用户名: 密码: 验证码:
中高速传感器网络服务质量保障关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中高速传感器网络(MHWSN, Medium and High Rate WSN)是一种提供一定服务质量保障、网络节点异构、多种混合业务并存的新兴传感器网络。与传统传感器网络相比,中高速传感器网络中节点的数据处理能力更强,数据传输速率更高,可以实现视频监控、多元化信息采集与处理、复杂任务调度等应用。区别于传统传感器网络的节能设计目标,中高速传感器网络兼顾节能的同时,还要向用户提供-定服务质量保障的服务。由于中高速传感器网络中存在多速率、多种类的混合业务,不同业务有不同的QoS需求,造成了节能与提高服务质量标准的矛盾问题、公平性与服务优先级的矛盾问题、多QoS约束要求的取舍等问题。因此需要在协议栈的各层开展服务质量保障的理论与技术研究。
     本文从网络协议栈的不同层次对服务质量保障技术进行了探索,重点研究了提供QoS支撑的时间同步与数据融合算法,QoS敏感的路由协议与传输层协议。具体研究内容包括:
     (1)时间同步算法研究,时间同步算法是提供QoS的重要支撑技术之一,本文分析了异构节点的频率漂移估计与同步过程,研究了单个广播域和多个广播域的同步算法。
     (2)QoS路由协议研究,根据QoS指标对网络服务进行区分,研究了多QoS约束下的高效节能路由协议。
     (3)数据融合算法研究,分析了区分服务的移动代理数据融合过程,研究了以提高QoS为目标的移动代理路径规划算法。
     (4)可靠的传输层协议研究,分析了传输层的可靠传输要求,研究了传输层的拥塞控制算法。
     本论文取得的研究成果如下:
     (1)针对邻居节点在中高速传感器网络异构环境中同步误差增大的问题,提出了一种按需二次RBS(参考节点广播同步,Reference Broadcast Synchronization)同步算法。该算法采用RBS策略,首先为同步过程单独建立同步路由表,从而建立了分簇结构下的同步广播域,然后根据同步精度需要对节点对进行二次RBS同步,使广播域内部分兴趣节点保持精确同步。仿真结果表明,该算法提高了事件区域节点间的同步精度。
     (2)针对中高速传感器网络多业务共存与多QoS约束条件下,寻找最优QoS路径的旅行商问题,提出了一种区分服务和优先级保证的QoS路由协议。利用蚁群优化算法进行QoS路径探索,设计了区分服务的人工蚂蚁为各类服务寻找QoS路由,设计了反向抑制机制提供优先级保障。仿真结果表明,该算法对QoS敏感,能够在保证高优先级服务的同时,满足不同服务的QOS要求。
     (3)针对移动代理数据融合的最优迁移路径问题,提出了一种基于信息效益测度与能量代价混合的梯度计算方法。该方法利用最小梯度来选择移动代理迁移的下一跳节点,梯度的计算综合考虑了了对下一跳候选节点的信息效益测度估计和能量代价计算。仿真结果表明,该算法能够降低能耗并提高移动代理的融合效率。
     (4)为了向高优先级服务提供高可靠性保障和避免拥塞,提出了一种优先级区分和可靠性保证的传输层协议。该协议通过综合考虑数据包的端到端延时、存储区状况和队列延时来检测拥塞,采用基于优先级的存储转发和分组丢弃策略,来保证高优先级数据的端到端可靠性。仿真结果表明,该协议保证了数据传输的可靠性并提高了网络吞吐量。
The MHWSN (Medium and High rate Wireless Sensor Network) is a novel WSN (Wireless Sensor Network), with the characteristics of QoS (Quality of Service) guarantee, heterogeneous sensor nodes, and coexistence of a variety of mixed services. Comparing with the traditional WSN, MHWSN has better data processing capability and higher data transmitting rate. It can be applied in some scenarios like video surveillance, diversified information collecting and processing, or complex tasks scheduling. Different from the energy-saving purpose of traditional WSN, MHWSN focuses not only on energy-saving, but also on providing a certain degree of QoS gurantee to the users. There exist multi-rate, multi-species hybrid services in MHWSN. They have different QoS requirements, which caused some problems like the contradiction of energy saving and the improvement of QoS standard, the contradiction of fairness and priority of services, and trade-offs within multiple QoS constraints. So, it is necessary to do the theoretical and technical research on QoS issues from every level of the protocol stack.
     This dissertation explores the QoS technologies from different levels of the protocol stack. And focuses on the following researches:the QoS supported time synchronization and data fusion algorithm, the QoS-sensitive routing protocol and transport layer protocol.
     The specific studies include:
     (1) Research on synchronization algorithm. Time synchronization is one of the important QoS supported technologies. The estimation of frequency drift among heterogeneous nodes and synchronization process are analyzed in this dissertation. The time synchronization algorithms within single broadcast field and multiple broadcast fields are studied.
     (2) Research on QoS guaranteed routing protocol. The types of network services are classified by some specific QoS indexes. The efficient and energy-saving routing protocol is studied under multiple QoS constraints.
     (3) Research on data fusion algorithm. The process of MA (Mobile Agent) based data fusion with differentiated services is analyzed. And the QoS sensitive path planning method of MA is studied.
     (4) Research on reliable transport layer protocol. The requirement of reliable data transmission on transport layer is analyzed. The congestion control method of transport layer is studied.
     Research results obtained in this dissertation are as follows:
     (1) To address the issue of amplified synchronization error between the neighboring nodes in the heterogeneous environment of MHWSN, an on-demand secondary RBS (Reference Broadcast Synchronization) method is proposed. By utilizing the RBS strategy, firstly, a synchronization routing table is built, and then the simulcast field with clustering structure is built. Lastly, according to the need of synchronization accuracy, the second RBS synchronization is used between interest nodes. Simulation results show that, the proposed algorithm improves the synchronization accuracy among nodes within the event area.
     (2) To address the TSP problem of seeking the optimal QoS routing, under the coexistence of multi-services and multi-QoS constraints in MHWSN, a priority-based QoS routing protocol with differentiated services is proposed. The ant-colony optimization algorithm is utilized to explore QoS routing. Artificial ants are designed for different types of services to find the QoS routing. A reverse inhibition mechanism is proposed to support services with higher priority. Simulation results show the proposed algorithm is QoS sensitive, and can meet different QoS requirements of different services, and ensure the QoS requirements of higher-priority services.
     (3) To address the issue of optimal path planning of mobile agents, a hybrid gradient calculation method mixed with the information effectiveness measurement and energy cost is proposed. This method utilizes the minimum gradient to choose the next node during the migrating of MA. The calculation of gradient combines the information effectiveness measurement with energy cost. Simulation results show that, it can improve the efficiency of data fusion and lower the energy cost.
     (4) To provide high reliability for services with higher priority and to avoid congestion, a priority-based and reliability-guaranteed MHWSN transport layer protocol is proposed. It can utilize the information of E-2-E delay, status of buffers, and delay of queues to detect the congestion. Aiming at the coexistence of various hybrid services in MHWSN, priority-based policies of store-and-forward and packets-discarding are employed to guarantee the end-to-end reliability. Simulation results show that the priority-based rate control algorithm can guarantee the reliability of data transmission and improved the network's throughput.
引文
[1]Liu Hongtao, Cheng Lianglun. Priority-based service differentiation scheme for medium and high rate sensor networks[C].2nd International Conference on Communication Software and Networks. Singapore:ICCSN,2010:392-395.
    [2]王汝传,孙力娟.无线多媒体传感器网络技术[M].北京:人民邮电出版社,2011.
    [3]孙岩.多媒体传感器网络中服务质量保障问题的研究[D].北京:北京邮电大学,2007.
    [4]王艳妹.多媒体传感器网络QoS传输控制算法研究[D].桂林:广西师范大学,2009.
    [5]孙岩,马华东.无线多媒体传感器网络QoS保障问题[J].电子学报,2008,36(7):1412-1420.
    [6]I.F. Akyildiz, T. Melodia, and K.R. Chowdhury. A Survey on wireless multimedia sensor networks[J]. Computer Networks (Elsevier),2007,51:921-960.
    [7]王越超,程良伦.中高速传感器网络QoS路由算法[J].计算机工程,2010,36(23):88-91.
    [8]陶利强.高速无线传感器网络拥塞及延时问题研究[D].深圳:中国科学院研究生院,2010.
    [9]邱天爽.无线传感器网络协议与体系结构[M].北京:电子工业出版社,2007.
    [10]李燕君.面向事件检测的无线传感器网络服务保障[D].杭州:浙江大学,2009.
    [11]彭蓓雷.基于低时延和区分服务的中调整传感器网络QoS保障MAC协议研究[D].广州:广东工业大学,2011.
    [12]高辉ZigBee技术在智能公交调度系统上的应用研究[D].西安:长安大学,2008.
    [13]陈乔,张毅坤,杨凯峰,等.无线传感器网络中同步补偿机制的研究与应用[J].计算机应用,2010,30(4):892-894,901.
    [14]Ganeriwal S., Kumar R., and Srivastava M. B. Timing-sync Protocol for Sensor Networks[C]. Proceedings of the 1st ACM Conference on Embedded Networked Sensor Systems. Los Angeles, California,2003:87-89.
    [15]J. v. Greunen and J. Rabaey. Lightweight Time Synchronization for Sensor Networks[C]. PProceedings of the Second ACM International Workshop on Wireless Sensor networks and Applications. San Diego, CA:WSNA 2003,2003:11-19.
    [16]J. Elson, L. Girod, and D. Estrin. Fine-Grained Network time synchronization using Reference Broadcasts[C]. Proceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI 2002). Boston,MA:2002.
    [17]任丰原,董思颖,何滔,等.基于锁相环的时间同步机制与算法[J].软件学报,2007,18(2):372-380.
    [18]F. Dai and R. Han. TSync:A Lightweight Bidirectional Time Synchronization Service for Wireless Sensor Networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review,2004,8(1):125-139.
    [19]Q. Li, and D. Rus. Global clock synchronization in sensor networks[J]. IEEE Trans, on Computers[J].2006,55(2):214-226.
    [20]王瑜,张继荣.无线传感器网络的时间同步[J].西安邮电学院学报,2010,15(1):143-147.
    [21]Xu Ning, and Rangwala S., et al. A wireless sensor network for structural monitoring[C]. SenSys'04-Proceedings of the 2nd International Conference on Embedded "Networked Sensor Systems.2004:13-24.
    [22]张东波,汪文勇,向渝.无线传感器网络中基于“后同步”思想的时间同步机制[J].网络运行与管理,2007(2):33-35.
    [23]Lan Y., and Wenjing W., Fuxiang G. A real-time and energy aware QoS routing protocol for multimedia wireless sensor networks[C]. World Congress on Intelligent Control and Automation (WCICA).2008:3321-3326.
    [24]He T., Stankovic J. A., and Lu C., et al. SPEED:A stateless protocol for real-time communication in sensor networks[C]. Proceedings-International Conference on Distributed Computing Systems. Rhode Island,2003:46-55.
    [25]Manjeshwar A., and Agrawal D. APTEEN:A Hybrid Protocol for Efficient Routing and Comprehensive Information Retrieval in Wireless Sensor Networks[C]. Proceeding of the 2nd International Workshop on Parallel and Distributed Computing Issues in Wireless Networks and Mobile Computing'02.2002:195-202.
    [26]Akkaya K.., and Younis M. An energy-aware QoS routing protocol for wireless sensor networks[C]. International Conference on Distributed Computing Systems Workshops (ICSDSW).2003:710-715.
    [27]许力.无线传感器网络的安全和优化[M].北京:电子工业出版社,2010.
    [28]A. Bletsas, and D.P. Reed, A. Lippman. A simple distributed method for relay selection in cooperative diversity wireless networks based on reciprocity and channel measurements. Proc. 61st IEEE Semiannu Vech. Technol. Conf. Stockholm, Sweden:IEEE,2005:1484-1488.
    [29]Deb B, Bhatnagar S, and Nath B. RelnForM:Reliable Information Forwarding Using Multiple Paths in Sensor Networks[C]. In the Proc. of IEEE International Conference on Local Computer Networks.2003,406-415.
    [30]Felemban E. et al. Probabilistic QoS Guarantee in Reliability and Timeliness Domains in Wireless Sensor Networks[C]. In the Proc. of IEEE Conference on Computer and Communications Societies,2005(4):2646-2657.
    [31]余勇昌,韦岗.无线传感器网络中基于PEGASIS协议的改进算法[J].电子学报,2008,7(36):1309-1313.
    [32]Shah R., and Rabae J. Energy aware routing for low energy ad hoc sensor networks[C]. Proceeding of the IEEE Wireless Communications and Networking Conference(WCNC'02). 2002:350-355.
    [33]王建萍,贾东耀,周贤伟.基于虚拟Steiner树的无线传感器网络中网络组播随机路由协议研究[J].传感技术学报,2008,11(21):1896-1899.
    [34]Martinez, J., and A. Garcia, et al. Trade-off between performance and energy consumption in Wireless Sensor Networks[C]. Self-Organizing Systems-Second International Workshop, IWSOS 2007,2007:264-271.
    [35]Meng, L. M., and K. Zhou, et al. A Dynamic Clustering-Based Algorithm for Wireless Sensor Networks[C]. Iscsct 2008:International Symposium on Computer Science and Computational Technology.2008,2:720-723.
    [36]Boukerche, A., and S. Samarah, et al. Knowledge Discovery in Wireless Sensor Networks for Chronological Patterns[C].2008 Ieee 33rd Conference on Local Computer Networks. 2008,1:652-658.
    [37]Qi H., Y. Xu, and Wang X. Mobile agent based collaborative signal and information processing in sensor networks[C]. Proceedings of the IEEE Sensor Networks and Applications.2003, 91(8):1172-1183.
    [38]王殊,阎毓杰,陈帅,等.传感器网络中基于移动代理的数据融合方法研究[J].传感技术学报,2006,19(3):926-932.
    [39]Iyengar S. S., and Wu Q. Computational aspects of distributed sensor networks[C]. Proceedings of the International Symposium of Parallel Architectures, Algorithms and Networks(I-SPAN'02). Manila, Philippines,2002:23-30.
    [40]Wu Q., and Rao N. S. V., et al. On computing mobile agent routes for data fusion in distributed sensor networks[J]. IEEE Transactions on Knowledge and Data Engineering,2004, 16(6):740-753.
    [41]Shakshuki E., Xing Xinyu, and Malik H. Mobile agent for efficient routing among source nodes in wireless sensor networks[C]. Third International Conference on Autonomic and Autonomous Systems(ICAS'07). Athens, Greece,2007:39-44.
    [42]C.Y. Wan, S.B. Eisenman, and A.T. Campbell, CODA:Congestion detection and avoidance in sensor networks[C]. Proc. ACM SenSys. USA,2003:266-279.
    [43]Y. Sankarasubramaniam, O.B. Akan, and I.F. Akyildiz. ESRT:Eventto-Sink Reliable Transport in Wireless Sensor Networks [C]. ACM MobiHoc. USA,2003:177-188.
    [44]B. Hull, K. Jamieson, and H. Balakrishnan, Mitigating Congestion in Wireless Sensor Networks[C]. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (SenSys).2004:134-147.
    [45]A.Sharif, V.M. Potdar and A.J.D.Rathnayaka. Performance Evaluation of different Transport layer protocols on the IEEE 802.11 and IEEE 802.15.4 MAC/PHY layers for WSN[C].7th Int Conf MoMM. Malaysia,2009:300-306.
    [46]F. Stann and J. Heideman. RMST:Reliable Data Transport in Sensor Networks[C]. In Proc. of the First IEEE Int. Workshop on Sensor Network Protocols and Applications. USA, 2003:102-113.
    [47]C. Y. Wan, A. T. Campbell, and L. Krishnamurthy. PSFQ:A Reliable Transport Protocol for Wireless Sensor Networks[C]. ACM Int. Workshop on WSN and App. USA,2002:1-11.
    [48]H. Zhang, A. Arora, Y.R. Choi, and M. G. Gouda. Reliable Bursty Convergecast in Wireless Sensor Networks[J]. ACM Mobihoc. USA,2005:266-276.
    [49]S. J. Park, R. Vedantham, R. Sivakumar, and I. F. Akyildiz. A scalable approach for reliable downstream data delivery in wireless sensor networks[C]. ACM MobiHoc. Japan,2004:78-89.
    [50]Liu Yuhua, Huang Hao, and Xu Kaihua. Multi-path-based distributed TCP caching for wireless sensor networks[C]. Proceedings-SNPD 2007:Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. 2007,3:331-335.
    [51]Y.G. Iyer, and S. Gandham, S. Venkatesan. STCP:a Generic Transport Layer Protocol for Wireless Sensor Networks[C]. Proceedings-International Conference on Computer Communications and Networks, ICCCN. USA,2005:449-454.
    [52]S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP Westwood:Bandwidth estimation for enhanced transport over wireless links[C]. Proceedings of the Annual International Conference on Mobile Computing and Networking. Rome, Italy,2001:287-297.
    [53]Liqiang Tao and Fengqi Yu. A Distributed Slot Assignment Algorithm with Minimum Jitter and Delay Guarantee for Real-time Applications in Wireless Sensor Networks[C]. Proceedings 2010 12th IEEE International Conference on High Performance Computing and Communications.2010:383-390.
    [54]G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems-Concepts and Design[M]. Harlow, England:Addison Wesley,2001.
    [55]S. M. Kay. Fundamentals of Statistical Signal Processing:Estimation Theory[M]. Upper Saddle River, NJ:Prentice-Hall,1993.
    [56]P. Blum, L. Meier, and L. Thiele. Improved Interval-Based Clock Synchronization in Sensor Networks[C]. Third International Symposium on Information Processing in Sensor Networks, IPSN 2004. Berkeley, CA,2004:349-358.
    [57]S. Mitra and J. Rabek. Power Efficient Clustering for Clock Synchronization in Dynamic Multi-Hop Sensor Networks [J/OL]. USA, MIT:[2003]. http://theory.lsc.mit.edu/-mitras/courses/6829/project/project_mail.html.
    [58]魏诺,郭强,李春杰,等.基于频率校止的触发型传感器网络同步算法[J].计算机工程,2008,34(7):57-59.
    [59]皇甫伟,周新运,陈灿峰.基于多层抽样反馈的传感器网络时间同步算法[J].通信学报,2009,30(3):59-65.
    [60]徐朝农,赵磊,徐勇军,等.无线传感器网络时间同步协议的改进策略[J].计算机学报,2007,30(4):514-523.
    [61]赵佩佩.配电监测网组网技术研究[D].西安:西安电子科技大学,2010.
    [62]李连,孙利民,樊孝忠,等.无线传感器网络基于概率分发的时间同步协议[J].北京邮电大学学报,2008,31(5):57-60.
    [63]徐朝农,徐勇军,李晓维,等.无线传感器网络时间同步新技术[J].计算机研究与发展,2008,45(1):138-145.
    [64]Akyildiz I. F., and Wang Xudong. A survey on wireless Mesh networks[J]. Communications magazine, IEEE,2005,43(9):23-30.
    [65]杨靖,熊伟丽,徐保国.无线传感器网络中基于蚁群算法的路由算法[J].计算机工程,2009,35(6):4-6.
    [66]刘晓东,冒勇军.蚁群算法在WSN路由协议中的应用[J].计算机工程,2009,35(16):243-247.
    [67]左民乐,李鲁群.基于蚁群算法的异构传感器网络路由算法[J].上海师范大学学报(自然科学版),2009,38(5):478-483.
    [68]熊翱.基于改进型蚁群系统的多约束电路路由算法[J].计算机工程,2008,34(6):183-185.
    [69]姜华,李寰.基于遗传蚁群算法的无线Mesh网QoS路由算法研究[J].计算机工程与设计,2009,30(16):3837-3839.
    [70]崔梦天,钟勇,赵海军ACOGA算法的多媒体网络QoS路由实现[J].电子科技大学学报,2009,38(2):266-269.
    [71]刘萍,高飞,杨云.基于遗传算法和蚁群算法融合的QoS路由算法[J].计算机应用研究,2007,09:224-227.
    [72]孙岩,马华东,刘亮.一种基于蚁群优化的多媒体传感器网络服务感知路由算法[J].电子学报,2007,04:705-711.
    [73]柯宗武,李腊元,陈年生,等.无线多媒体传感器网络QoS路由算法研究[J].计算机工程与设计,2008,29(2):360-363.
    [74]马华东,陶丹.多媒体传感器网络及其研究进展[J].软件学报,2006,09:2013-2028.
    [75]沙超,孙力娟,王汝传,等.多媒体传感器网络中多路径传输方式及其速率控制机制[J].通信学报,2010,11:147-157.
    [76]魏翼飞,张勇,宋梅,等.一种适用于WiFi Mesh网络的AODV改进路由协议[J].北京邮电大学学报,2007,30(4):120-124.
    [77]李士宁,滕文星,张琪,等.无线传感器网络QoS路由研究进展[J].计算机应用研究,2008,25(5):1304-1308.
    [78]郑凯.移动Ad hoc网络QoS策略和路由方案的研究[D].上海:华东师范大学,2006.
    [79]彭革刚.移动自组网QoS路由协议研究[D].上海:复旦大学,2005.
    [80]蔡文郁.高数据率WSN节能策略与QoS机制研究[D].杭州:浙江大学,2007
    [81]李粱.事件驱动型无线传感器网络路由算法研究[D].南昌:南昌航空大学,
    [82]孙岩,马华东,刘亮,等.多媒体传感器网络中服务感知的业务调度算法[J].系统仿真学报,2007,19(23):5591-5596.
    [83]蔡敏智.无线传感器网络分簇路由协议研究[D].长沙:国防科学技术大学,2007.
    [84]张文亚.传感器网络路由协议及其在工业监控系统中应用研究[D].北京:中国科学院自动化研究所,2007.
    [85]吴征.无线传感器网络非均匀分簇路由协议的研究[D].合肥:安徽大学,2010.
    [86]崔育飞.负载平衡的LEACH路由算法的研究[D].太原:太原理工大学,2009.
    [87]衷柳生,程良伦.基于区分服务的无线多媒体传感器网络QoS路由协议[J].计算机应用研究,2010,27(11):4218-4221.
    [88]耶刚强,梁彦,孙世宇,等.基于蚁群的无线传感器网络路由算法[J].计算机应用研究,2008,25(3):715-717,720.
    [89]朱畅,金心宇,张昱,等.基于速率调整和区分服务的WSN QoS机制[J].传感技术学报,2009,22(5):694-699.
    [90]衷柳生.基于区分服务的无线多媒体传感器网络保证QoS的路由协议[D].广州:广东工业大学,2010.
    [91]吴功宜.智慧的物联网[M].北京:机械工业出版社,2010.
    [92]Shen H. H., Li F., and Xu L. Based on mobile-agent mobile ad hoc network routing protocol[J]. Computer Engineering.2005,31(17):49-51.
    [93]Qi H., et al. Distributed sensor networks-a review of recent research[J]. Journal of the Franklin Institute,2001:338-665.
    [94]Jeonggil Ko, Tia Gao, Richard Rothman, and Andreas Terzis. Wireless Sensing Systems in Clinical Environments[J]. IEEE Engineering in medicine and biology magazine.2010:103-109.
    [95]Hairong Qi, Yingyue Xu, and Xiaoling Wang. Mobile-Agent-Based Collaborative Signal and Information Processing in Sensor Networks [C]. Proceeding of the IEEE,2003:1172-1183.
    [96]Min Chen, Taekyoung Kwon, Yong Yuan, and Victor C.M. Leung. Mobile Agent Based Wireless Sensor Networks [J]. Journal of computers,2006,1(1):14-21.
    [97]S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG:a Tiny Aggregation Service for Ad-Hoc Sensor Networks[C]. Proceedings of OSDI. Boston, MA:2002.
    [98]Prasad L., et al. Fault-tolerant sensor integration using multi resolution decomposition [J]. Physical Review,1994,49(4):3452.
    [99]张擎,柴乔林,王朋,等.带数据融合的无线传感器网络QoS路由算法[J].计算机工程与设计,2008,29(4):839-842,845.
    [100]Zhou Si-wang, and Lin Ya-ping, et. al. A Study of Trajectory-Based Mobile Agent Dynamic Routes Algorithm for Data Fusion in Wireless Sensor Networks [J]. Chinese Journal of Computer,2007,30(6):894-904. (In Chinese)
    [101]W. Yuan, S. Krishnamurth, and S. K. Tripathi. Synchronization of Multiple Levels of Data Fusion in Wireless Sensor Networks[C]. GLOBECOM-IEEE Global Telecommunications Conference. San Francisco, CA,2003:221-225.
    [102]A. Border and M. Mitzenmacher. Optimal Plans for Aggregation[C]. Proceedings of the 21st Annual Symposium on Principles of Distributed Computing. ACM Press:2002,144-152.
    [103]李丽娜,孙国栋.拥塞敏感的无线传感器网络路由算法[J].传感器与微系统,2011,30(1):119-122.
    [104]孙利民,李波,周新运.无线传感器网络的拥塞控制技术[J].计算机研究与发展,2008,45(1):63-72.
    [105]申建芳,程良伦.基于跨层的高速率传感器网络多元参数调度与资源自适应分配算法[J].计算机科学,2011,38(08):45-48.
    [106]Wang Zhi, Chen Ji-Ming, and Sun You-Xian. Integrated DBP for streams with (m, k)-firm real-time guarantee [J]. Journal of Zhejiang University:Science.2004,5(7):816-826.
    [107]李姗姗,廖湘科,朱培栋,等.传感器网络中一种拥塞避免、检测与缓解策略[J].计算机研究与发展,2007,44(8):1348-1356.
    [108]肖萍萍,田彦涛.一种无线传感器网络的优化速率控制方法[J].计算机工程与应用,2010,46(35):7-10,29.
    [109]S. Tilak, and N. B. Abu-Ghazaleh, and W. Heinzelman. Infrastructure Tradeoffs for Sensor Networks[C]. Proceedings of the ACM International Workshop on Wireless Sensor Networks and Applications (WSNA). Atlanta, GA,2002:49-58.
    [110]F.L. Lewis, L. Xie and D. Popa. Optimal and Robust Estimation with an introduction to Stochastic Control Theory [M].6000 Broken Sound Parkway, NW:Second Edd, CRC Press, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700