用户名: 密码: 验证码:
纤锌矿半导体电子能带结构和光学性质:第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对以氮化铟和石墨烯为代表的纤锌矿半导体在电子能带结构,及其光学性质,以及它们的掺杂结构所体现出来的特殊的物理性质,进行了系统地研究。首先,我们利用了第一性原理基于密度泛函理论研究了氮化铟的声子色散谱线和其在剩余射线区域内的光学性质,给出了其光学特性参数与横纵光学支频率之间的变化关系。其次,我们基于密度泛函理论,采用GGA+U(p+d)的近似方法,修正了第一性原理计算氮化铟带隙的不足,给出了与实验相符的结果,并且修正了电子能带结构,进一步的研究了In1-xGaxN的能带结构,以及掺杂原子对能带结构的影响和每个原子轨道对能带结构的贡献。最后,利用第一性原理研究了本征手扶椅式石墨烯纳米带的能带结构,以及氢修饰和锂掺杂后的能带结构和掺杂原子对费米能级附近能带的影响。
     计算结果表明,氮化铟具有半金属的性质,因此,容易产生电子跃迁,更加适合应用于光学器件的制造。计算结果也表明在ωTO<ω<ωLO区域内,反射谱可以达到最大值,且接近于1。消光系数谱中,在ω=ωTO处,产生了一个尖锐的峰值。这些光学性质的产生都说明了,在ωTO<ω<ωLO区域内,能量反射和损失是非常明显的,在该区域内发生了电场与晶格振动之间的相互作用,声子的产生和消失对电磁波能量变化产生了重要的影响。
     其次,利用GGA+U(p+d)的近似方法,修正了能带结构,得到氮化铟带隙值0.78eV与实验值一致,并且修正了能带结构。当镓掺杂氮化铟后,随着掺杂组分的增加,带隙发生了蓝移,即反斯托克斯移动。通过分波态密度分析可以看出,当掺杂镓原子后,p-d轨道之间的排斥作用减弱,Ga-4s, Ga-4p的态密度贡献均向导带移动,并且与In-5s,5p发生了强烈的杂化效应,促使带隙升高,发生了反斯托克斯移动。
     最后,通过计算本征手扶椅式石墨烯纳米带的能带结构,分析表明它是间接带隙半导体,并且能带结构主要是由C-2p轨道的电子贡献的。进一步研究其氢修饰和锂掺杂不同位置的结构,结果表明氢修饰石墨烯纳米带为直接带隙半导体,带隙为1.68eV,手扶椅式石墨烯纳米带经过掺杂调制后具有了金属的性质。而且,单边掺杂具有最低的形成能,即结构稳定,因此可以预测该位置最适合掺杂。从分波态密度结果中可以清楚地了解到,锂掺杂后,Li-2s,2p轨道的电子在费米能级附近的贡献明显,并与C-2p电子发生了强烈的杂化作用,导致了手扶椅式石墨烯纳米带具有了金属性质。
For electronic energy band structure and optical properties of the wurtzite InN and graphene are studied. And unique physical properties for doped InN and graphene are investigated detaily. Firstly, the phonon spectra and optical properties of wurtzite InN in the reststrahlen region are studied by the first-principle calculations based on the density functional theory. Secondly, the band gap of wurtzite InN is corrected using GGA+U in density functional theory. Furthermore, the electronic band structures, density of states (DOS) and projected density of states (PDOS) of the wurtzite In1-xGaxN are studied. The calculations of phonon spectra are based on the Generalized-Gradient Approximation (GGA). Finally, the charge density, electronic energy band and density of states of bare, H terminated and Li doped armchair graphene nanoribbons (AGNRs) are investigated using the local density approximation based on density function theory.
     The calculation indicates that InN has metal-like behavior. Also, Our calculation shows the reflectivity R at ω close to ωLO is nearly zero and R-1at ωTO<ω<ωLO.In the dispersion curves, there are a strong absorption peak of k(ω) at the resonance frequency ω=ωTO.These results show the fundamental vibration has dipole moment and is therefore infrared active in wurtzite structure semiconductors.
     Secondly, our calculations suggest that in the case of wurtzite InN it is important to apply GGA+U(p+d) in order to recover the correct bang gap and obtain a reliable description of InN band structure. The methodology is applied to study the electronic properties of the wurtzite In1-xGaxN. The increases in the band-gap and valence band width show that an anti-Stokes shift occurs with the band-gap variations due to the composition fluctuations. It was confirmed that the increases of the band gap and the valence-band width stem from the repulsion of p-d electrons and strong hybridizations during of the Ga-4,s, In-5s and Ga-4p, In-5p electrons.
     Finally, the bare AGNRs are an indirect band gap semiconductor. And the upper valence-band and conduction band are mainly dominated by C-2p states for the bare AGNRs. The H terminated AGNRs is direct band gap semiconductor with band gap1.68eV. The Fermi level crosses the conduction band and the ribbon becomes metallic for Li doped AGNRs. The one-edge Li-doped AGNRs have the lowest formation energy for other different doping configurations. So we can predict that one-edge Li-doped AGNRs is an energetically favorable practice for different doping configurations. The project density of states is calculated and reveals that the localization and hybridization between C-2p and Li-2p electronic states are much stronger in the conduction band group.
引文
[1]S. C. Jain, M. Willander, J. Narayan et al. Ⅲ-nitrides:Growth, characterization, and properties, J. Appl. Phys.,2000,87(3),965-1006.
    [2]J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, GaN:Processing, defect, and devices, J. Appl. Phys.,1999 86(1),1-78.
    [3]W. Kim, O. Aktas, A. E. Botchkarev, A. Salvador, S. N. Mohammad, and H. Morkoc, Reactive molecular beam epitaxy of wurtzite GaN:Materials characteristics and growth kinetics, J. Appl. Phys.1996,79 (10),7657-7666.
    [4]H. Morkoc, S. Strite, G B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J. Appl. Phys.,1994, 76(3),1363-1398.
    [5]S.H. Wei and A. Zunger, Valence band splittings and band offsets of AlN, GaN, and InN, Appl. Phys. Lett.,1996,69(18),2719-2721.
    [6]M. Feneberg, J. Daubler, K. Thonke and R. Sauer, Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements, Phys. Rev. B,2008,77(24), 245207
    [7]T.L. Tansley, C.P. Foley, Optical band gap of indium nitride, J. Appl. Phys.1986,59(9), 3241-3244.
    [8]K.S.A. Butcher, et al., Nritrogen-rich indium nitride, J. Appl. Phys.2004,95(11),6124.
    [9]V. Darakchieva, M.Y. Xie, N. Franco et al. Stuctural anisotropy of nonpolar and semipolar InN epitaxial layers,2010,108(7),073529.
    [10]B.N. Pantha, J. Li, J.Y. Lin and H.X. Jiang, Single phase InxGa1-xN(0.250.63) alloys synthesized by metal organic chemical vapor deposition, Appl. Phys. Lett.,2008,93(18), 182107.
    [11]T. Yodo, H. Yona, H. Ando and D. Nosei, Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy, Appl. Phys. Lett.,2002,80(6),968-970.
    [12]J. Furthmuller, P.H. Hahn, F. Fuchs and F. Bechstedt, Band structures and optical spectra of InN polymorphs:Influence of quasiparticle and excitonic effects, Phys. Rev. B,2005,72(20) 205106.
    [13]A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, Indium nitride (InN):A review on growth, characterization, and properties, J. Appl. Phys.,2003,94(5),2779-2808.
    [14]B. Monemar, P. P. Paskov, A. Kasic, Optical properties of InN-the band gap question, Superlatt. Microstruct.2005,38(1),38-56.
    [15]K. S. Novoselov, A. K. Geim, S. Morozov et al. Electric Field Effect in Atomically Thin Carbon Films, Science,2004,306(5696),666.
    [16]彭听祥,石墨烯纳米带光电性质研究,中国知网,湖南师范大学,2009.
    [17]K. S. Novosoelov, A. K. Geim, S. V. Morozov, Two-Dimensional Gas of Massless Dirac Fermions in Graphene, Nature,2005,438(7065),197-200.
    [18]M.M. Ugeda, I. Brihuega, F. Hiebel et al. Electronic and structural characterization of divacancies in irradiated graphene, Phys. Rev. B,2012,85(12),121402.
    [19]W. Han, K.M. McCreary et al. Spin transport and relaxation in graphene, Journal of Magnetism and Magnetic Materials,2012,324(4),369-381.
    [20]A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials,2007,6(3), 183-191.
    [21]X.T. Jia, J. Campos-Delgado, M. Terrones et al. Graphene edges:a review of their fabrication and characterization, Nanoscale,2011,3(1),1-316.
    [22]P.R. Wallace, The Band Theory of Graphite, Phys. Rev.,1947,71(9) 622-634.
    [23]P. Avouris and C. Dimitrakopoulos, Graphene:synthesis and applications, Materials today, 2012,15(3),86-97.
    [24]J.M. Cai, P. Ruffieux, R. Jaafar etc. Atomically precise bottom-up fabrication of graphene nanoribbons, Nature Lett.,2010,466(7306),470-473.
    [25]L. Ma, J. L. Wang, and F. Ding, Recent Progress and Challenges in Graphene Nanoribbon Synthesis, ChenPhysChem,2013,14(1),47-54.
    [26]X. T. Jia, M. Hofmann, V. Meunier etc. Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons, Science,2009,323(5922),1701-1705.
    [27]L.H. Zhang, L.L. Fan, Z. Li et al. Graphene-CdSe Nanobelt Solar Cells with Tunable Configurations, Nano Res.,2011,4(9),891-900.
    [28]M. Modarresi, M. R. Roknabadi, N. Shahtahmasbi, Transport properties of an armchair boron-nitride nanoribbon embedded between two graphene elecrodes, Physica E,2011,43(9), 1751-1754.
    [29]D. M. Zhang, Z. Li, J. F. Zhong, L. Miao and J. J. Jiang, Electronic properties of edge-functionalized zigzag graphene nanoribbons on SiO2 substrate, Nanotechnology,2011, 22(1),265702.
    [30]D. Fujita, Nanoscale synthesis and characterization of graphene-based objects, Sci. Technol. Adv. Mater.2011,12(4),044611.
    [31]孙殿照.半导体材料的华丽家族-氮化镓基材料简介.物理,2001,30(7),413-419
    [32]S. Dutta, A. K. Manna, S.K. Pati, Intrinsic Half Metallicty in Modeled Graphene Nanoribbons, Phys. Rev. Lett.,2009,102(9),096601.
    [33]V. Barone, O. Hod, G E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons. Nanoletters,2006,6(12),2748-2754
    [34]D. Gunlyckea, J. Li, J. W. Mintnire etc. Altering low bias transport in zizag edge graphene nanostrips with edge Chemistry, Appl. Phys. Lett.,2007,91(11),112108.
    [35]钱志刚,沈文忠,小川博司,郭其新,半导体氮化铟(InN)的晶格振动,物理学进展,2003,23(3),258-283.
    [36]S. K. O'Leary, B. E. Foutz, M. S. Shur etc. Electron transport in wurtzite indium nitride, J. Appl. Phys.1998,83(2),826-829.
    [37]H. J. Harima, Properties of GaN and related compounds studied by means of Raman scattering, Phys. Condens. Matter,2002,14(38), R967-R993.
    [38]D. Chandrasekhar, D. J. Smith, S. Strite et al. Characterization of group Ⅲ-nitride semiconductors by high-resolution electron microscopy, J. Crystal Growth,1995,152(3), 135-142.
    [39]H. J. Hovel, J. Cuomo, Electrical and optical properties of RF-sputtered GaN and InN, J. Appl. Phys. Lett.1972,20(2),71-73
    [40]T. L. Tansley, C. P. Foley, Electron mobility in indium nitride, Electronics Letters,1984, 20(25-26),1066-1068.
    [41]M. Sato, Carrier density of epitaxial InN grown by Plasma-Assisted Metalorganic Chemical Vapor Deposition, Jpn. J. Appl. Phys. Part 2,1997,36(6A), L658-L660.
    [42]A. Yamamoto, T. Shin-ya, T. Sugiura, etc. Characterization of MOVPE-grown InN layers on a-Al2O3 and GaAs, J. Crystal Growth,1998,189(98),461-465.
    [43]V. V. Mamutin, T. V. Shubina, V. A. Vekshin et al. Hexagonal InN/sapphire heterostructures: interplay of interface and layer properties, Appl. Sur. Sci.2000,166(1-4),87-91.
    [44]Y. Satio, N. Teraguchi, A Suzuki, et al. Growth of High-Electron-Mobility InN by RF Molecular Beam Epitaxy, Jpn. J. Appl. Phys. Part 2,2001,40(2A), L91-L93.
    [45]A. Yamamoto, T. Tanaka, K. Koide et al. Improved electrical properties for Metalorganic Vapour Phase Epitaxial, Phys. Stat. Sol.(a),2002,194(2),510-514.
    [46]潘葳,沈文忠,小川博司,郭其新,半导体氮化铟(InN)的电学性质,物理学进展,2004,24(2),196
    [47]D. W. Jenkins, J. D. Dow, Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN, Phys. Rev. B,1989,39(5),3317-3329.
    [48]潘葳,沈文忠,六方InN薄膜的载流子输运特性研究,物理学报,2004,53(5),1501-1506
    [49]N. Miura, H. Ishii, A. Yamada etc. Anomalous Electrical Characteristics of Epitaxial InN Films Having a High Electron Concentration at Very Low Temperature, Jpn. J. Appl. Phys. Part 2,1997,36(3A), L256-L259.
    [50]廖文虎,石墨烯纳米带电光性质及应力调控研究,中国知网,湖南师范大学,2010.
    [51]A. De Martino, L. Dell'Anna, R. Egger, Magnetic Confinement of Massless Dirac Fermions in Graphene, Phys. Rev. B,2007,98(6),066802.
    [52]O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys.,1929,53(3-4),157.
    [53]M. I. Katsnclson, K. S. Novoselov and A. K. Geim, Chiral tunnelling and the Kleim paradox in graphene, Nature Physics,2006,2,(9) 620.
    [54]K. V. Klitzing, G. Dorda and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett.,1980,45(6),494.
    [55]D. C. Tsui, H. L. Stormer and A. C. Gossard, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phy. Rev. Lett.,1982,48(22),1559.
    [56]Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. (Leipzig) 1927, 84(20),457.
    [57]P. Hohenberg, W. Kohn, Phys. Rev., Inhomogeneous Electron Gas,1964,136(3B), B864-B871.
    [58]R. Martin, Electronic Structure:Basic Theory and Practical Methods Cambridge University Press, New York, (2004).
    [59]W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev.,1965,140(4A), A1133.
    [60]R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys.,1989,61(3),689.
    [61]J. P. Perdew and Alex Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B,1981,23(10),5048.
    [62]J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Optimized and transferable nonlocal separable ab initio pseudopotentialsPhys. Rev. B,1993,47(8),4174.
    [63]D. Vanderbilt, Soft-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B,1990,41(11),7892.
    [64]P. Giannozzi, S. Baroni, N. Bonini etc. Quantum ESPRESSO:a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter,2009, 21(39),395502.
    [65]S. Nakamura, M. Senohn, Shin-ichi Nagahama et al. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes, Appl. Phys. Lett.,1996,69(26), 4056.
    [66]K. Wang, R.R. Reeber, Thermal expansion and elastic properties of InN, Appl. Phys. Lett., 2009,79(11),1602.
    [67]V. Y. Davydov,A. A. Klochikhin et al. Selective excitation of (LO) and A1(LO) phonons with large wave vectors in the Raman spectra of hexagonal InN, Phys. Rev. B,2009,80(8), 081204.
    [68]H. Lu, W.J. Schaff, J.Hwang, H. Wu, W. Yeo, A. Pharkya, and L.F. Eastman, Improvement on epitaxial grown of InN by migration enhanced epitaxy, Appl. Phys. Lett.,2000,77(16),2548.
    [69]J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, E.E. Haller, H. Lu, and W.J. Schaff, Temperature dependence of the fundamental band gap of InN, J. Appl. Phys.,2003,94 (7), 4457.
    [70]W. Shan, W. Walukiewicz, E.E. Haller, et al, Optical properties of InxGa1-xN alloys grown by metalorganic chemical vapor deposition, Journal of Applied Physics,1998,84(8),4452.
    [71]Q. Guo, O. Kato, M. Fujisawa, and A. Yoshida, Optical constants of indium nitride, Solid State Commun.,1992,83(9),721.
    [72]H.Y. Wang, G. Z. Zhao, X. Q. Wang, Terahertz radiation from InN by femtosecond optcal pulses of different wavelengths, Chinese Optics Lett.(sub),2011,9,013102.
    [73]S. Schulz, S. Schumacher, G Czycholl, Tight-binding model for semiconductor quantum dots with a wurtzite crystal structure:From one-particle properties to Coulomb correlations and optical spectra, Phys. Rev. B,2006,73(24),245327.
    [74]O. Briot, B. Gil, B. Maleyre, S. Ruffenach, C. Pinquier, F. Demangeot, J. Frandon, Strain-induced correlations between the phonon frequencies of indium nitride, phys. stat. sol. (c),2004,1(6) 1420-1424.
    [75]C. P. Foley and T. L. Transley, Pseudopotential band structure of indium nitride Phys. Rev. B,1986,33(2),1430.
    [76]A. K. Solanki, A. Kashyap, T. Nantiyal, S. Auluck, and M.A. Khan, Optical properties of AlN, Solid State Commun.,1995,94(12),1009.
    [77]M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B,1989,40(6),3616.
    [78]T. L. Tansley, C.P. Foley, Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region, J. Appl. Phys.,1986,59(2),3241.
    [79]M. Y Duan, L. He, M. Y Xu, S. Xu, K. Ostrikov, Structural, electronic, and optical properties of wurtzite and rocksalt InN under pressure, Phys. Rev. B,2010,81(3),033102.
    [80]L. C. Xu, R. Z. Wang, X. D. Yang et al. Thermal expansions in wurtzite AlN, GaN, and InN: First-principle phonon calculations, J. Appl. Phys.,2011,110(4),043528.
    [81]H. M. Tiituncu, G. P Srivastava, S. Duman, Lattice dynamics of the zinc-blende and wurtzite phases of nitrides, Physica B,2002,316/317,190-194.
    [82]V. Yu. Davydov, A. A. Klochikhin, I. Y. Strashkova et al. Selective excitation of E1(LO) and A1(LO) phonons with large wave vectors in the Raman spectra of hexagonal InN, Phys, Rev. B,2009,80(8),081204.
    [83]J. Serrano, A. Bosak, M. Krisch, F.J. Manjon, A.H. Romero, N. Garro, X. Wang, A. Yoshikawa, and M. Kuball, InN Thin Film Lattice Dynamics by Grazing Incidence Inelastic X-Ray Scattering, Phys, Rev. Lett.,2011,106(20),205501.
    [84]V. Yu. Davydov.V. V. Emtsev, I. N. Goncharuk et al, Experimental and theoretical studies of phonons in hexagonal InN, Appl. Phys. Lett.,1999,75(21),3297.
    [85]B. Abbar, B. Bouhafs, H. Aourag, G Nouet, P. Ruterana, First-Principles Calculations of Optical Properties of AlN, GaN, and InN Compounds under Hydrostatic Pressure, Phys. Stat. Sol.(b),2001,228(2),457.
    [86]N.E. Christensen and I. Gorczyca, Optical and structure properties of III-V nitrides under pressure, Phys. Rev. B,1994,50(7),4397-4415.
    [87]Tansley, T.L. in Properties of Group III Nitrides, ed. Edgar J.H., INSPEC, London 1994, p.39
    [88]F. Bermardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B,1997,56(16), R10024-R10027.
    [89]C. Bungaro, K. Rapcewicz, J. Bernholc, Ab initio phonon dispersions of wurtzite AIN, GaN, and InN, Phys. Rev. B,2000,61(10),6720-6725.
    [90]J. N. Carl, G T. Nikholas, C. C. Samantha, L. Michael, P. D. Steven, and K. M. Umesh, Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours, Appl. Phys. Lett.,2008,70(11),1417.
    [91]T. Aschenbrenner, H. Dartsch, C. Kruse et al. Optical and structural characterization of AlInN layers for optoelectronic applications, J. Appl. Phys.,2010,108(6),063533.
    [92]J. Li, J. Y. Lin and H. X. Jiang, Direct hydrogen gas generation by using InGaN epilayers as working electrodes, Appl. Phys. Lett.,2008,93(16),162107.
    [93]N. A. Sanford, A. Munkholm, M. R. Krames et al. Refractive index and birefringence of InxGa1-xN films grown by MOCVD, Phys, stat. sol. (c),2005,2(7),2783.
    [94]I. Gorczyca, T. Suski, N. E. Christensen and A. Svane, Gap bowing in Inx Ga1-xN and Inx Al1-xN under pressure, Phys, stat. sol. (c),2009,6(S2), S368-S371.
    [95]M. Goano, E. Bellotti, E. Ghillino, C. Garetto, G. Ghione and K. F. Brennan, Bandstructure nonlocal pseudopotential calculation of the Ill-nitride wurtzite phase materials system. Part Ⅱ. Ternary alloys AlxGa1-xN, InxGa1-xN, and InxAl1-xN, J. Appl. Phys.,2000 88(11),6477.
    [96]J. Furthmuller, P. H. Hahn, F. Fuchs and F. Bechstedt, Band structures and optical spectra of InN polymorphs:Influence of quasiparticle and excitonic effects, Phys. Rev. B,2005,72(20), 205106.
    [97]Tarun K. Maurya, S. Kumar, S. Auluck, Ab-initio study of electronic and optical properties of InN and cubic phases, Opt. Commun.2010,283,4655-4661.
    [98]M. Cococcioni and S. de Gironcoli,Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Phys. Rev. B,2005,71(3),035105.
    [99]A. Kokalj, Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale, Computational Materials Science,2003,28(2),155.
    [100]I. A. Vladimir, Z. Jan and K. A. Ole, Band theory and Mott insulators:Hubbard U instead of Stoner I, Phys. Rev. B,1991,44(3),943.
    [101]A Janotii, D. Segev and C. G Van de Walle, Effects of cation d states on the structural and electronic properties of Ⅲ-nitride and II-oxide wide-band-gap semiconductors, Phys. Rev. B, 2006,74(4),045202.
    [102]M. Korotin, T. Fujiwara and V. Anisimov, Long-period orbital order with hole stripes in La7/8Sr1/8MnO3, Phys. Rev. B,2000,62(9),5696.
    [103]P. D. C. King, T. D. Veal, C. F. McConvile, F. Fuchs, J. Furthmuller, F. Bechstedt, J. Schormann, D. J. As, K. Lischka, H. Lu and W. J. Schaff, Valence band density of states of zinc-blende and wurtzite InN from x-ray photoemission spectroscopy and first-principles calculations, Phys. Rev. B,2008,77(11),115213.
    [104]S. Zhang, J. J. Shi, S. G Zhu, F. Wang, M. Yang and Z. Q. Bao, Indium distribution and light emission in wurtzite InGaN alloys:Several-atom In-N clusters, Phys. Lett. A,2010, 374(47),4767.
    [105]C. Stampfl and C. G. Van de Walle, Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation, Phys. Rev. B, 1999,59(8),5521.
    [106]Y. C. Yeo, T. C. Chong and M. F. Li, Electronic band structures and effective-mass parameters of wurtzite GaN and InN, J. Appl. Phys,1997,83(3),1429.
    [107]B. T. Liou, C. Y. Lin, S. H. Yen and Y. K. Kuo, First-principles calculation for bowing parameter of wurtzite InxGa1-xN, Opt. Commun.,2005,249(1-3),217.
    [108]V. I. Gavrilenko and R. Q. Wu, Linear and nonlinear optical properties of group-Ⅲ nitrides, Phys. Rev. B 2000,61,2632-2642.
    [109]L. F. Piper, T. D. Veal, P. H. Jefferson and C. F. McConville, Valence-band structure of InN from x-ray photoemission spectroscopy, Phys. Rev. B,2005,72(24),245319.
    [110]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager and E. E. Haller, Small band gap bowing in Im1-xGaxN alloys, Appl. Phys. Lett.,2002,80(25),4741.
    [111]S. H. Wei and A. Zunger, Role of metal d states in Ⅱ-Ⅵ semiconductors, Phys. Rev. B,1988, 37(15),8958.
    [112]M. Ferhat, J. Furthmuller and F. Bechstedt, Gap bowing and Stokes shift in InxGa1-xN alloys:First-principles studies, Appl. Phys. Lett.2002,80(8),1394.
    [113]N. Tit, Nitrogen-electronegativity-induced bowing character in ternary zincblende Ga1-xInxN alloys, Journal of Alloys and Compounds,2010,503(2),529.
    [114]J. Hass, R. Feng, J.E.M. Otoya, X. Li, M. Sprinkle, P.N. First, W.A. de Heer, E.H. Conrad, C. Berger, Inversion of defect interactions due to ordering in Sr1-3x/2LaxTiO3 perovskites:An atomistic simulation study, Phys. Rev. B,2007,75(21),214109.
    [115]K. Nakada, M. Fujita, G. Dressrlhaus, M.S. Dresslhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B,1996,54(24), 17954-17961.
    [116]M. Ezawa, Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B,2006,73(4),045432.
    [117]Y.W. Son, M.L. Cohen, and S.G. Louie, Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett.,2006,97(21),216803.
    [118]X.T. Jia, J. Campos-Delgado, M. Terrones, V. Meunier and M.S. Dresselhaus, Graphene edges:a review of their fabrication and characterization, Nanoscale,2011,3(1),86-95.
    [119]I. Patla, S. Acharya, L. Zeiri, J. Lsraelachvili, S. Efrima and Yuval Golan, Synthesis, Two-Dimensional Assembly, and Surface Pressure-Induced Coalescence of Ultranarrow PbS Nanowires, Nano Lett.,2007,7(6),1459-1462.
    [120]B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G Hao, J. Wu, B. L. Gu, and W. H. Duan, Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor, J. Phys. Chem. C,2008,112(35),13442-13446.
    [121]S. S Yu, W. T. Zheng, Q. B. Wen, Q. Jiang, First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges, CARBON,2008,46(3), 537-543.
    [122]S. S. Chauhan, P. Srivastava, A. K. Shrivastava, Band gap engineering in doped graphene nanoribbons:An ab initio approach, Solid State Communication,2013,154,69-71.
    [123]N. K. Jaiswal, P. Srivastava, First principles calculations of armchair graphene nanoribbons interacting with Cu atoms, Physica E 2011,44(1),75-79.
    [124]N. K. Jaiswal, P. Srivastava, First principles calculations of cobalt doped zigzag graphene nanoribbons, Solid State Communications,2012,152(15),1489-1492.
    [125]X.H. Liu, J.W. Wang, Y. Liu, H. Zheng, A. Kushima, S. Huang, T. Zhu, S.X. Mao, J. Li, S. Zhang, W. Lu, J.M. Tour, J.Y. Huang, In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons, CARBON,2012,50(10),3836-3844.
    [126]E. Lee, K.A. Persson, Li Absorption and Intercalation in Single Layer Graphene and Few Layer Graphene by First Principles, Nano Lett.,2012,12(9),4624.
    [127]V. A. Rigo, T. B. Martins, A. J. R. da Silva, A. Fazzio, R. H. Miwa, Electronic, structural, and transport properties of Ni-doped graphene nanoribbons, Phys. Rev. B,2009,79(7), 075435.
    [128]C. Uthasisar, V. Barone and J. E. Peralta, Lithium adsorption on zigzag graphene nanoribbons, J. Appl. Phys.,2009,106(11),113715.
    [129]F. Wang, J. Graetz, M. Sergio Moreno, C. Ma, L. J. Wu, V. Volkov, Y. Zhu, Chemical Distribution and Bonding of Lithium in Intercalated Graphite:Identification with Optimized Electron Energy Loss Spectroscopy, ACSNANO,2011,5(2),1190-1197.
    [130]T. Hussain, B. Pathak, T. A. Maark, C. M. Araujo, R. H. Scheicher, R. Ahuja, Ab initio study of lithium-doped graphane for hydrogen storage, EPL,2011,96(2),27013.
    [131]J. Y. Dai, J. M. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study, Appl. Phys. Lett.,2009 95(23),232105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700