别[J].吉林大学学报,2008, 46 (2) : 42-244.
    [23]荆龙江,项贻强.基于柔度矩阵法的大跨斜拉桥主梁的损伤识别[J].浙江大学学报,2008, 48 (1):164-169.
    [24]张德文,魏阜旋.模型修正与破损诊断[M] .北京:科学出版社,1999.
    [25]瞿伟廉,陈伟,李秋胜.基于神经网络技术的复杂框架结构节点损伤的两步诊断法[J].土木工程学报,2003, 36(5): 37-45.
    [26]孙剑平,朱晞.结构控制方法评述[J].力学进展, 2000 ,30 (4):495-505.
    [27]梁艳春.计算智能与力学反问题中的若干问题[J] .力学进展, 2000, 30(3):321-331.
    [28]朱宏平,张源.基于自适应BP神经网络的结构损伤检测[J].力学学报,2003, 35 (1) :110-116.
    [29]高赞明,孙宗光,倪一清.基于振动方法的汲水门大桥损伤检测研究[J].地震工程与工程振动, 2001, 21 (4):117-124.
    [30]易伟建,刘霞.基于遗传算法的结构损伤诊断研究[J].工程力学,2001,18(2):64-71.
    [31]郭惠勇,张陵,蒋建.基于遗传算法的二阶段结构损伤探测方法[J].西安交通大学学报,2005,39(5):485-489.
    [32]邹大力,屈福政.基于修正模态的混合遗传算法结构损伤识别.大连理工大学学报,2005,45(3):362-365.
    [33]姜绍飞,刘明,倪一清.大跨悬索桥损伤定位的自适应概率神经网络研究[J].土木工程学报,2003, 36(8):74-78.
    [34]瞿伟廉,陈伟,李秋胜.基于神经网络技术的复杂框架结构节点损伤的两步诊断法[J].土木工程学报,2003,36(5):37-45.
    [35]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [36]冉启文著.小波变换与分数傅里叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [37] Stephane Mallat著,杨力华,戴道清,黄文良,湛秋辉译.信号处理的小波导引.北京:机械工业出版社,2002,9.
    [38]潘泉,张磊等著.小波滤波方法及应用[M].北京:清华大学出版社2005,9
    [39]徐洪钟,吴中如.基于小波分析的大坝观测数据异常值检测[J].水电能源科学, 2002, 20 (4):20-21.
    [40]李书进,铃木祥之.小波分析在结构健康诊断中的应用[J].华中科技大学学报(城市科学版), 2003, 20(2):32-35.
    [41]李洪泉,董亮,吕西林.基于小波变换的结构损伤识别与实验研究[J].土木工程学报,2003, 36 (5):52-57.
    [42]任宜春,马石城,林琳.移动荷载作用下梁裂缝识别的小波分析方法研究[J].振动与冲击,2004, 23 (2):82-85.
    [43]谭善文,秦树人,汤宝平.Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报, 2004, 27(2):9-12.
    [44]石春香,罗奇峰,施卫星.基于Hilbert-Huang变换的结构损伤诊断[J].同济大学学报(自然科学版),2005, 33 (1):16-20.
    [45]钟佑明,秦树人,汤宝平.Hilbert-Huang变换中的理论研究[J].振动与冲击, 2002, 21(4):13-17.
    [46]丁麒,孟光,李鸿光.基于Hilbert-Huang变换的梁结构损伤识别方法研究[J].振动与冲击,2009,28(9):180-183.
    [47]裴强.结构健康诊断新方法研究[D].哈尔滨:中国地震局工程力学研究所,2005.
    [48]大崎顺彦著,谢礼立,周雍年,袁一凡翻译.振动理论[M].北京:地震出版社, 1990
    [49]廖振鹏著.工程波动理论导论(第二版)[M].北京:科学出版社, 2002.
    [50] Anil K.Chopra.结构动力学理论及其在地震工程中应用(第二版) [M].北京:清华大学,2005.
    [51]张清华.基于概率可靠度的结构损伤识别理论研究及应用[D].成都:西南交通大学,2006.
    [52]陈长征,罗跃纲等编著.结构损伤检测与智能诊断[M].北京:科学出版社,2001.
    [53]李国强,李杰.工程结构动力检测理论与应用[M].北京:科学出版社,2002.
    [54]卢书楠.对称信号法在健康检测中的应用研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [55]杜功焕,龚秀芬,朱哲民.声学基础[M].南京:南京大学出版社,2001.
    [56]李重光.基本乐理简明教程[M].北京:人民音乐出版社,2007.
    [57]朱伯芳著.有限元原理与应用[M].北京:中国水利水电出版社,2000.
    [58]唐小兵.结构损伤识别及数值模拟[D].武汉:武汉理工大学,2004.
    [59]刘伟,高维成.单层短程线网壳结构模型试验研究[J].实验力学, 2006,21(4):98-101.
    [60]王金国,郭迅.大跨空间钢网架结构静和动力学性能实验研究[J].世界地震工程,2008,24(4):76-79.
    [61]管迪华.模态分析技术[M].北京:清华大学出版社,1996.
    [62]顾培英,邓昌,吴福生编著。结构模态分析及其损伤诊断[M].南京:东南大学出版社,2008.
    [63] Aktan A.E, Pervizpour M, Catbas N, Grimmelsman K, Barrish R, Curtis J. and Qin X. Information Technology Research for Health Monitoring of Bridge Systems[C]. Proc. of the 3rd International Workshop on Structural Health Monitoring: The Demands and Challenges, Stanford, CA, USA, September 12-14, 2001 ,1441-1465.
    [64] Muria Vila D,Gomez R. and King C. Dynamic Structural Properties of Cable Stayed Tampico Bridge[J]. Journal of Structural Engineering, ASCE, 1991, 117(11):3396-3416.
    [65] Lim Tae W. and Kashangaki Thomas A.L. Structural Damage Detection of Space Truss Structure Using Best Achievable Eigenvectors [J]. American Institute of Aeronautics and Astronautics (AIAA) Journal, 1994, 32(5):1049-1057.
    [66] Jinping Ou. Research and Practice of Intelligent health monitoring Systems for Civil Infrastructures in mainland China [C]. Proc. of Third China-Japan-US Symposium on Structural Health Monitoring and Control, Dalian, China, Oct. 13-14, 2004:3-15.
    [67] Patil D.P Maiti S.K. Detection of multiple cracks using frequency measurements [J]. Engineering Fracture Mechanics, August 2003, 70(12):1553-1572.
    [68] Rytter A. Vibration based inspection of civil engineering structures[C]. Dissertation Department of Building Technology and Structural Engineering, Aalborg University, Denmark, 1993.
    [69] Andrew D. Dimarogonas . Vibration of Cracked Structures: a State of the Art Review[J]. Engineering Fracture Mechanics, 1996,55(5): 831-857.
    [70] Sohn H, Fairer C.R, Hemez F.M. A Review of Structural Health Monitoring Literature:1996-2001 [R]. LANL Report LA-13976-MS,2003.
    [71] Doebling S. W, Farrar C. R, Prime M.B. Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their VibrationCharacteristics:A Literature Review[R]. LANA Report LA-13070-MS, 1996.
    [72] Adams R.D, Cawley P, Pye C.J. and Stone B.J.A vibration technique for nondestructively assessing the integrity of structures[J]. Journal of Mechanical Engineering Science, 1978, 20, 93-100.
    [73] Hearn G. and Testa R.B, Modal analysis for damage detection in structures[J], Journal of Structural Engineering, ASCE, 1991, 117(10):3042-3063.
    [74] Messina A, Jones I.A, Williams E.J. Damage detection and localization using natural frequency changes[C] Identification in Engineering Systems: Proceedings of the International Conference, Swansea, U.K., 1996, 67-76.
    [75] Williams C. and Salaswu O.S. Damping as a damage indicator parameter[C], Proc. of the 15th International Modal Analysis Conference, 1997, Vol. II:1531-1536.
    [76] Morrasi A. and Rovere A. Localizing a notch in a steel frame from frequency measurements[J]. Journal of Engineering Mechanics, ASCE, 1997, 123(5):422-432.
    [77] Hu L, Jiang J.S. and Gu S.N. A new energy diagnostic method for damage detection of composite laminated plates[J]. Chinese Journal of Vibration Engineering, 1991, 4(4):54-58.
    [78] Patil D.P. and Maiti S.K. Detection of multiple cracks using frequency measurements[J]. Engineering Fracture Mechanics, August 2003, 70(12):1553-1572.
    [79] Stubbs N, roome B, Osegueda R. Nondestructive construction error detection in largespace structures [J]. AIAA Jounral , 1990,28(1):146-152.
    [80] Stubbs N, Osegueda R. Global non-destructive damage evaluation in solids[J]. The International of Analytical and Experimental Modal Analysis,1990,5(2):67-79.
    [81] Stubbs N, Osegueda R. Global non-destructive damage evaluation in solids-experimental verification[J]. The International of Analytical and Experimental Modal Analysis, 1990,5(2): 81-97.
    [82] Salawu O.S. Detection of structural damage through changes in frequency: a review[J], Engineering Structures, 1997, 19(9):718-723.
    [83] Yong Xia, Hong Hao, James M. W. Brownjohn and Pin-Qi Xia. Damage identification of structures with uncertain frequency and modal shape data [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(5):1053-1066.
    [84] Bails C, Castellani L, Coppotelli G. Generalization of non-destructive detection and localization in a eronautical structures [C]. Proceedings of the 13th International Modal Analysis Confeernce, 1995,428-431
    [85] Salawu O.S. Detection of structural damage through changes in frequency: a review [J].Engineering Structures,1997,19(9):718-723.
    [86] M.M.F.Yuen. A numerical study of the eigenparameters of a damaged cantilever [J].Journal of sound and vibration, 1985, 103:301-310.
    [87]Shi Z.Y, Law S.S. and Zhang L.M. Damage localization by directly using incomplete mode shapes [J]. Journal of Engineering Mechanics, ASCE, 2000, 126(6):656-660.
    [88] R.J.Allemang, D.L.Brown. A corerction coefficient for modal vector analysis[C].Proceedings of the 1th International Modal Analysis Confeernce, 1982,110-116.
    [89] Lieven N A J. Spatial correlation of mode shapes, the coordinate modal assurance criterion (COMAC) [C].Proceedings of 6th IMAC, 1988:690-695.
    [90] W.M.West. Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen [C]. Proceedings of Air Force on Aircraft Structural Integrity,1984:1-6
    [91] C.H.J.Fox. The location of defects in structures: a comparison of the use of a natural frequency and mode shape data[C]. Proceedings of the 10th International Modal Analysis Conference, 1992: 522-528
    [92] Pandey A.K, Biswas M. and Samman M.M. Damage detection from changes in curvature mode shapes [J]. Journal of Sound and Vibration, 1991, 145(2):321-332.
    [93] Qiang Pei and Xun Guo. Damage Localization in a Simple Supported Beam by Strain Modal Analysis[C]. Third China-Japan-US Symposium on Structural Health Monitoring and Control and Fourth Chinese National Conference on Structural Control, Dalian, China, October 14-15, 2004: 221.
    [94] Chen J. C,Garba J.A. On-orbit damage assessment for large space structures[J]. AIAA Journal,1988, 26 (9):1119-1126.
    [95] Cornwell P.J, Doebling S.W. and Farrar C.R. Application of the Strain Energy Damage Detection Method to Plate-Like Structures[J]. Journal of Sound and Vibration, 1999, 224(2):359-374.
    [96] Stubbs N., J.T. Kim. Field Verification of a Nondestructive Damage Localization and Severity Estimation Algorithm[R]. Texas A & M University Report prepared for New Mexico State University, 1994.
    [97] Stubbs N, Kim J.T. and Farrar C.R. Field Verification of a Nondestructive Damage Localization and Severity Estimation Algorithm[C]. Proc. 13th International Modal Analysis Conference, Nashville, TN, 1995:210-218.
    [98] Stubbs N, Kim J.T. and Tapole K. An Efficient and Robust Algorithm for Damage Localization in Offshore Platforms[J] 10th ASCE Structures Congress, San Antonio, Texas, 1992:543-546.
    [99] Stubbs N, Kim J. T. Damage localization in structures without baseline modal parameters[J]. AIAA Journal, 1996, 34 (8):1644-1649.
    [100]Shi Z.Y, Law S.S, Zhang L.M. Structural damage localization from modal strain energy change[J]. Journal of Sound and Vibration, 1998, 218(5):825-844.
    [101]Shi Z.Y, Law S.S, Zhang L.M. Structural damage detection from modal strain energy change[J]. Journal of Engineering Mechanics, ASCE, 2000, 126(12):1216-1223.
    [102]Shi Z.Y, Law S.S, Zhang L.M. Improved damage quantification from elemental modal strain energy change[J]. Journal of Engineering Mechanics, ASCE, 2002, 128(5):521-529.
    [103]Farrar C.R. and Jauregui D.A. Comparative study of damage identification algorithms applied to a bridge: II. Numerical study[J]. Smart Materials and Structures, 1998, 7(5):720-731.
    [104]Farrar C.R. and Jauregui D.A. Comparative study of damage identification algorithms applied to a bridge: II. Numerical study[J]. Smart Materials and Structures, 1998, 7(5):720-731.
    [105]Wang B.S, Liang X.B.Comparative study of damage indices in application toa long-span suspension bridge [C]. Advances in Structural Dynamics, 2000: 1085-1092
    [106]Chen J.C, Garba J.A. Analytical model improvement using model test results[J]. AIAA Journal,1998, 18:684-690.
    [107]Gysin H.P. Critical application of the error matrix method for localization of finite element modeling inaccuracies[C]. Proceedings of the 4th International Modal Analysis Conference, 1986, 2:1339-1351.
    [108]Pandey A.K, Biswas M, Samman M.M. Damage detection from changes in curvature mode shapes[J]. Journal of Sound and Vibration, 1991, 145(2):321-332.
    [109]Pandey A.K, Biswas M. Damage detection from changes in flexibility. Journal of Sound and Vibration, 1994, 169 (1):3-17.
    [110]Rahavendrachar M, Aktan A. Flexibility by multi-reference impact testing for bridge diagnostics[J]. Journal of Structural Engineering, 1992, 118(8):2186-2203.
    [111]Zhao J, Dewolf J.T. Sensitivity study for vibration parameters used in damagedetection[J].Journal of Structural Engineering, 1999, 125(4):410-416.
    [112]Sohn H. and Law K.H. A Bayesian Probabilistic Damage Detection Using Load-Dependent Ritz Vectors[C].Proc. SPIE Vol. 3243, Proceedings of the 16th International Modal Analysis Conference, Santa Barbara, CA, USA, February 2-5, 1998:374-380.
    [113]Sohn H. and Law K.H. Application of Ritz Vectors to Damage Detection for a Grid-Type Bridge Model [C]. Proc. SPIE Vol. 3727, Proceedings of the 17th International Modal Analysis Conference, Kissimmee, FL, USA, February 8-11, 1999:615-621.
    [114]Sohn H. and Law K.H. Damage Diagnosis Using Experimental Ritz Vectors [J]. Journal of Engineering Mechanics, ASCE, 2001, 127(11):1184-1193.
    [115]Sohn H. and Law K.H. Extraction of Ritz Vectors from Vibration Test Data[J]. Mechanical Systems and Signal Processing, 2001, 15(1):213-226.
    [116]Sohn H. and Law K.H. Flexibility Based Extraction of Ritz Vectors and Their Application to Damage Diagnosis [C]. Proc. of the 2nd International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, September 8-10, 1999.
    [117]Yong Gao and Spencer Jr .B.F. Flexibility-Based Damage Localization Employing Ambient Vibration [C], 15th ASCE Engineering Mechanics Conference, June 2-5, 2002, Columbia University, New York, NY.
    [118]Yong Gao and Spencer Jr. B.F. Damage Localization under Ambient Vibration Using Changes in Flexibility[J].Earthquake Engineering and Engineering Vibration, June 2002, 1(1):136-144.
    [119]Zimmerman D.C. and Kaouk M. Structural Damage Detection Using a Minimum Rank Update Theory [J]. Jounral of Vibration and Acoustics,1994,116:222-232.
    [120]Kaouk M , Zimmerman D.C. Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory [J]. AIAA Journal, 1994,32(4):836-842.
    [121]Zimmerman D.C, Smith S.W, Kim H.M. An Experimental Study of Structural Health Monitoring Using Incomplete Measurements [J]. Jounral of Vibration and Acoustics, 1996, 118(4):543-550.
    [122]Baruch H, Bar Itzhack I.Y. Optimum weighted orthogonalization of measured modes (in dynamic structural analysis)[J].AIAA Journal, 1978, 16 (4):346-351.
    [123]Berman A, Nagy E.J. Improvement of large analytical model using test data [J]. AIAA Journal,1983, 26 (9):1168-1173.
    [124]Abdalla M.O, Grigoriadis K.M, Zimmerman D.C. Enhanced structural damage detection using alternating projection methods[J]. AIAA Journal, 1998, 36(7):1305-1311.
    [125]Liu PL. Identification and damge detection of trusses using modal data[J]. Journal of Engineering, 1995,121(4):599-608.
    [126]Zimmerman D.C, Kaouk M. Structural Damage Detection Using a Minimum Rank Update Theory [J]. Jounral of Vibration and Acoustics,1994,116:222-232.
    [127]Zimmerman D.C, Smith S.W, Kim H.M. An Experimental Study of Structural Health Monitoring Using Incomplete Measurements [J]. Jounral of Vibration and Acoustics, 1996, 118(4):543-550.
    [128]Kaouk M, Zimmerman D.C. Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory [J]. AIAA Journal, 1994,32(4):836-842.
    [129]Doebling S.W. Minimum-rank optimal update of elemental stifness parameters for structural damage identification [J]. AIAA Journal,1996,34(12):26I5-2621。
    [130] Chen G.C, Karba J.A. Analytical model improvement using modal test results[J].AIAA Journal,1980,18(6):684-690.
    [131]Norris MA, Meirovitch L. On the problem of modeling for parameter identification in distributed structures[J]. International Journal for Numerical Methods in Engineering,1989,28:2451-2463
    [132]Lam H.F, Ko J.M, Wong C.W. Localization of damaged structural connections based on Experimental modal and sensitivity analysis [J]. Jounral of Sound and Vibration, 1998,210(1): 91-115.
    [133] Messina A, Williams E.J, lrontursi T. Structural damage detection by a sensitivity and statistical-based method [J].Journal of Sound and Vibration, 1998,216(5):791-808.
    [134] Ricles J.M. Nondestructive structural damage detection in flexible space structures using vibration characterization[R]. NASA report CR-185670.
    [135] Cherki A, Lallemand B, Tison T. Improvement of analytical model using uncertain test data [J]. AIAA Journal, 1999, 37(4):489-495.
    [136] Sanayei M, Scampoli S.F. Structural element stiffness identification from static test data[J]. Journal of Engineering Mechanics, 1991, 117 (5):1021-1036.
    [137] Sanayei M, Onipede O. Assessment of Structures using static test data[J]. AIAA Journal,1991, 29 (7):1156-1179.
    [138]Lim T.W, Kashangaki T.A.L. Structural damage detection of space truss structure using best achievable eigenvectors[J]. AIAA Journal, 1994, 32(5):1049-1057.
    [139]Lim T.W. Structural damage detection using constrained eigenstructure assignment[J].Journal of Guidance, Control, and Dynamics,1995,18(3):411-418.
    [140]Zimmerman D.C, Kaouk M. Eigenstructure assignment approach for structural damage detection[J]. AIAA Journal, 1992, 30 (7):1848-1855.
    [141]Schulz M.H, Pai P.F and Abdelnaser A.S. Frequency response function assignment technique for structural damage identification[C]. Proceedings of the 14th International Modal Analysis Conference, 1996:1285-1291.
    [142]Lindner D.K, Goff R. Damage detection Location and estimation for space trusses[C]. SPIE Smart Structures and Intelligent Systems, 1993:1028-1039.
    [143]Cobb R.G, Liebst B.S. Structural damage identification using assigned partial eigenstructure[J]. AIAA Journal, 1997,35 (1):152-158.
    [144]Shi Z.Y, Law S.S, Zhang L.M. Structural damage detection from modal strain energy change [J]. Journalof Engineering Mechanics,2000,126(12):1216-1223.
    [145]Kim H.M, Bartkowicz T.J. A two-step structural damage detection approach with limited instrumentation [J]. Jounral of Vibration and Acoustics,1997, 119(2): 258-264.
    [146]Doebling S.W, Hemez F.M, Peterson L.D, and Farhat C. Improved damage location accuracy using strain energy-based mode selection criteria[J]. AIAA Journal, 1997,35(4): 693-699.
    [147]Law S.S, Shi Z.Y ,Zhang L.M. Structural damage detection from Incomplete and noisy modal test data[J]. Journal of Engineering Mechanics, 1998, 124(11):1280-1288.
    [148]Shi Z.Y, Law S.S , Zhang L.M. Damage localization by directly using incomplete mode shapes[J]. Journal of Engineering Mechanics, 2000, 126(6):656-660.
    [149]Barai S.V, Pandey P.C. Vibration signature analysis using artificial neural networks[J].Journal of Computing in Civil Engineering, ASCE, 1995, 9(4):259-265.
    [150]Venkatasubramanian V, Chan K. A neural network methodology for process fault diagnosis[J].AICHE Journal, 1989, 35 (12):1993-2002.
    [151]Wu X, Ghabousisi J, Garret J.H. Use of neural networks in prediction of structural damage[J]. Computers & Structures,1992,42(4): 649-659.
    [152]Szewczyk Z. P. and Hajela P. Damage detection in structures based on feature-sensitive neural networks[J]. J.Comput. Civ. Eng, 1994, 8 (2):163-178.
    [153]Elkordy M.F, Chang K.C, Lee G.C. Neural networks trained by analytical simulateddamage states[J]. Journal of Computing in Civil Engineering, 1993, 7(2):130-145.
    [154]Kaminski P.C. The approximate location of damage though the analysis of natural frequencies with artificial neural networks. Journal of Process Mechanical Engineering, 1995, 209, 117-123.
    [155]Barai S.V, Pandey P.C. Vibration signature analysis using artificial neural networks[J].Journal of Computing in Civil Engineering,1995,9(4):259-265
    [156]Kirkegaard P.H, Rytter A. The use of neural networks for damage detection and location in a steel member[C]. Neural networks and Combinatorial optimization in Civil and Structural Engineering. Edinburgh, UK, 1993:1-9.
    [157]Masri S.F, Nakamura M, Chassiakos A.G. Neural network approach to detection of changes in structural parameters[J]. Jounral of Engineering Mechanics,1996,122(4): 350-360.
    [158]Masri S.F, Smyth A.W, Chassiakos A.G. Appilcaiton of neural net works for detection of changes in nonlinear system[J]. Jounral of Engmeering Mechanics,2000, 126(7): 666-676.
    [159]Chung-Huei T and Deh-Shiu H. Diagnosis of Reinforced Concrete Structural Damage Based on Displacement Time History Using the Back-propagation Neural Network Technique[J]. Journal of Computing in Civil Engineering, January 2002, 16(1):49-58.
    [160]Ko J.M, Ni Y.Q, Zhou X.T. and Wang J.Y.Structural Damage Alarming in Ting Kau Bridge Using Auto-Associative Neural Networks[C]. Advances in Structural Dynamics, edited by J. M. Ko and Y.L. Xu, Vol. II., 1021-1028.
    [161]Holland J.H. Adaptation in Natural and Artificial Systems[M]. The University of Michigan Press, Ann Arbor, 1975.
    [162]Goldberg D.E. Genetic algorithms in search, optimization and machine learning[M]. New York: Addison-Wesley Publishing Company INC., 1989.
    [163]Larson C.B. and Zimmerman D.C. Structural Model Refinement Using a Genetic Algorithm Approach[C]. 11th International Modal Analysis Conference, Kissimmee, Florida, 1993, 1095-1101
    [164]Mares C. and Surace C. An Application of Genetic Algorithms to Identify Damage in Elastic Structures[J]. Journal of Sound and Vibration, 1996, 195(2):195-215.
    [165]Chiang D.Y, Lai W.Y. Structural damage detection using the simulated evolution method[J].AIAA Journal, 1999, 37 (10):1331-1333.
    [166]Gabor D. Theory of Communication[J], J. IEEE, 1946, 93: 429-457.
    [167]Adriana Hera and Zhikun Hou. Wavelet-BASED Approach for ASCE Structural Health Monitoring Benchmark Studies[C]. the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, September 12-14, 2001, 498-507.
    [168]Hou Z, Noori M. and Amand R. St. Wavelet-Based Approach for Structural Damage Detection[J]. Journal of Engineering Mechanics, ASCE, 2000, 126(7):677-683.
    [169]Kim H, Melhem H. Damage detection of structures by wavelet analysis[J]. Engineering Structures, 2004,(26):347-362.
    [170]Ovanesove A.V. and Suarez L.E. Applications of wavelet transforms to damage detection in frame structures[J]. Engineering Structures, 2004, 26:39-49.
    [171]Han J.G, Ren W.X, Sun Z.S. Wavelet packet based damage identification of beam structures[J]. International Journal of Solids and Structures, 2005, 42:6610-6627.
    [172]Huang N.E, Shen Z, Long S.R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society of London, 1998, A454:903-995.
    [173]Huang N.E, Shen Z, Long S.R. A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics, 1999, 31:417-457.
    [174]Fildman M. Non-linear System Vibration and Analysis using Hilbert Transform: I Free Vibration Analysis Method FREEVIB[J]. Mechanical Systems and Signal Processing, 1994, 8(2):119-127.
    [175] Fildman M. Non-linear System Vibration and Analysis using Hilbert Transform: II Forced Vibration Analysis Method FORCEVIB[J]. Mechanical Systems and Signal Processing, 1994, 8(3):309-318.
    [176]Fildman M.Vibration Analysis of Non-Symmetric Elastic Force Systems Via The Hilbert Transform[C].Proc. of the 15th IMAC, International Modal Analysis Conference, Orlando, FL, 1997, Vol. I, 1017-1022.
    [177]Fildman M. Non-Linear Free Vibration Identification Via The Hilbert Transform[J]. Journal of Sound and Vibration, 1997, 208(3):475-489.
    [178]Chau-Huei Chen, Cheng-Ping Li and Ta-Liang Teng. Surface-Wave Dispersion Measurements Using Hilbert-Huang Transform[J]. Terrestrial, Atmospheric and Oceanic Sciences (TAO), 2002, 13(2):171-184.
    [179]Vincent H.T ,Hu S.L.J. and Hou Z. Damage detection using empirical mode decomposition method and a comparison with wavelet analysis[C]. Proceedings of the 2nd International Workshop on Structural Health Monitoring, 2000:891-900.
    [180]Yang J.N, Lei Y. and Huang N.E. Damage Identification of Civil Engineering Structures Using Hilbert-Huang Transform[C].Edited by Fu-Kuo Chang, Proc. of the 3rd International workshop on Structural Health Monitoring: The Demands and Challenges, Stanford University, Stanford, CA, September 12-14, 2001, 544-553.
    [181]Yang J.N, Lei Y, Lin S, et al. Hilbert-Huang based approach for structural damage detection[J]. Journal of Engineering Mechanics, 2004, 130(1):85-95.
    [182]Xun Guo, Spencer B.F, Shunan Lu. Application of the clan member signal method in structural damage detection[J].Earthquake Engineering and Engineering Vibration,2007, 7(1): 29-34.
    [183]Xun Guo, Spencer B.F, Shunan Lu. Symmetrical Signal Method and Its Application In Structural Damage Detection[C]. 3rd ANCRiSST Workshop on Advanced Smart Materials and Smart Structures Technology, Reno, USA, May 29-30, 2006, 80
    [184]Rizos P.F, Aspragathos N. and Andrew D. Dimarogonas. Identification of Crack Location and Magnitude in a Cantilever Beam from the Vibration Modes[J].Journal of Sound and Vibration, 1990, 138(3):381-388.
    [185]Bovsunovskii A.P. and Matveev V.V. Vibration Characteristics of a Fatigue Damage of Beam-type Structural Components[J]. Strength of Materials, 2002, 34(1):35-48.
    [186]Chondros T.G, Andrew D. Dimarogonas and Yao J. Vibration of a Beam with a Breathing Crack[J]. Journal of Sound and Vibration, 2001, 239(1):57-67.
    [187]Robert Y. Liang, Jialou Hu and Fred Choy. Theoretical Study of Crack-induced Eigenfrequency Changes on Beam Structures[J]. Journal of Engineering Mechanics, ASCE, 1992, 118(2):384-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700