用户名: 密码: 验证码:
基于混合量测的电力系统分布式状态估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确的状态信息对电力系统调度、安全分析和运行控制至关重要,但由于电力系统规模庞大且结构复杂,难以通过直接测量手段完整地得到精确的系统状态。普遍的做法是以SCADA量测为基础,通过最优估计方法来尽可能准确地估计出系统当前时刻的状态。然而,随着电网规模的不断扩大,以及电网建设环境、运行管理环境的日趋复杂化,电网安全运行面临着更加严峻的形势,对状态估计结果的准确性水平和估计计算的效率均提出了更高的要求,迫切需要对传统的以SCADA量测为基础的静态状态估计方法进行改进,以便为在线的安全分析及运行控制提供精度更高、实时性更、好的数据支持。
     与静态状态估计相比,动态状态估计具有预测功能,能够为系统安全评估、状态预测、预防控制等在线功能提供更好的支持,因而具有更大的应用价值,值得深入研究。WAMS系统的出现带来了精度更高、更新速度更快且时间上严格同步的相量量测,为动态状态估计的发展带来了新的契机,但出于技术经济性考虑,短期内还难以达到电网完全可观测的水平,如何在动态状态估计中有效利用WAMS量测数据是当前必须面对和解决的问题。此外,由于动态状态估计具有更高的计算复杂度,为保证其计算效率满足在线应用的需要,如何利用有效的计算技术来提高状态估计的效率也是当前应该重点研究的课题。并行处理技术的发展为提高状态估计的计算效率带来了希望,其中,分布式计算作为并行处理技术的一个分支,由于计算模式本身更适合于电力系统自身分层分区控制的现状,因而具有更好的发展前景。基于以上认识,本文主要开展了以下几个方面的工作:
     首先,回顾了电力系统状态估计的历史,总结了当前主要的状态估计算法;通过分析现代大电网的特点及其面临的安全生产局面,指出动态状态估计研究和分布式状态估计研究的必要性和重要性。
     结合WAMS系统研究、开发实际,对WAMS系统相关技术进行全面的研究,针对频率漂移和发电机参数误差分别给出了相应的相角和功角测量修正算法;提出并实现了利用发电机鉴相信号实现发电机内电势测量从而实现发电机功角直接测量的方法;针对SPDNet各个传输环节的特点建立了改进的传输延迟时间评估模型,提出并建立了2M数字专线和SPDNet互为补充的WAMS系统通信方式。
     对国内外PMU布点优化思想和实际系统布点建设情况进行了全面的分析,首次将PMU布点工作归纳、划分为四个阶段,并明确界定了国内同类工作所处的阶段;提出并建立了线性可观测度的概念和定义;建立了PMU装置的概念模型,并基于该模型建立了PMU布点方案相关的投资函数;从投资回报的角度,建立了考虑投资回报比最大化的寻优目标函数,为现阶段PMU布点工作建立了合理的评价标准,并通过不同算例的研究说明了如何基于投资回报比的适应度函数来决定投资规划。研究的目的是为PMU布点理论研究和实际的工程建设之间建立定量分析的数学桥梁,研究成果对PMU布点工作具有现实指导意义。
     对现有基于混合量测的状态估计和分布式状态估计研究成果进行了全面的分析,确定了适用于本文的混合量测系统构建方法;针对现有分布式状态估计研究成果的不足,提出了一种新的分布式状态估计计算方案,通过将计算任务按照地域分布自然分解,实现了各区域量测等效变换的独立、并行处理,有效地提高了状态估计的计算效率;此外,充分考虑到量测延迟对状态估计的影响,基于考虑随机时延的动态状态估计算法,以各区域量测延迟统计特性为基础,通过为各区域量测引入不同的量测延迟概率矩阵α,有效地解决了不同区域量测延迟的问题,提高了状态估计的性能。
     最后,将多智能体(Agent)技术应用于本文课题,提出了适用于课题研究内容的Agent定义,构建了基于多Agent的分布式状态估计系统框架,研究了各Agent的结构模型并完成了其功能设计;对系统的运行机制进行了深入的研究,提出了进一步提高系统运行效率的思路。本文对系统关键部分的功能和算法实现了Agent级的封装,通过Agent之间的协作实现了计算任务的合理分解,能够在不改变现有各系统结构的情况下,仅增加部分软件模块即可实现分布式状态估计系统,对实际系统的开发具有借鉴意义。
The accurate information of the operating state of the power system is quite important for the power system dispatching, security analysis and control. However, since the power system is normally very large and its structure is also very complex, it is difficult to obtain the status of the power system precisely. Generally, based on the measurement of the SCADA, the state of the power system is estimated using the optimal state estimation algorithm. With the development of the modern power system, the construction and management of the power system become more and more complex, and it is subsequently difficult to run the power system safely. In this condition, the accuracy and the efficiency of the state estimation (SE) have to be improved, so as to supply better information of the power system for the on-line stability analysis and operation control.
     Compared with the static state estimation, the dynamic state estimation (DSE) can predict the status of the power system in the next time step, which supports the implementation of the on-line system security evaluation, status prediction and preventive control. Hence, it is more suitable for engineering application, and worth to be investigated further. With the development of the wide area measurement system (WAMS), the phasor of the state variables can be measured with higher accuracy and quicker updating speed. If the measurement of the WAMS can be employed in the DSE, the accuracy of the state estimation can be significant improved. Presently, for the reasons of the economics and techniques, the WAMS system has not covered all the power grid and the status of the power system can not be fully measured by the WAMS system. Hence, how to apply the measurement of the WAMS to the DSE effectively needs to be studied further. Additionally, since the computation burden of the DSE is quite heavy, the efficiency of the computation of the DSE needs to be improved so as to satisfy the on-line system analysis. The distributed computation technique is a branch of the parallel process technique, and developed very quickly in the past few decades. Since the structure of the distributed computation is similar to that of the control system of the power grid, it is quite suitable for the power system analysis. The researches carried out in this thesis are as follows.
     Firstly, the history of the power system state estimation is reviewed, and the SE algorithms are also presented. The characteristics of the modern power grid and the challenge of the security of the power system are analyzed. Based on the results of the analysis, it is pointed out that the DSE and distributed state estimation are very important for operation and control of the modern power system.
     Researches are carried out to construct a WAMS system, and the phasor measurement unit (PMU) and communication are developed. For the PMU, the errors in the phasor angle caused by the frequency deviation and parameters of the generator are compensated, and the position signal of the rotor of the synchronous generator is employed in the measurement of the rotor angle. Hence, the accuracy of the phasor angle is improved. For the communication system, the improved model of the SPDNet is built to evaluate the time delayed, and a digital communication channel with 2M bandwidth mixed with SPDNet is proposed for communication in the WAMS system.
     The algorithms of the distribution of PMUs are studied, and the distribution of the PMUs in the practical power grid is also analyzed. Four steps of the distribution of the PMUs are concluded at the first time, and the distribution of the PMUs in the practical power grid is being carried out from step 2 to step 3. Based on the analysis result, the definition of the linear observation and the model of PMU are proposed. Using the model of PMU, the investment function of the distribution of PMU is built. The fitness function is constructed, which try to obtain maximum ratio between the benefit and the investment. Simulations are carried to demonstrate the application of the fitness function in the distribution of PMUs. The optimization of the distribution of the PMUs is valuable for the engineering implementation.
     The mixed measurements based SE and DSE are reviewed. A mixed measurement based DSE is proposed in this thesis. The mixed measurement system is built firstly, and a algorithm of the DSE is also proposed. The computations of the SE are distributed geographically, so that the transformations of the measurement are carried independently and simultaneously in each part of the power grid. Hence, the efficiency of the DSE can be improved significantly. Since the time delay of the measurement has significant effect on the SE, the random characteristic of the time delay is considered in the DSE. Using the statistic characteristics of the time delay, the statistic matrixαof the time delay of the measurement for each area is introduced to release the problem of different time delay in different area, and the capability of the SE can be improved.
     Finally, the multi-agent is introduced in the research in this thesis. The definition of the multi-agent is presented, and the structure of the multi-agent based distributed state estimation is proposed. The model of each agent is built, and their functions are also designed. The operation model of the multi-agent system is optimized, and the efficiency of the system can be improved. The core functions and the algorithm of the agent are packed, and the computation burden of the distributed state estimation is distributed by coordinating the agents. The distributed state estimation can be implemented by appending software package, while the structure of the distributed state estimation system keeps constant.
引文
[1]韩祯祥,甘德强,薛禹胜.2004年国际大电网会议系列报道—大会主题报告及3个热点讨论[J].电力系统自动化,2005,29(1):3-5.
    [2]商国才.电力系统自动化[M].天津:天津大学出版社,2000.
    [3]薛禹胜.综合防御由偶然故障演化为电力灾难—北美“8·14”大停电的警示[J].电力系统自动化,2003,27(18):1-5,37.
    [4]唐斯庆,张弥,李建设,等.海南电网“9·26”大面积停电事故的分析与总结[J].电力系统自动化,2006,30(1):1-7,16.
    [5]陈海波.国内外城市大面积停电分析及启示.广东电力,2008,28(2):34-39.
    [6]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力[J].中国电机工程学报,2004,24(7):1-6.
    [7]Thorp J S Wang H. Optimal locations for protection system enhancement:a simulation of cascading outages [J]. IEEE Trans on power systems,2001,16(4):528-533.
    [8]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(9):14-17,27.
    [9]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展,2000,10(10):870-876.
    [10]李兴源,李立.电力系统紧急控制综述[J].电力系统自动化,2000,24(9):5-11,41.
    [11]薛禹胜.电力系统市场稳定性与电力系统稳定性的相互影响[J].电力系统自动化,2002,26(21,22):1—6;1—4.
    [12]杨卫东,徐政,韩祯祥.电力系统灾变防治系统研究的现状与目标[J].电力系统自动化,2000,24(1):7-12.
    [13]兰州,倪以信,甘德强.现代电力系统暂态稳定控制研究综述[J].电网技术,2005,29(15):40-50.
    [14]宋永华,别朝红.国外电网发展的回顾和展望[J].现代电力,2005,22(3):1-4.
    [15]US-Canada Power System Outage Task Force. Interim Report:Causes of the August 14th Blackout in the United States and Canada.2003.
    [16]邱家驹.分布式状态估计[J].电力系统自动化,1988,12(6):35-42.
    [17]辛耀中,李毅松,陈刚.从8.14美加大停电看电力信息化[C].中国电机工程学会能源与信息专业委员会——电力可持续发展与信息化建设会议,2005:49-51.
    [18]李强.基于PMU量测的电力系统状态估计研究[D].中国电力科学研究院博士学位论文,2005.
    [19]于尔铿.电力系统状态估计[M].水利电力出版社,1985,北京.
    [20]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16.
    [21]Stagg G.W., EL-Abiad A.H. Computer method in power system analysis[M]. McGraw-Hill, New York,1968.
    [22} F.C.Schweppe, J.Wildes, D.B.Rom. Power System Static-State Estimination,Part Ⅰ:Exact Model[J]. IEEE Transactions on Power Apparatus and System,1970,89(1):120-135.
    [23]F.C. Schweppe, D.B.Rom. Power System Static-State Estimation, PartⅡ:Approximate Model[J]. IEEE Transactions on Power and System,1970,89(1):125-130.
    [24]F.C. Schweppe. Power System Static-State Estimation, Part III:Implementation[J]. IEEE Transactions on Power Apparatus and System,1970,89(1):130-135.
    [25]R.E.Larson, W.F.Tinney, J. Peachon, et al. State Estimation in Power Systems,Part Ⅰ-Ⅱ[J]. IEEE Transactions on Power Apparatus and Systems,1970,89(1):345-363.
    [26]贺觅知.基于卡尔曼滤波的电力系统动态状态估计算法研究[D].西南交通大学研究生 学位论文,2006.
    [27]刘辉乐.基于PMU的分布式动态状态佑计的研究[D].四川大学硕士学位论文,2005.
    [28]A.G.Phadke. Synchronized Phasor Measurements in Power System[J]. IEEE Computer Applications in Power,1993,6(2).
    [29]李碧君,薛禹胜,顾锦汶,等.电力系统状态估计问题的研究现状和展望[J].电力系统自动化,1998,22(11):53-60.
    [30]陆延昌.用自动化技术带动中国电力工业的现代化建设[J].电力系统自动化,2004,28(24):1-4.
    [31]张嘉伟,谢英男,杨晓丰,等.基于PMU的量测系统配置及其对状态估计精度的影响.中国电力,2008,41(6):23-27.
    [32]薛辉,贾清泉,王宁,等.基于PMU量测数据和SCADA数据融合的电力系统状态估计方法[J].电网技术,2008,32(14):44-49.
    [33]李大虎,曹一家.基于SCADAPMU混合量测的广域动态实时状态估计方法[J].电网技术,2007,31(6):72-78.
    [34]卫志农,李阳林,郑玉平.基于混合量测的电力系统线性动态状态估计算法[J].电力系统自动化,2007,31(6):39-43.
    [35]丁军策,蔡泽祥,王克英.基于广域测量系统的混合量测状态估计算法[J].中国电机工程学报,2006,26(2):58-63.
    [36]丁军策,蔡泽祥,王克英.相量测量单元测量值对状态估计中等效电流变换算法的影响[J].电网技术,2005,29(5):47-51.
    [37]王耀瑜,余贻鑫.分布式能量管理系统(DEMS)状态估计分布式异步迭代算法[J].中国电机工程学报,1996,16(3):160-164.
    [38]王永,郭志忠,彭茂君,等.基于分解协调算法的互联电力系统状态估计[J].电网技术,2008,32(10):79-83.
    [39]韩宇,周奕,周丽华,等.基于并行协调算法的电力系统状态估计[J].江苏电机工程,2007,26(6):11-13.
    [40]吴杰,卢志刚,杨斌,等.基于改进并行遗传算法的电网状态估计[J].电网技术,2006,30(18):64-68.
    [41]任先成.电力系统分布式状态估计的研究[D].太原理工大学硕士论文,2004.
    [42]韩富春,任先成.电力系统状态估计的分布式并行处理[J].太原理工大学学报,2003,34(6):664-667.
    [43]王颖.广义状态估计分布式算法的研究[D].华北电力大学硕士学位论文,2005.
    [44]刘辉乐,刘天琪,彭锦新.基于PMU的分布式电力系统动态状态估计新算法[J].电力系统自动化,2005,29(4):34-39.
    [45]余贻鑫,王耀瑜,陈德生,等.一种优越的电力系统状态估计方法——Hachtel方法及其实现[J].电力系统自动化,1999,17(5):7-11.
    [46]黄彦全.电力系统状态佑计若干问题的研究[D].西南交通大学博士学位论文,2005.
    [47]程浩忠,袁青山,汪一华,龚劲松.基于等效电流量测变换的电力系统状态估计方法[J].电力系统自动化,2000,24(14):25-29.
    [48]杨惠连,张涛.误差理论与数据处理[M].天津大学出版社,1992,天津.
    [49]A.M. Leite da silva, Do Coutto Filho,M.B.,de Queiroz, J.F.,. State Forecasting in Electric Power Systems[J]. IEE proc.,1982,130(5):237-244.
    [50]苏俊连.互联系统区域资料交换效能评估及整体电网模式改善[D].国立中山大学电机工程研究所博士论文,2001.
    [51]史光荣.电力系统动态状态估计与负载预测之研究[D].国立成功大学博士论文,2002.
    [52]Chun-Lien Su, Chan-Nan Lu. Interconnected Network State Estimation Using Randomly Delayed Measurements[J]. IEEE TRANSACTIONS ON POWER SYSTEMS,2001,16(4): 870-878.
    [53]MAKRIDAKIS S., WHEELWRIGHT S.C. Forecasting methods and applications[M]. John Wiley & Sons,1978.
    [54]A. M. Leita Da Silva, M. B. Do Coutto Filho, and J. F. de Queiroz. State forecasting in electric power systems[J]. IEE Proceedings,1983,130(5):237-244.
    [55]鞠平,代飞,等.电力系统广域测量技术[M].北京:机械工业出版社,2008.
    [56]丁剑,白晓民,王文平,等.电力系统中基于PMU同步数据的应用研究综述[Jl.继电器,2006,34(6):78-84.
    [57]电力系统安全稳定导则(DL 755-2001).中华人民共和国电力行业标准,2001.
    [58]卢志刚,郝玉山,康庆平,等.电力系统实时相角监控系统研究[J].电力系统自动化,1997,21(9):17-19.
    [59]陈凯,胡志坚,王卉,等.介损角的非同步采样算法及其应用[J].电网技术,2004,28(18):58-61.
    [60]苗世洪,王少荣,刘沛,等.基于GPS的电网状态监测系统的设计与实现[J].电力系统自动化,2000,24(12):52-54.
    [61]卢志刚,郝玉山,康庆平,等.电力系统实时相角监控系统结构研究[J].电网技术,1998,22(5):1 8-20.
    [62]闵勇,丁仁杰,任勇,等.电力系统全网同步监测系统[J].清华大学学报(自然科学版),1997,37(7):86-88.
    [63]Cheng Lin Cui Yuan, Sun Yuanzhang. Design of ATM Networks in Real-time Distributed Control System. IEEE-PES/CSEE电力系统技术国际会议论文集,2002,第2卷: 1275-1279.
    [64]电力系统实时动态监测系统技术规范(Q/GDW131-2006)国家电网公司企业标准,2006.
    [65]胡志祥,谢小荣,肖晋宇,等.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004,28(15):39-43.
    [66]李刚,王少荣,程时杰.广域电网同步状态监测系统中的实时通信[J].电网技术,2004,28(18):39-43.
    [67]鞠平,谢欢,孟远景,等.基于广域测量信息在线辨识低频振荡[J].中国电机工程学报,2005,25(22):56-60.
    [68]韩英铎.电力系统中的三项前沿课题柔性交流输电技术、智能控制、基于GPS的动态安全分析与监测系统[J].清华大学学报(自然科学版),1997,37(7):1-6.
    [69]鞠平,郑世宇,徐群,等.广域测量系统研究综述[J].电力白动化设备,2004,24(7):37-40.
    [70]丁军策,蔡泽祥,王克英.基于广域测量系统的状态估计研究综述[J].电力系统自动化,2006,30(7):98-103.
    [71]Phadke A G. State Estimation with Phasor Measurements[J]. IEEE Trans on Power Systems, 1986,1(1):233-241.
    [72]Nuqui R. F., Phadke AG. Phasor measurement unit placement based on incomplete observability[C]. Power Engineering Society Summer Meeting,2002, Chicago, USA: 890-893.
    [73]Bhargava B. Synchronized phasor measurement system project at Southern California Edison Co.[C]. Power Engineering Society Summer Meeting,1999, Edmonton, Canada: 16-22.
    [74]L.Mill T.L.Balsmin, M.B.Boisen,and R.Adape. Power Syestm Obsevrability with Minimal Phasor Meaurement Placement. IEEE Trans. On Power System,1993,8(2).
    [75]罗毅,赵冬梅.电力系统PMU最优配置数字规划算法[J].电力系统自动化,2006,30(9):20—24.
    [76]卫志农,常宝立,孙国强,等.一种新的考虑电力系统潮流直接可解的PMU最优配置[J].继电器,2005,33(21):36-40.
    [77]彭疆南,孙元章,王海风.考虑系统完全可观测性的PMU最优配置方法[J].电力系统自动化,2003,27(4):10-16.
    [78]T.L.Balswin, L.Mill, M.B.Boisen, et al. Power System Observability With Minimal Phasor Measurement Placement. IEEE Trans. On Power System,1993,8(2):707-715.
    [79]李强,于尔铿,吕世超,等.一种改进的相量测量装置最优配置方法[J].电网技术,2005,29(12):57-61.
    [80]沙智明,郝育黔,郝玉山,等.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化[J].电工技术学报,2004,19(8):107-112.
    [81]沙智明,郝育黔,郝玉山,等.电力系统PMU安装地点选择优化算法的研究[J].继电器,2005,33(7):31-36,58.
    [82]李大虎,曹一家,江全元,等.基于多目标进化算法的相量测量单元优化配置[J].电网技术,2005,29(22):45-49,75.
    [83]Jiangnan Peng, Yuanzhang Sun, H.F. Wang. Optimal PMU placement for full network observability using Tabu search algorithm. Electrical Power and Energy Systems,2006(28): 223-231.
    [84]Ki-Seon Cho, Joong-Rin Shin, Seung Ho Hyun. Optimal Placement of Phasor Measurement Units with GPS Receiver[C]. Proceedings of Fifth International Conference on Power System Control,2001, Seoul (South Korea).
    [85]Miroslav Begovic Borka Milosevic. Nondominated Sorting Genetic Algorithm for Optimal Phasor Measurement Placement. IEEE Transactions On Power System,2003,18(1): 69-75.
    [86]Marin F J, Garcia-Lagos F, Joya G, et al. Genetic algorithms for optimal placement of phasor measurement units in electrical networks[J]. Electronics Letters,2003,39(19): 1403-1405.
    [87]毛安家,郭志忠.与SCADA互补的WAMS中PMU的配置及数据处理方法[J].电网技术,2005,29(8):71-74.
    [88]王克英,穆钢,韩学山,等.使潮流方程直接可解的PMU配置方案研究[J].中国电机工程学报,1999,19(10):14-16.
    [89]卫志农,孙国强,常宝立,王丹.考虑电力系统潮流直接可解的同步相量量测单元最优配置[J].电网技术,2005,29(1):65-68.
    [90]Kamwa I, Grondin R. PMU configuration for system dynamic performance measurement in large multiarea power systems[J]. IEEE Trans on Power Systems,2002,17(2):385-394.
    [91]Ota Y, Ukai H, Nakamura K. Evaluation of stability and electric power system quality in power system by using phasor measurements[C]. Proceedings of International Conference on Power System Technology,2000, Australia,3:1335-1340.
    [92]许剑冰,薛禹胜,张启平,等.基于系统同调性的PMU最优布点[J].电力系统自动化,2004,28(19):22-26.
    [93]李大虎,江全元,曹一家.基于发电机组同调分群的相量测量单元优化配置方法.电网技术,2006,30(5):49—55.
    [94]Denegri G B, Invernizzi M, Milano F, et al. A security oriented approach to PMU positioning for advanced monitoring of a transmission grid[C]. International Conference on Power System Technology,2002, Kunming, China,2:798-803.
    [95]Jiang J A, Yang J Z, Lin Y H, et al. An adaptive PMU based fault detection/location technique for transmission lines part I:theory and algorithms[J]. IEEE Trans on Power Delivery,2000,15(2):486-493.
    [96]Mili L, Baldwin T, Adapa R. Phasor measurement placement for voltage stability analysis of power systems[C]. Proceedings of the 29th Conference on Decision and Control,1990, Honolulu, Hawail:3033-3038.
    [97]卫志农,孙国强,常宝立,等.考虑电力系统潮流直接可解的同步相量量测单元最优 配置[J].电网技术,2005,29(1):65-68.
    [98]赵红嘎,薛禹胜,汪德星,等.计及PMU支路电流相量的状态估计模型[J].电力系统自动化,2004,28(7):37-40.
    [99]张作鹏,陈刚,白茂金.基于动态规划算法的PMU优化配置[J].电网技术,2007,31(1):52-56.
    [100]Holland J.H. Adaptation in Natural and Artificial System[M]. the University of Michigan Press 1975.
    [101]文劲宇,刘沛,程时杰.遗传算法及其在电力系统中的应用(上)[J].电力系统自动化,1996,20(10):57-60.
    [102]王小平,曹立明.遗传算法---理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [103]Janikow C, Miohalewicz Z. An Experimental Comparison of Binary and Floating Point Representations in Ge2netic Algorithms. The 4th Inter Conf on GA 1991.
    [104]李梅.基于遗传算法的电力系统无功综合优化补偿规划[D].华北电力大学硕士学位论文,2000.
    [105]王伟.人工神经网络原理[M].北京:北京航空航天大学出版社,1995.
    [106]赵红嘎,薛禹胜,高翔,等.量测量的时延差对状态估计的影响及其对策[J].电力系统自动化,2004,28(21):12-16.
    [107]张伯明,陈寿孙,严正.高等电力网络分析(第二版)[M].清华大学出版社,2007,北京.
    [108]Kron G. Diakoptices-a piecewise solution of large scale systems. Elect J, London, 1957-1958, a serial.
    [109]Th. Van Cutsem. A Two-Level State Estimation for Electric Power Systems[J]. IEEE Trans on PAS,1981,100(8):3722-3732.
    [110]陈颖,沈沉,梅生伟,等.基于改进Jacobian-Free Newton-GMRES (m)的电力系统分布式潮流计算[J].电力系统自动化,2006,30(9):5-8.
    [111]WU F F FALCAO D M, MURPHY L. Parallel and distributed state estimation[J]. IEEE Trans on Power Systems,1995,10(2):724-730.
    [112]张海波,张伯明,孙宏斌.分布式潮流计算异步迭代模式的补充和改进[J].电力系统自动化,2007,31(2):12-16.
    [113]张海波,张伯明,孙宏斌.基于异步迭代的多区域互联系统动态潮流分解协调计算[J].电力系统自动化,2003,27(24):1-5.
    [114]Tsitsiklis J N. Bertsekas D P. Parallel and Distributed Computation:Numerical Methods. Prentice Hall, Engle-wood Cliffs,NJ,1989.
    [115]Weiqing Jiang, Vijay Vittal, Gerald T. Heydt. Diakoptic State Estimation Using Phasor Measurement Units. IEEE TRANSACTIONS ON POWER SYSTEMS,2008,23(4): 1580-1589.
    [116]A. Ray Y. Halevi. Integrated communication and control systems:Part Ⅰ—Analysis. ASME Journal of Dynamic Systems, Measurement and Control,1988,110:367-373.
    [117]Y. Halevi A. Ray. Integrated communication and control systems:Part Ⅱ—Design considerations. ASME Journal of Dynamic Systems,Measurement and Control,1988,110: 374-381.
    [118]董斌,何博雄,钟联迥.分布式人工智能与多智能体系统的研究与发展[J].西安工业学院学报,2000,20(4):303-307.
    [119]Minsky M. Society of Mind. Simon and Schuster[M]. New York,1986.
    [120]刘红进,袁斌,戴宏伟,等.多代理系统及其在电力系统中的应用[J].电力系统自动化,2001,25(19):45-52.
    [121]兰少华.多Agent技术及其应用研究[D].南京理工大学博士学位论文,2002.
    [122]D.M.Lane, A.G.Mcfadzean. Distributes Problem Solving and Real-Time Mechanism in Robot Architecture[J]. Engineering Application of Artificial intelligence,1994,7(2): 105-117.
    [123]Y.Shoham, M.Tenenholtz. Agent-Oriented Programming[M]. Artificial Intelligence,Elsevir Science Publisher B.V.,1993:51-92.
    [124]Wooldridge.M, Jenning.N.R. Intelligent agents:theory and practice[J]. The Knowledge Engineering Review,1995,10(2):115-152.
    [125]姚郑,高文.面向Agent的程序设计风范[J].计算机科学,1995,22(6):7-11.
    [126]杨鲲,瞿永顺,刘大友Agent:特性及分类[J].计算机科学,1999,26(9):30-34.
    [127]石纯一,张伟,徐晋晖,等译.多Agent系统引论[M].北京:电子工业出版社,2003.
    [128]束洪春,唐岚,董俊.多Agent技术在电力系统中的应用展望[J].电网技术,2005,29(6):27-31.
    [129]罗凯明,李兴源,李雪.多代理技术在电力系统中的应用[J].国际电力,2004,8(3):38-43.
    [130]畅广辉,镐俊杰,刘涤尘,等.基于多代理技术的电力控制中心综合数据平台设计[J].电力系统自动化,2007,32(1):85-89.
    [131]王树林,梅多轮.黑板结构研究[J].计算机研究与发展,1990,10:1-6.
    [132]叔忠证.黑板框架的知识表达方法[J].南京航空学研学报,1992,24(2):180-186.
    [133]杨汉成.Agent理论及其在水利水电系统中的应用研究[D].河海大学博士学位论文,2003.
    [134]Draft IEC 61970:Energy Management System Application Program Interface(EMS-API)-Part 301:Common Information Model(CIM).Draft 6.
    [135]Draft IEC 61970:Energy Management System Application Program Interface(EMS-API)-Part 303:Common Information Model(CIM) SCADA.Draft 2.
    [136]王万森.人工智能原理及其应用[M].北京:电子工业出版社,2005.
    [137]姚玉斌,刘仲尧,陈勇.基于CIM的电力变压器模型分析[J].电力系统自动化,2005,29(18):57-61.
    [138]潘毅,周京阳,李强,等.基于公共信息模型的电力系统模型的拆分与合并[J].电力系统自动化,2003,27(15):45-48.
    [139]陆承宇,章文立.CIM电网模型的拓扑分析方法[J].浙江电力,2005(4):5-8.
    [140]周昊,袁泉,夏翔,王康元.基于公共信息模型CIM和XML的电力系统拓扑分析软件[J].计算机应用与软件,2007,24(1):98-100.
    [141]董朝霞,戴琦,杨峰.基于CIM和SVG的电网建模技术[J].电力系统及其自动化学报,2006,18(5):58-61.
    [142]梅念,石东源,段献衷.基于图论的电网拓扑快速形成与局部修正新方法[J].电网技术,2008,32(13):35-39.
    [143]龙启峰,陈岗,丁晓群,等.基于面向对象技术的电力网络拓扑分析新方法[J].电力系统及其自动化学报,2005,17(1):73-77.
    [144]王欣,朱齐丹,孙书利.基于NETDDE的网络式多传感器信息融合Kalman滤波器[J].科学技术与工程,2008,8(24):6607-6611.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700