用户名: 密码: 验证码:
GNSS星载原子钟质量评价及精密钟差算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
时间系统是卫星导航定位的核心要素之一,导航定位实际是测时间。而卫星导航系统的时频由卫星所装载的原子钟所提供。星载原子钟作为导航系统测距的星上时间基准,又是卫星导航系统有效核心荷载之一,其性能直接决定着导航定位和时频传递的精度。目前GNSS系统特别是我国的北斗卫星导航系统(Beidou/COMPASS)的星载原子钟特性及其性能维护还有许多理论问题和实际问题值得研究。进行GNSS卫星导航系统星载原子钟的时频特性以及精密钟差研究的理论意义在于探索卫星钟系统的时变规律,进而为卫星钟动态特性预测、性能维护等提供理论依据;精密卫星钟差特性研究的实践意义在于为用户导航定位提供精确的时差,为提高卫星定轨精度、用户导航定位精度提供支持。于是,星载原子钟特性及其性能维护研究是国内外卫星导航理论探索与实践研究的热点问题之一。
     鉴于此,本文利用GNSS钟差产品对星载原子钟的特性、模型以及预报方法等进行了系统的研究,主要内容包括:
     (1)针对GNSS卫星钟差数据,设计了相应的星载原子钟状态监测和质量评价技术路线。以GPS为例,利用十年的IGS精密钟差产品研究了其星载原子钟的长期特性变化规律,比较了不同类型星载钟在稳定度、模型噪声、用户定位误差(URE)等方面的数值差异,推导了频率稳定度与钟差模型噪声水平之间的线性关系。
     (2)利用阿伦方差和哈达码方差等度量方法,研究了顾及钟差随机噪声类型的标准卡尔曼滤波实时钟差算法,分析比较了GPS不同类型星载钟实时参数估计与短期预报精度的数值差异。
     (3)针对卫星钟差实时参数估计和短期预报中的粗差和钟跳问题,研究提出了新型的基于开窗取样的分类因子抗差自适应序贯平差钟差算法,并将其进一步拓展成实时卡尔曼滤波卫星钟差算法,新算法能够显著提高实时钟差参数估计和预报的精度和稳健性。
     (4)针对卫星钟差长期预报问题,研究提出了抗差最小二乘估计与滑动自回归模型相结合(RLS+ARIMA)的两步钟差预报算法,一方面兼顾了钟自身的钟速、钟漂特性,同时利用抗差最小二乘估计求解星钟参数时间序列,揭示了其长期变化规律,另外还利用滑动自回归(ARIMA)模型对星钟参数的随机性部分进行了有效预报。
     (5)针对GPS和GLONASS的IGU-P实时钟差产品精度过低问题,研究提出了改进的自适应实时钟差预报模型。改进模型在处理周期项误差、自适应钟差模型选择、起点偏差以及观测随机模型调整等多个环节上都提出了新的处理策略。另外还通过钟差预报和实时精密单点定位(PPP)实例对新模型和IGU-P产品的预报精度和定位精度进行了对比,验证新模型的精度和可靠性。
     (6)由于目前GLONASS实时钟差预报方法尚不成熟,IGS尚无实时的GLONASS预报钟差产品发布,对三家主要的IGS研究机构提供的GLONASS钟差产品进行了实时预报分析,并提出和比较了改进模型的有效性和精度,同时还利用谱分析方法求解了GLONASS卫星钟差存在的显著周期项。
     (7)推导了不同误差源对GNSS单站精密授时解的数值影响公式。针对“天跳变”现象,构建了一种基于参数先验贝叶斯估计的连续CP时频传递算法,通过对单天观测数据附加合理的参数先验约束,从而平滑过渡不同天之间的钟差解。数值算例结果显示,新方法相比单天PPP法具有更好的连续性和更高的稳定性。
     (8)通常,载波相位(CP)技术是单站观测,受环境天气等因素影响严重,其中短距离内比对结果和精度并不稳定,提出了一种基于单差模式的连续载波相位时间传递算法(DCP),该算法能够较好地削弱两测站间的共视误差,提高了测站间时频传递的精度和稳定性。同时还进一步将DCP算法拓展应用于精密定位领域,并通过实际的动静态精密定位算例进行测试,验证了该方法的有效性和精度。
     (9)针对传统多模GNSS融合PPP算法运算效率较低、难以满足高精度实时、高频数据的实际解算需求,提出了一种基于参数等价约化原理的自适应GNSS融合PPP算法。新算法一方面运算效率大大提高,更适用于实时定位;另一方面还利用了验后方差因子自适应平衡不同系统间的贡献权比关系,提高了融合定位的精度和可靠性。
     (10)提出了在用户端上利用融合PPP模型结合不同类型IGS产品进行GNSS时差监测的技术方法,并获得了包括真实系统时差、伪时差、系统间硬件延迟较差等产品,分析了这些产品的稳定性、精度以及变化规律等特征,并对这些产品在实际用户导航定位中的实用性进行了测试论证,最后指出伪时差的监测和预报工作对于导航定位用户而言具有更重要的实用价值。
Time system is one of the core elements of satellite navigation and positioning system. Time is the most basic observation of navigation system. Time-frequency observations of satellite navigation system are provided by the satellite atomic clocks. Satellite clocks which provide time scale of navigation systems directly determine the accuracy of navigation and positioning plus time-frequency transferring. Nowadays, for GNSS, especially China's BeiDou satellite navigation systems (COMPASS), there are many theoretical and practical problrms in the satellite clocks characteristics and performance maintenance. The theoretical significance of atomic clock's time-frequency characteristics and various satellite clock errors are for exploring the time-varying regularity of satellite clock system and providing theoretical basis for dynamic characteristics predicting of satellite clock and performance maintenance. The practical significance of the study on precise satellite clock characteristics is for providing accurate time offset and supporting to enhance the accuracies of the satellite orbit determination for user's navigation and positioning. Therefore, the research on characteristics and performance maintenance of satellite atomic clocks is one of the hot theoretical exploration and practical research issues in the field of satellite navigation..
     In the research, GNSS clock products are used to study on clock characteristics, error models and prediction methods of the satellite clocks on orbit. The main work and contributions of this thesis are as follows:
     (1) IGS clock products from2001to2010are used to analyze the GPS satellite clock qualities such as frequency stabilities and clock noise level. We find out that the frequency stabilities and clock noise of the clocks of Block IIA satellites are ten times worse than that of the Block IIR and IIR-M satellites. Moreover, the linear relationships between frequency stabilities and clock residuals have been deduced with an accuracy of better than0.02nanoseconds. Specially, it is noticed that the clock of the PRN27is instable and the relationship between the frequency stability and residuals can be described by a quadratic curve. Therefore, we suggested that GPS satellite clocks should be weighted by their quality levels in application, and the observations of the Block IIA should not be used for real-time positioning in the situation with required precision better than one meter.
     (2) Through the analysis of GPS satellite clocks noise by Allan variance and Hadamard total variance, as well as the research on estimation and prediction of satellite clock errors by Kalman filter given stochastic model of satellite clock noise, precision abnormity was computed among different style of clock. Meanwhile, combined with satellite clock stability, some conclusions can be obtained:Stability and precision of GPS Block IIR-M Rb clock is better than that of Block IIR Rb clock, Stability and precision of GPS Block IIR Rb clock is better than that of Block IIA Rb clock, compared with Rb clock, Cs clock's stability and precision is worse by2-3times.
     (3) In order to estimate the satellite clock offset in a real-time mode, a new algorithm of adaptively robust Kalman filter with classified adaptive factors for clock offset estimation is proposed. Compared with standard Kalman filter clock offset model, the new method can detect and control the influences of outliers and clock jumps automatically in real-time. Moreover, the clock model parameters, which contain the clock offset, clock speed and clock shift, are classified to decide the adaptive factors in the new model. Thus, clock jumps with different characteristics can be distinguished more effectively. Meanwhile, the dynamic noise characteristics of clock offset series are used for stochastic modeling. An actual numerical example is presented, which shows that the proposed filter can give a better performance than other commonly used filters.
     (4) Based on the properties of clock velocity and shift, a robust quadratic polynomial model to fit single-day clock error and to mitigate the effect of exceptional data is provided firstly. Then we fuse the long-term clock parameters fitted from former clock time series and use the ARIMA model to predict the long-term clock parameters. This novel algorithm is tested to predict clock errors for100days, and the prediction accuracy is better than34ns, which is significantly better than other traditional algorithms.
     (5) Improved prediction models for GPS and GLONASS satellite clocks are proposed in order to enhance the precision of predicted clock offsets. Firstly, the proposed prediction models are proposed, in which a few cyclic terms is added to absorb the periodic effects and a time adaptive function is used to adjust the weight of the observation in the prediction model. Secondly, initial deviations of the predictions are reduced by using a modified method to a constant term. The simulating results have shown that the proposed prediction model can give a better performance than that from IGU-P clock products. In addition, RTPPP method was chosen to testify the efficiency of the new model for real-time static and kinematic positioning.
     (6) Because IGS has no useable products of GLONASS real-time clock prediction, real-time forecasting is studied based on the GLONASS clock products which offered by the three major IGS research institutions. The improved model is proposed and the validity and accuracy of the improved model are computed. In addition, the spectral analysis method is used to solve the significant periodic terms of the GLONASS satellite clock.
     (7) Clock error sequence obtained by the traditional single-day PPP is not continuous, which exists day-boundary. This problem directly influences the popularization and application of PPP technique in the realm of precise time and frequency transfer. In this paper, parameter-based Bayesian estimation with prior information is proposed to solve the problem of day-boundary. Namely, by constraining the prior information with different parameters, the author realized continuous PPP solution or approximate PPP solution, which successfully suppresses the day-slip resulted from single-day solution. The simulation results show that the proposed new algorithm for timing accuracy and stability of the PPP algorithm is significantly superior to the traditional, and it can effectively solve the problems of day-boundary.
     (8) The characteristic of GPS Common View (GPS CV) and GPS Carrier Phase time transfer (GPS CP) methods are introduced, and a new continuous time and frequency transfer algorithm based on GPS single Different Carrier Phase observations is proposed. This new algorithm uses ionosphere-free combination of single different observations from the same satellite, and its processing steps are also consistent with simple common GPS CP. In addition, the Bayesian estimation of prior information is proposed to smooth the day-boundaries of time transfer results. The simulation results, which compared to that of GPS CP method, show that the proposed new algorithm has a remarkable improvement in the precision and frequency stability of the time and frequency transfer results.
     (9) The standard GNSS combined PPP algorithm cannot be used satisfactorily in the real-time and high frequency precise positioning because of its low compute efficiency. A new algorithm based on the parameter equivalent reduction principle is proposed. First, the observation equations and the normal equations which belong to the single navigation system can be solved independently. Second, the normal equations of overlapping parameters between the different systems can be obtained by using parameter equivalent reduction principle. At last, the combined PPP resolutions can be computed easily by using the least squares method. The proposed algorithm can improve the calculating efficiency immensely. In addition, an adaptively combined method which can automatically adjusts the contributed weight of different GNSS systems is also proposed.
     (10) A new method of GNSS time offset monitoring is proposed based on the combined PPP model and the different IGS clock products. The real GNSS time offset, the hardware delay difference between different systems and the user time offset are obtained. Meanwhile, the stability, accuracy and variation characteristics of these products are analyzed. The practical application of these products in the real navigation and positioning is tested. In the end, it was concluded that the monitoring and forecasting of the user time offset has more important practical value for the users of navigation and positioning.
引文
[I]Akaike H. Information theory and an extension of the maximum likelihood principle [C]. In Second International Symposium in Information Theory. Eds B. N. Petroc and F. Caski, Budapest, Akademiai Kiado,1973,276-281
    [2]Akaike H. On entropy maximization principle [J]. In Applications of Statistics. Ed P. R. Krishnaiah. North Hollard, Amsterdam,1977,27-41
    [3]Allan D. Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators[C], IEEE TRANSACTION ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. URC-34, no.6, November1987, p647-p654
    [4]ARINC Engineering Services2006NAVSTAR GPS space segment/navigation user interfaces (IS-GPS-200D) Tech. Rep. of GPS NAVSTAR JPO
    [5]Beisner H, Dorsey A. Exact Formula for User Range Error in Wide Area Differential GPS[C]. Proceedings of the8th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS1995), Palm Springs, CA, September1995, pp.685-693
    [6]Breakiron L. A Kalman Filter for Atomic Clocks and Timescales[C]. In Proceedings of the33rd Annual Precise Time and Time Interval(PTTI) Meeting,2001,431-443
    [7]Breakiron L. Kalman Filter Characterization of Cesium Clocks and Hydrogen Masers[C]. In Proceedings of the34th Annual Precise Time and Time Interval(PTTI) Meeting,2002,511-426
    [8]Busca G and Wang Q. Time prediction accuracy for a space clock[J], Metrologia200340S265-269
    [9]CAI CS. Precise Point Positioning Using Dual-Frequency GPS and GLONASS Measurements [D]. Master Paper, University of Calgary,2009
    [10]Costa R, Orgiazzi D, Pettiti V, et al. Performance comparison and stability charcterization of timing and geodetic GPS receivers at IEN[C]. Frequency and Time Forum,2004. EFTF2004.18th European,5-7April2004,279-286
    [11]Cui X, Yang Y. Adaptively Robust Filtering with Classified Adaptive Factors [J]. Progress in Natural Science,2006,16(4):490-494
    [12]Dach R, Hugentobler U, Schildknecht T, et al. Precise Continuous Time and Frequency Transfer Using GPS Carrier Phase[C]. Proceedings of the IEEE International Frequency Control Symposium and Exposition. Vancouver:IEEE,2005:329-336.
    [13]Dach R, Schildknecht T, Hugentobler U, et al. Continuous Geodetic Time-Transfer Analysis Methods[C]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.53, no.7, july2006, P1250-1259
    [14]Dafraigne P, Baire Q, Guyennon N. GLONASS and GPS PPP for Time and Frequency Transfer[C]. Frequency Control Symposium,2007Joint with the21st European Frequency and Time Forum. IEEE International, May292007-June12007,909-913
    [15]Defraigne P, Bruyninx C, Guyennon N. PPP and Phase-only GPS Time and Frequency transfer[C]. Frequency Control Symposium,2007Joint with the21st European Frequency and Time Forum. IEEE International, May292007-June12007,904-908
    [16]Defraigne P, Bruyninx C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions [J]. GPS Solution,2007,11:239-249
    [17]Delporte J, Mercier F, Laurichesse D and Galy O. Fixing integer ambiguities for GPS carrier phase time transfer[C]. Proceedings of the joint European Frequency and Time Forum and IEEE Frequency Control Symposium, Geneva, Switzerland,2007,29May-1June, pp.927-932
    [18]Dong S, Li X, Wu H. About Compass Time and Its Coordination with Other GNSSs[C],39th Annual Precise Time and Time Interval (PTTI) Meeting,26-29Nov2007, Long Beach, CA, P19-24
    [19]Dong S, Wu H, Li X, et al. The Compass and its time reference system[J]. Metrologia45(2008) S47-S50
    [20]Epstein M, Freed G and Raj an J. GPS IIR Rubidium clocks:in-orbit performance aspects[C]. In Proceedings of the35th Annual Precise Time and Time Interval (PTTI) Meeting,2003,117-134
    [21]Gao Y, Chen K. Performance Analysis of Precise Point Positioning Using Rea-Time Orbit and Clock Products [J], Journal of Global Positioning Systems,2004,1(3):95-100.
    [22]Gao Y, Shen X. Improving ambiguity convergence in carrier phase-based precise point positioning [C]. ION GPS2001. Salt Lake City, USA,2001.1532-1539.
    [23]Gao Y. Performance Analysis of Precise Point Positioning Using Rea-Time Orbit and Clock Products[J]. Journal of Global Positioning Systems,2004,3(1):95-100
    [24]Ge M, Chen J, Dousa J, Gendt G, Wickert J. A computationally efficient approach for estimating high-rate satellite clock corrections in realtime[J]. GPS Solutions.2012, doi10.1007/s10291-011-0206-z
    [25]Ge M, Chen J, Gendt G. EPOS-RT:Software for Real-time GNSS Data Processing, Geophysical Research Abstracts[C], Vol.11, EGU2009-8933, Oral presentation at EGU General Assembly2009
    [26]Ge M, Gendt G, Dick G, Zhang F. Improving carrier-phase ambiguity resolution in global GPS network solutions[J]. Journal of Geodesy,2005,79,1-3,103-110.
    [27]Ge M, Gendt G, Rothacher M, et al. Resolution of GPS Carrier-Phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations [J]. J Geod,2007,82(7):389-399
    [28]Ge, M., Chen, J., Dousa, J., Gendt, G., Wickert, J.(2012):A computationally efficient approach for estimating high-rate satellite clock corrections in real-time. GPS Solutions.doi10.1007/s10291-011-0206-z
    [29]Gotoh T. Improvement GPS time link in Asia with All in Viem[C]. IN. Proc.PTTI2005
    [30]Greenhall C, Howe D, and Percival D. Total Variance, an Estimator of Long-Term Frequency Stability[C], IEEE TRANSACTION ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol.46, no.5, September1999, p1183-p1191
    [31]Greg H, Jack T. Navigation Upload Performance[C]. ION GPS2000, Salt Lake City, UT,2000
    [32]Guyennon N, Cerretto G, Tavella P, et al. Further Characterization of the Time Transfer Capabilities of Precise Point Positioning (PPP):The Sliding Batch Procedure[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2009,56(8):1634-1641.
    [33]Hahn J and Powers E. GPS/GALILEO Time Offset:Preliminary Interface Definition, attachment to the Agreement on the Promotion, Provision and Use of Galileo and GPS Satellite-based Navigation Systems and Related Applications, which was signed by representatives of the United States and the member states of the European Union in Dublin, Ireland, on26June2004
    [34]Hahn J, Powers E. A Report on GPS and Galileo Time Offset Coordination Efforts[C]. Frequency Control Symposium,2007Joint with the21st European Frequency and Time Forum. IEEE International, May292007-June12007,440-445
    [35]Hahn J, Powers E. Implementation of the GPS to Galileo Time Offset(GGTO)[C]. Frequency Control Symposium and Exposition,2005. Proceedings of the2005IEEE International,29-31Aug.2005, p33-37
    [36]Han C, Yang Y, Cai Z. BeiDou Navigation Satellite System and its time scales [J], Metrologia,2011,48, PI-6
    [37]Hesselbarth A, Wanninger L. Short-term Stability of GNSS Satellite Clocks and its Effects on Precise Point Positioning[C], Proc. ION GNSS2008, Savannah, GA,1855-1863
    [38]Howe D, Beard R, Greenhall C, et al. A Total Estimator of The Hadamard Function Used for GPS Operations[C]. In Proceedings of the32th Annual Precise Time and Time Interval(PTTI) Meeting Reston, VA, USA,28-Nov-2000,255-267
    [39]Howe D. The Total Deviation Approach to Long-Term Characterization of Frequency Stability[C], IEEE TRANSACTION ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol.47, no.5, September2000, p1102-p1110
    [40]Hu C, Chen W, Gao S, et al. Data Processing for GPS Precise Point Positioning [J].Transactions of Nanjing University of Aeronautics and Astronautics,2005,22(2):43-50
    [41]Huang G, Zhang Q, Li H, Fu W. Research on Quality Variation of GPS Satellite Clocks On-orbit Using IGS Clock Products[J], Advances in Space Research,2012, doi:10.1016/j.asr.2012.09.041
    [42]Huang G, Zhang Q. Real-time Estimation of Satellite Clock Offset Using Adaptively Robust Kalman Filter with Classified adaptive Factors[J]. GPS Solution,2012, doi:10.1007/s10291-012-0254-z
    [43]Hugentobler U. Dach R, Fridez P. Document of Bernese of Software Version5.0[R]. University of Bern.2005
    [44]Hutsell S, Reid W, et al. Operational Use of the Hadamard Variance in GPS[C], In Proceedings of the28th Annual Precise Time and Time Interval(PTTI) Meeting,1996,201-213
    [45]Hutsell S. Fine Tuning GPS Clock Estimation in the MCS [C]. In Proceedings of the26th Annual Precise Time and Time Interval(PTTI) Meeting,1994,63-74
    [46]Hutsell S. Relating the Hadamard variance to MCS Kalman filter clock estimation [C]. in Proc.27th Annu. PTTI Syst. Applications Meeting, San Diego, CA, Nov.29-Dec.1,1995,291-301
    [47]IGSACC http://acc.igs.org/
    [48]IGS http://igscb.jpl.nasa.gov/
    [49]James P, Everentt R, Frank M. Improvement of the NIMA Precise Orbit and Clock Estimates[C]. ION GPS1998, Nashville Tennessee,1998
    [50]Jiang Z, Petit G. Combination of TWSTFT and GNSS for accurate UTC time transfer[J]. Metrologia46(2009)305-314
    [51]Jiang Z, Petit G. Time transfer with GPS All in View[C]. Proc. Asia-Pacific Workshop on Time and Frequency.2004:236-243.
    [52]Jokinen A, Feng SJ, Milner C, et al. Precise Point Positioning and Integrity Monitoring with GPS and GLONASS[C],
    [53]Kouba J, Heroux P. Precise Point Positioning Using IGS Orbit and Clock Products[J]. GPS Solutions,2001, Vol.5, No.2, pp.12-28
    [54]Kouba J, Springer T. New IGS station and satellite clock combination[J]. GPS Solutions,2001,4(4):31-36, DOI:10.1007/PL00012863
    [55]Manning D. AF/NGA GPS Monitor Station High-Performance Cesium Frequency Standard Stability2005/2006:from NGA Kalman Filter Clock Estimates[C]. In Proceedings of the38th Annual Precise Time and Time Interval(PTTI) Meeting,2006, 137-152
    [56]Melgard T, Jong KD, Lachapelle G, et al. Interchangeable Integration of GPS and GLONASS by Using a Common System Clock in PPP [C]. ION GNSS2011, Session F3, Portland, OR,20-23September2011
    [57]Melgard T, Vigen E, Orpen O. Advantages of combined GPS and GLONASS PPP-experiences based on G2, a new service from Fugro[C].13th IAIN World Congress,27-30Oct.2009, Stockholm, ppl-7
    [58]Montenbruck O, Gill E and Kroes R. Rapid orbit determination of LEO satellites using IGS clock and ephemeris products[J].2005, GPS Solut.9,226-35
    [59]Moudrak A, Konovaltsev A, Furthner J, et al. Timing Aspects of GPS-Galileo Interoperability:Challenges and Solutions[C].36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting held in Washington, DC on7-9Dec2004, p279-292
    [60]Orgiazzi D, Tavella P, Lahaye F. Experimental Assessment of the Time Transfer Capability of Precise Point Positioning (PPP)[C]. Frequency Control Symposium and Exposition,2005. Proceedings of the2005IEEE International,29-31Aug.2005,337-345
    [61]Paul A, Demetrios M, Mihran M. Alternate Algorithms for Steering to Make GPS Time[C]. ION GPS2000, Salt Lake City, UT,2000
    [62]Petit G, Arias E. Use of IGS products in TAI applications[J], J Geod (2009)83:327-334DOI10.1007/s00190-008-0240-y
    [63]Petit G, Jiang Z. Precise Point Positioning for TAI computation[C]. Frequency Control Symposium,2007Joint with the21st European Frequency and Time Forum. IEEE International, May292007-June12007,395-398
    [64]Piriz R, Garcia A, Tobias G, et al. GNSS interoperability:offset between reference time scales and timing biases[J]. Metrologia45(2008) S87-S102
    [65]Ran Y, Shi X, Wang H, et al. The maximum coseismic vertical surface displacement and surface deformation pattern accompanying the Ms8.0Wenchuan earthquake [J]. Chinese Sci Bull, doi:10.1007/s11434-009-0453-3
    [66]Ray J and Griffiths J2009Change to exclude some IGU clock predictions IGSMAIL 5965
    [67]Ray J and Griffiths J2009IGU clock prediction exclusion policy modified IGSMAIL5969
    [68]Ray J, Senior K. Geodetic techniques for time and frequency comparisons using GPS phase and code measurements [J]. Metrologia42(2005)215-232
    [69]Ray J, Senior K. IGS/BIPM Pilot Project:GPS carrier phase for time/frequency transfer and time scale formation[J],4th International Time Scale Algorithms Symposium, at BIPM, Sevres, France,18-19March2002, Metrologia40(3):270-288; erratum,40(4):205
    [70]Russell D. Improving Accuracy and Redundancy with GPS and GLONASS PPP [C]. DYNAMIC POSITIONING CONFERENCE October12-13,2010, ppl-12
    [71]Senior K, Koppang P, Matsakis D, Ray J. Developing an IGS time scale[C], Proc.2001IEEE International Frequency Control Symp., and PDA Exhibition,2001, pp211-218
    [72]Senior K, Koppang P, Ray J. Developing an IGS time scale[C], IEEE Trans. on Ultrasonics, Ferroelectrics,&Freq. Control,50(6):585-593,2003
    [73]Senior K, Ray J. Accuracy and precision of carrier phase clock estimates[C], Proc.33rd Precise Time and Time Interval Applications and Planning Meeting,2001, pp199-217
    [74]Stein S, Evans J. The application of Kalman filters and ARIMA models to the study of time prediction errors of clocks for use in the defense communication system (DCS)[C].44th Annual Frequency Control Symposium,1990,630-635
    [75]Stein S. Kalman filter analysis of precision clocks with real-time parameter estimation [C].43rd Annual Frequency Control Symposium,1989,232-236
    [76]Vernotte F, Delporte J, Brunet M and Tournier T. Uncertainties of drift coefficients and extrapolation errors:application to clock error prediction[J]. Metrologia,2001,38:325-42
    [77]Xu G. GPS Theory, Algorithms and Applications [M]. Berlin Heidelberg:Springer-Verlag,2003.
    [78]Xu G. GPS Theory, Algorithms and Applications [M]. Berlin Heidelberg:Springer- Verlag,2003.
    [79]Xu GC. GPS Data Processing with Equivalent Observation Equations[J], GPS Solutions,2002(6):28-33
    [80]Yang Y and Cui X. Adaptively Robust Filter with Multi Adaptive Factors [J]. Survey Review, Volume40, Number309, July2008, pp.260-270
    [81]Yang Y, Gao W. An optimal adaptive Kalman filter [J]. Journal of Geodesy,2006,80,177-183
    [82]Yang Y, Gao W. Influence Comparison of Adaptive Factors on Navigation Results [J]. Journal of Navigation,2005,58(3):471-478
    [83]Yang Y, He H, Xu G. Adaptively Robust Filtering for Kinematic Geodetic Positioning [J]. Journal of Geodesy,2001,75(2):109-116
    [84]Yang Y, Li J, Xu J et al. Contribution of the Compass satellite navigation system to global PNT users[J]. Chinese Sci Bull,2011,56, doi:10.1007/s11434-011-4627-4
    [85]Yang Y, Song L and Xu T. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights [J]. Journal of Geodesy,2002,76(6-7),353-358
    [86]Yang Y. Robust Estimation for Dependent Observations [J]. Manuscripta Geodeatica.1994,19:10-17.
    [87]Yang Y. Robust estimation of geodetic datum transformation[J]. Journal of Geodesy,1999,73:268-274
    [88]Youn J, Jeongho C and Moon B. Improving prediction accuracy of GPS satellite clocks with periodic variation behaviour[J]. Meas. Sci. Technol.2010, doi:10.1088/0957-0233/21/7/073001
    [89]Zhang B, Ou J, Yuan Y, et al. Yaw attitude of eclipsing GPS satellites and its impact on solutions from precise point positioning [J]. Chinese Sci Bull,2010,55:3687-3693, doi:10.1007/s11434-010-4130-3
    [90]Zheng Z, Lu X and Chen Y. Improved grey model and application in real-time GPS satellite clock bias prediction[C]. Proc.4th Int. Conf. on Natural Computation,2008, pp419-423
    [91]Zumberge J, Heflin M, Jefferson D, et al. Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks [J]. Journal of Geophysical Research,1997,102(B3):5005-5017
    [92]Zumberge J. Automated GPS Data Analysis Service[J]. GPS Solutions,1999,2(3):76-78
    [93]蔡昌盛等.GPS/GLONASS组合精密单点定位研究[J].大地测量与地球动力学,2011.3:85-89
    [94]陈建鹏,毛悦,贾小林等.原子钟稳定性在轨评估计算影响分析[C], CSNC2010第一届中国卫星导航学术年会论文集,北京,2010
    [95]陈军,李建文,张成军.白噪声Kalman滤波模型在GPS单向授时中的应用[J].海洋测绘,2010,1(30):29-31
    [96]陈俊平吴斌胡小工等。GPS/GLONSS时差监测及其在多模定位中的应用[C],第三届中国卫星导航学术年会电子文集,2012年05月,中国广州
    [97]陈宪东.基于大地型时频传递接收机的精密时间传递算法研究[J],武汉大学学报(信息科学版),2008,33(3):245-248
    [98]崔先强,焦文海.灰色系统模型在卫星钟差预报中的应用[J].武汉大学学报(信息科学版),2005,30(3):447-449
    [99]邓聚龙.灰色系统基本方法[M].武汉:华中工学院出版社,1987
    [100]丁晓光,张勤,黄观文,管建安.GPS天线相位模型变化对高精度GPS测量解算的影响研究[J],测绘科学,2010,35(3):18-20
    [101]董绍武.守时中的若干重要技术问题研究[D].中国科学院国家授时中心博士学位论文,2007
    [102]高玉平.IGS产品在GPS时间比对中的应用[J].天文学报,2004,45(4):428-436
    [103]耿涛,赵齐乐,刘经南等.基于PANDA软件的实时精密单点定位研究[J].武汉大学学报(信息科学版),2007,32(4):312-315.
    [104]郭海荣,杨元喜.导航卫星原子钟时域频率稳定性影响因素分析[J].武汉大学学报(信息科学版),2009,34(2):218-221
    [105]郭海荣.导航卫星原子钟时频特性分析理论与方法研究[D].解放军信息工程大学,2006
    [106]郭际明,孟祥广,李宗华等GLONASS卫星广播星历精度分析[J],大地测量与地球动力学,2011,21(1):68-71
    [107]韩保民,欧吉坤.基于GPS非差观测值进行精密单点定位研究[J].武汉大学学报 (信息科学版),2003,28(4):409-412.
    [108]何海波,杨元喜.序贯平差抗差估计[J].测绘工程,1998,7(1):36-40
    [109]胡永辉,漆贯荣.时间测量原理[M].香港:香港亚太科学出版社,2000
    [110]黄珹,胡小工,程宗颐.利用非差资料的精密点定位方案解算区域GPS网[J],天文学报,2001,42(3):248-258.
    [111]黄观文,涂锐,李跃华,蔺玉亭.一种基于多基准站综合改正信息的非差精密单点定位算法[C],测绘科学与技术新进展,2010年全国测绘科学与技术博士生学术论坛,中国,徐州,P33-P42
    [112]黄观文,涂锐,张勤,王利,李跃华,蔺玉亭.基于基准站改正信息的实时动态精密单点定位算法[J],大地测量与地球动力学,2010,36(6):135-139
    [113]黄观文,杨元喜,张勤.基于钟差物理特性和ARIMA模型的GPS卫星钟差抗差预报算法[C], Global Navigation Satellite System:Technology Innovation and Application, Proceedings of CPGPS2009,8-9August2009Beijing, China, p88-p93
    [114]黄观文,杨元喜,张勤.开窗分类因子抗差自适应序贯平差用于卫星钟差参数估计与预报[J],测绘学报,2011,40(1):15-21
    [115]黄观文,张勤,王继刚.GPS卫星钟差的估计和预报研究[J].大地测量与地球动力学,2009,29(6):118-122
    [116]黄观文,张勤,王继刚.卡尔曼滤波用于GPS在轨卫星钟差实时估计与预报研究[C],测绘学科博士生学术论坛,2009年5月,中国郑州,p389-p395
    [117]黄观文,张勤,许国昌,王利.基于频谱分析的IGS精密星历卫星钟差精度分析研究[J],武汉大学学报(信息科学版),2008,33(5):496-499
    [118]黄观文.GPS精密单点定位和高精度GPS基线网平差研究及其软件实现[D],西安:长安大学,2008
    [119]季善标,朱文耀,熊永清.精密GPS卫星钟差的改正和应用[J].空间科学学报,2001,21(3):42-48
    [120]焦文海.卫星导航系统坐标基准建立问题的研究[D].上海:中科院上海天文台,2003年8月
    [121]孔令杰,黄观文.基于TIKHONOV正则化的短基线单历元模糊度解算方法研究[J],大地测量与地球动力学,2010,30(2):148-155
    [122]李滚. GPS载波相位时间频率传递研究[D].北京:中国科学院研究生院,2007
    [123]李建文.GLONASS卫星导航系统及GPS/GLONASS组合应用研究[D].中国人民解放军信息工程大学,2001
    [124]李孝辉,杨旭海,刘娅等.时间频率信号的精密测量[M].北京:科学出版社,2010
    [125]刘经南,叶世榕.GPS非差相位精密单点定位技术探讨[J].武汉大学学报(信息科学版),2002,3(27):234-239
    [126]刘利,秦永志.GPS卫星钟噪声类型分析[J].全球定位系统,2005,第2期:27-29
    [127]刘利.相对论时间比对理论与高精度时间同步技术[D].郑州:信息工程大学,2004
    [128]刘晓刚,李建伟,李岩等.基于最小二乘和卡尔曼滤波方法进行原子时预报的研究[J],海洋测绘,2008,3(28):51-53
    [129]刘忠,黄观文,丁晓光.GPS动态定位序贯平差统一模型[J],地球科学与环境学报,2008,30(3):319-322
    [130]楼益栋,施闯,周小青等.GPS精密卫星钟差估计与分析[J].武汉大学学报(信息科学版),2009,34(1):88-91
    [131]路晓峰,杨志强,贾小林等.灰色系统理论的优化方法及其在卫星钟差预报中的应用[J].武汉大学学报(信息科学版),2008,33(5):P393-396
    [132]聂桂根.GPS测时与共视时间传递应用及进展[J].战术导弹控制技术,2005,02,p28-34
    [133]聂建亮,杨元喜,吴富梅.一种基于改进粒子滤波的动态精密单点定位算法[J].测绘学报,2010,39(4):338-343.
    [134]牛飞,韩春好,张义生等.导航卫星星载原子钟异常监测分析[J],武汉大学学报(自然科学版),2009,34(5):585-588
    [135]欧吉坤.一种三步抗差方案的设计[J],测绘学报,1996,25(3):173-179
    [136]戚素娟.GPS/GLONASS组合共视技术研究[D].中国科学院国家授时中心硕士学位论文,2008
    [137]漆贯荣等.时间科学基础[M].北京:高等教育出版社,2006
    [138]阮仁桂,郝金明,刘勇.正反向Kalman滤波用于动态单点定位参数估计[J].武汉大学学报(信息科学版),2010,35(3):279-282
    [139]阮仁桂,郝金明,张勇.基于UofC模型的精密单点定位精度分析[J].大地测量与地球动力学,2009,29(6):104-108
    [140]涂锐,黄观文等.单频精密单点定位的研究实现[J],测绘科学,2011,第3期,68-69
    [141]王继刚,胡永辉,何在民等.基于修正线性组合模型的原子钟钟差预报[J],天文学报,2011,52(1):54-61
    [142]王继刚.基于GPS精密单点定位的时间比对与钟差预报研究[D].中国科学院国家授时中心博士学位论文,2010
    [143]王潜心,徐天河,许国昌.自适应换站算法及其在长距离机载GPS动态相对定位中的应用[J].测绘学报,2011,4(40):429-434
    [144]王振龙.时间序列分析[M].北京:中国统计出版社,2004.
    [145]王正军.GPS/GLONASS组合精密单点定位性能分析[J].大地测量与地球动力学,2012,2(32):105-109
    [146]卫国.原子钟噪声模型分析与原子时算法的数学原理[D].中国科学院陕西天文台博士学位论文,1991
    [147]吴海涛等.卫星导航系统时间基础.北京:科学出版社,2011
    [148]吴江飞,黄珹.GPS精密单点定位模型极其应用分析[J].大地测量与地球动力学,2010,35(3):279-282.
    [149]吴生武.自适应序贯抗差估计[J].测绘通报,2006,第1期:1-4
    [150]武汉大学测量平差编写组.测量平差基础[M].北京:测绘出版社,2003
    [151]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4):293-298
    [152]杨元喜,李金龙,徐君毅等.中国北斗卫星导航系统对全球PNT用户的贡献[J].科学通报,2011,56(11):1734-1740
    [153]杨元喜,宋力杰,徐天河.大地测量相关观测抗差估计理论[J].测绘学报,2002,31(2):95-99
    [154]杨元喜,曾安敏.大地测量数据融合模式及其分析[J].武汉大学学报:信息科学版,2008,33(8):771-774
    [155]杨元喜,宋力杰,徐天河.大地测量相关观测抗差估计理论[J].测绘学报,2002,31(2):95-99
    [156]杨元喜.北斗卫星导航系统的进展、贡献与挑战[J],测绘学报,2010,39(1):1-6
    [157]杨元喜.动态定位自适应滤波解的性质[J].测绘学报,2003,32(3):189-192
    [158]杨元喜.抗差贝叶斯估计及应用[J].测绘学报,1992,(1):42-49
    [159]杨元喜.自适应动态导航定位[M].北京:测绘出版社,2006
    [160]杨元喜.自适应抗差最小二乘估计[J],测绘学报,1996,25(3):206-211
    [161]叶世榕.GPS非差相位精密单点定位理论与实现[D].武汉:武汉大学,2002
    [162]张宝成,欧吉坤,袁运斌等.基于GPS双频原始观测值的精密单点定位算法及应用[J].测绘学报,2010,39(5):478-483
    [163]张勤,黄观文,王利,丁晓光.附有系统参数和附加约束条件的GPS城市沉降监测网数据处理方法研究[J],武汉大学学报(信息科学版),2009,34(3):269-272
    [164]张勤,李家权.GPS测量原理及应用[M].北京:科学出版社,2005
    [165]张双成,王利,黄观文.全球导航卫星系统GNSS最新进展及带来的机遇和挑战[J],工程勘察,2010,第8期,49-53
    [166]张小红,蔡诗响,李星星等.利用GPS精密单点定位进行时间传递精度分析[J],武汉大学学报(信息科学版),2010,35(3):274-278
    [167]张小红,程世来,李星星等.单站GPS载波平滑伪距精密授时研究[J].武汉大学学报(信息科学版),2009,34(4):463-465
    [168]张小红,李星星,郭斐等.GPS单频精密单点定位软件实现与精度分析[J].武汉大学学报(信息科学版),2008,33(8):783-787
    [169]张小红,李星星.非差模糊度整数固定解PPP新方法及实验[J],武汉大学学报(信息科学版),2010,35(6):657-660
    [170]张小红,刘经南,ReneForsberg.基于精密单点定位技术的航空测量应用实践[J].武汉大学学报(信息科学版),2006,1(31):19-22.
    [171]张小红等.GPS/GLONASS组合精密单点定位研究[J].武汉大学学报(信息科学版),2011,35(1):9-12
    [172]赵超英,黄观文.秩亏自由网平差及其通解[J],地球科学与环境学报,2010,32(2):215-217
    [173]郑作亚,陈永奇,卢秀山.灰色模型修正及其在实时GPS卫星钟差预报中的应用研究[J].天文学报,2008,49(3):306-320
    [174]郑作亚,党亚民,卢秀山等.GPS精密单点定位中影响收敛时间的因素及措施分析[J].大地测量与地球动力学,2009,29(5):107-111
    [175]周江文.经典误差理论与抗差估计[J],测绘学报,1989,18(2):115-120
    [176]周乐韬.连续运行参考站网络实时动态定位理论、算法和系统实现[D],成都:西南交通大学,2003
    [177]朱祥维,肖华,雍少为等.卫星钟差预报的Kalman算法及其性能分析[J].宇航学
    报,2008,3(33),P965-970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700