用户名: 密码: 验证码:
整体化复合材料壁板结构固化变形模拟及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料整体成型技术在满足结构总体性能的要求下,通过减少零件和紧固件的数量减轻结构重量,降低成本,特别是降低制造成本,是目前世界上在该技术领域大力提倡和发展的重要技术之一。而对于大尺寸、结构复杂的整体化成型的结构件,固化变形是影响其成型质量的重要因素。为减小复合材料的固化变形,传统的方法是在经验和工艺试验的基础上对构件的固化工艺制度和模具型面进行反复的调整和补偿性修正加工,这种方法费时费料,增加了制造成本。因此,针对复合材料整体化成型构件建立完整的固化变形分析和预测方法,就成为保障制造质量、降低制造成本的核心关键问题之一。
     本文建立了整体化成型复合材料结构固化过程的分析模型及其相应的三维有限元模拟方法,考虑了固化过程中树脂基体固化收缩以及升降温阶段热变形导致的残余应力,分析固化阶段以及固化后降温阶段构件残余应力的发展。预报结果与构件固化温度发展历程及固化翘曲变形量的实验测量结果基本吻合,从而验证了固化过程三维有限元模拟方法的有效性。
     热压罐整体化成型工艺中,金属模具与复合材料构件之间的热不匹配、柔性模具的使用、框架式模具变形及温度分布是影响构件固化变形的重要的模具因素,是目前解决构件固化变形问题的难点。本文使用光纤光栅监测了固化过程中单向板不同厚度位置的应力发展,得到了单向板沿厚度方向的应力梯度,据此分析了模具与构件之间热不匹配导致的相互作用。引入剪切层模型模拟分析了由模具与构件之间热不匹配导致的构件固化变形,并建立了剪切层参数与构件尺寸及固化压力之间的关联模型,通过层板固化变形的模拟结果与实验结果的对比验证了剪切层模型的有效性。整体化成型工艺中柔性模具传递到构件表面不均匀的压力会影响构件的固化变形,同时柔性模具的使用还会影响到构件固化温度场的分布。本文根据柔性模具传压特性的实验研究和模拟分析结果,得到了由L型橡胶柔性模具传递到构件表面不均匀的压力分布。将柔性模具传递的不均匀压力作为残余应力及变形分析模块的边界条件,而在热化学分析模块中同时模拟柔性模具与复合材料构件整体的固化温度场。通过算例分析发现柔性模具的使用增大了L型构件的固化变形。框架式模具在工艺过程中的变形及温度分布同样是影响整体化成型构件固化变形的重要的模具因素之一,本文模拟分析了固化过程中的模具变形场及温度分布,并进行了实验验证。研究了平板型框架式模具变形随模具结构参数的变化规律。将模拟得到的模具型面的变形情况及温度分布作为构件固化残余应力及变形分析的边界条件。通过算例分析发现固化过程中框架式模具变形及型面温度的不均匀分布导致单向板出现了翘曲变形。
     分析了共固化和胶接共固化工艺下碳纤维/双马5428整体化成型T型加筋壁板结构的固化温度场及固化变形,其中考虑了包括金属模具与复合材料构件之间的热不匹配、柔性模具的使用、框架式模具变形及温度分布在内的模具因素的影响。模拟结果表明金属模具与复合材料之间的热不匹配对T型加筋壁板的固化变形影响最大,框架式模具温度及变形次之,而柔性模具的影响作用较小。胶接共固化工艺下T型加筋壁板的温度场分布比共固化工艺下的温度场分布均匀,同时胶接共固化时T型加筋壁板的固化变形量也小于共固化时的固化变形量。
     最后本文从成型工艺选择和模具设计的角度提出了减小T型加筋壁板固化变形的四个控制因素,得到了各自的影响规律,为变形控制提供指导和依据。
Integrated process is an important technique of cure process for composites to reduce parts and fasteners and meet the needs of structure performance. Fabrication cost can be reduced in integrated process. Cure-induced deformation is key problem to improve process quality of large-scale and complex structural composite integrated structure. For reducing cure-induced deformation, conventional method is that adjust and correct the skin of mold and cure system again and again according as experiences and process tests. But the conventional method increases fabricate cost. So it is important to guarantee a product and reduce fabrication cost that the method of analyzing and predicting deformation is developed for integrated composite structure.
     In this paper, analysis models and three-dimensional finite element method (FEM) for cure process of composite integrated structure were developed. Thermal deformation and cure shrink were considered in analysis models and the evolution of residual stresses in the entire cure process was studied. Numerical predictions compared quite well with experimental measurements for the development of cure temperature and cure-induced deformations.
     During autoclave integrated process, the mismatch between coefficients of thermal expansion of metal mold and composite part, flexible auxiliary mold, temperature distribution and deformation of framed-mold are important mold influencing factors for cure-induced deformation of composite structures. In this paper, fiber Bragg grating sensor was used to monitor residual stresses development in the unidirectional laminate. According as stress gradient in the direction of thickness obtained by experimental measurement mold/part interaction was studied. Shear-layer model was introduced and an associated model between shear-layer parameters, the dimension and cure pressure of composite structure was developed. Simulated results for laminate by shear-layer model could accurately predict cure-induced deformation compared with experimental measurements. Non-uniform pressure distribution on the surface of part transferred by flexible mold will influence cure-induced deformation, and flexible mold also has an effect on cure temperature distribution of composite part. In this paper, the performance of transferring cure pressure of flexible mold was studied with experiment and simulation. Non-uniform pressure distribution transferred by L-Shape flexible mold was obtained. The pressure from flexible mold on the part was as boundary condition to predict residual stresses and cure-induced deformation. And in thermal-chemistry model cure temperature of flexible mold and composite part are simulated together. Then cure-induced deformation of L-shape part was predicted and using flexible mold increased deformation. Framed-mold deformation and temperature distribution are important factors of cure-induced deformation for integrated structures. In this paper, framed-mold deformation and temperature distribution was obtained with FEM and numerical predictions compared quite well with experimental measurements. Structural parameters of flat-plate framed-mold have an effect on framed-mold deformation and the regularity was studied. Then deformation and temperature distribution of framed-mold were as boundary condition of cure-induced deformation simulation. Cure-induced deformation of unidirectional laminate induced by framed-mold was obtained.
     In this paper, cure temperature and cure-induced deformation for Carbon/BMI5428 T-Shape stiffened panel were investigated with considering mold factors during co-curing process and glue joint co-curing process. The results showed that tool/part interaction was the major mold factor to induce deformation for T-Shape stiffened panel, framed-mold temperature distribution and deformation was the secondary mold factor, and flexible mold was the third mold factor. And cure temperature distribution in glue joint co-curing was more uniform than in the co-curing. Cure-induced deformation in glue joint co-curing was less than in the co-curing.
     Lastly, in this paper, four control factors were presented to reduce cure-induced deformation by selecting processes and mold design. And the regularities of four factors were obtained to direct deformation control.
引文
1 R. J. Morgan, E. E. Shin, J. Lincoln, et al. Overview of Polymer Matrix Composites Performance and Materials Development for Aerospace Applications. SAMPE Journal. 2001, 37(2):102~107
    2陈绍杰.浅谈复合材料整体成形技术.航空制造技术. 2005, (9):58~62
    3杨乃宾.国外复合材料飞机结构应用现状分析.航空制造技术. 2002, (9):21~29
    4沈真,章怡宁,黎观生等.复合材料结构设计手册.航空工业出版社. 2001:603~606
    5闫国良,刘兴宇,张洁.复合材料垂直安定面整体化加筋壁板设计.民用飞机设计与研究. 2008, (1):6~9
    6赵渠森.降低树脂基碳纤维复合材料成本的工程途径.中国工程科学. 2001, 3(9):21~28
    7宫少波,关瑞杰,王国平. Z9复合材料垂尾整体化设计与成型技术研究.全国直升机年会.2005, 21:335~339
    8寇哲君,戴棣,曹正华.复合材料结构固化变形预测.材料工程. 2007,增刊1:225~228
    9 F.H. Dai,S.Y.Du,B.M. Zhang,et al. A New Method to Track Resin Flow Fronts in Mold Filling Simulation of RTM Process. Journal of Materials Science and Technology, 2004, 20 (3):335~340
    10 W.D. Brouwer, E.C.F.C.van Herpt and M. Labordus. Vacuum Injection Moulding for Large Structural Application. Composites: Part A. 2003, (34):551~558
    11陈祥宝.先进树脂基复合材料扩大应用的关键.高科技纤维与应用.2002,22(6):1~5
    12赵渠森.材料与工艺在“买得起复合材料”中的作用.玻璃钢/复合材料. 2000, (6):41~46
    13陈祥宝.先进树脂基复合材料扩大应用的关键.高科技纤维与应用. 2002, 27(6): 1~5
    14 R.M. Carthy,G. Haines and R. Newley. Polymer Composite Applications to Aerospace Equipment. Composites Manufacturing. 1994, 5(2):83~93
    15 F. Xuli, W.M. Lu and D.D. Chung. Ozone Treatment of Carbon Fiber for Reinforcing Cement. Carbon. 1998, 36(9):1337~1345
    16 K. Potter. Resin Transfer Molding.Chapman & Hall press. London. 1997:1~26
    17 R. Burns. Polyester Molding Compounds. Marcel Dekker Publication, 1982:16
    18 M. Nipper, L. Martin. RTM Process Cuts Fighter Tail Costs.Reinforced Plastics.2001, 6(4):15
    19石定杜,甘长茂. RTM制造技术的新发展.玻璃钢/复合材料.1994, 6(4):40~43
    20段红杰,陶浩.赛车车架树脂传递模塑工艺研究.中国塑料.1998, 12(3):65~67
    21宋璐璐,张佐光,仲伟虹.模压树脂传递成型工艺中的树脂流动性研究.玻璃钢/复合材料. 2000, 5(3):29~34
    22张明习,吕勇.用于高性能雷达罩的树脂基体的研究.宇航材料工艺. 1996, 10(6):14~17
    23孙慧玉.三维编织复合材料RTM工艺和力学性能.材料工程. 1998, 5(1):34~40
    24田军良.全动复合材料水平尾翼主承力壁板热压罐成型工艺.航空制造技术, 2005, 9:92~94
    25 HB/Z 305-1997复合材料热压罐成型工艺.中国航空工业总公司批准
    26 HB/Z 305-1997复合材料成型工艺组合.中国航空工业总公司批准
    27 HB 5342-95复合材料航空制件工艺质量控制.中国航空工业总公司批准
    28 Autoclave Cures Composite Aircraft. Reinforced Plastics, November, 2000:19
    29 T. G. Gutowski. Advanced Composites Manufacturing. John Wiley & Sons Inc., 1997
    30陈祥宝,包建文,娄葵阳.树脂基复合材料制造技术.化学工业出版社. 2000:26~64
    31黄家康,岳红军,董永祺.复合材料成型技术.化学工业出版社, 1999:23~68
    32 K.S. Willden, C.G. Harris, B.W. Flynn, et al. Advanced Technology Composite Fuselage---Manufacturing. NASA Contractor Report 4735. 1997:42~50
    33李君,姚学锋,刘应华等.复合材料T型整体化结构固化翘曲变形模拟.复合材料学报. 2009, 26(1):156~161
    34 C.K. Huang. Study on Co-cured Composite Panels with Blade-shaped Stiffeners. Composites: Part A. 2003, (34):403~410
    35郭兆璞,陈浩然,段滋华.复合材料层合板粘弹性固化残余应力分析.计算结构力学及其应用. 1996, 13(4):401~407
    36郭兆璞,陈浩然,息志臣.复合材料层合板的固化残余应力和变形分析.复合材料学报. 1996, 13(1):105~110
    37戴棣,乔新.粘弹性基体复合材料层合板的固化残余应力和曲率变化.复合材料学报. 2000, 17(3):37~41
    38 Y. Chen, Z. Xia, F. Ellyin. Evolution of Residual Stresses Induced during Curing Processing Using a Viscoelastic Micromechanical Model. Journal of Composite Materials. 2001, 35(6):522~542
    39 A. Johnston, R. Vaziri, A. Poursartip. A Plane Strain Model for Process-inducedDeformation of Laminated Composite Structures. Journal of Composite Materials. 2001, 35(16):1435~1469
    40 E.T. Kheir, O. Philippe. Thermoviscoelastic Analysis of Residual Curing Stresses and the Influence of Autoclave Pressure on These Stresses in Carbon/epoxy Laminates. Composites Science and Technology. 2002, (62):559~565
    41 Lange J, Toll S, Manson J , Hult A. Residual Stress Build-up in Thermoset Films Cured above Their Ultimate Glass Transition Temperature. Polymer. 1995, 36 (16): 3135~3141
    42 S. R. White and H. T. Hahn. Process Modeling of Composite Materials: Residual Stress Development during Cure. PartⅠ: Model Formulation. Journal of composite materials. 1992, 26(16):2402~2422
    43 S. R. White and H. T. Hahn. Process Modeling of Composite Materials: Residual Stress Development during Cure. PartⅡ: Experimental Validation. Journal of composite materials. 1992, 26(16):2423~2454
    44 S. Yi, K. S. Chian and H. H. Hilton. Nonlinear Viscoelastic Finite Element Analyses of Thermosetting Polymeric Composites during Cool-down after Curing. Journal of composite materials. 2002, 36 (1): 3~17
    45 S. Teplinsky, E. M. Gutman. Computer Simulation of Process Induced Stress and Strain Development during Cure of Thick-section Thermosetting Composites. Computational Materials Science. 1996, (6):71~76
    46 X. G. Huang, J. W. Gillespie Jr, T. Bogetti. Process Induced Stress for Woven Fabric Thick Section Composite Structures. Composite Structures. 2000, (49):303~312
    47 Q. Zhu, P. H. Geubelle, et al. Dimensional Accuracy of Thrmoset Composites: Simulation of Process-induced Residual Stresses. Journal of Composite Materials. 2001, 35(24):2171~2205
    48 Q. Zhu and P. H. Geubelle. Dimensional Accuracy of Thermoset Composites: Shape Optimization. Journal of composite materials. 2002, 36(1):647~672
    49 J. A. Holmberg. Influence of Chemical Shrinkage on Shape Distortion of RTM Composites. In: Proc 19th international SAMPE european conference of the socity for the advancement ofmaterial and process engineering, Paris, France, 1998, 22/24 (4): 621~632
    50 P. Prasatya, G. B. Mckenna, S. L. Simon. A Viscoelastic Model for Predicting Isotropic Residual Stresses in Thermosetting Material: Effects of Processing Parameters. Journal of composite materials. 2001, 35: 826~849
    51 S.C. Liu, X. Niu and P. Ifju. Residual Stress Characterization by Moire Interferometry. Proceedings of the SEM Spring Conference of Experimental and Applied Mechanics and Experimental/Numerical Mechanics in Electronic Packaging Ⅲ, Houston, Texas, 1998:175~178
    52 T. A. Bogetti and J. W. Gillespie, Jr. Two-Dimensional Cure Simulation of Thick Thermosetting Composites. Journal of Composite Materials. 1991, 25(3):239~273
    53 T. A. Bogetti, J. W. Gillespie and R. L. McCullouqh. Influence of Processing on the Development of Residual Stresses in Thick Section Thermoset Composites. International Journal of Materials & Product Technology. 1994, 9(1-3):170~182
    54 S. S. Lee and Y. S. Sohn. Viscoelastic Analysis of Residual Stresses in a Unidirectional Laminate. Structural Engineering and Mechanics. 1994, 2(4):383~393
    55 K. J. Yoon and J.-S. Kim. Effect of Thermal Deformation and Chemical Shrinkage on the Process Induced Distortion of Carbon/Epoxy Curved Laminates. Journal of composite materials. 2001, 35(3):253~263
    56 J. D. Russell and A. Y. Lee. Effect of Cure Cycle on the Specific Volume of 3501-6 Epoxy. 29th International SAMPE Technical Conference, Orlando, FL, USA, 1997:289~301
    57 R. L. Karkkainen, M. S. Madhukar, J. D. Russell , et al. Empirical Modeling of In-Cure Volume Changes of 3501-6 Epoxy. 45th International SAMPE Symposium and Exhibition, Long Beach, CA, USA, 2000:123~135
    58戴福洪.树脂传递模塑工艺有限元模拟与树脂流动过程监测.哈尔滨工业大学博士学位论文.2004:62~80
    59郭战胜,杜善义,张博明等.厚截面树脂基复合材料的温度场研究I:模拟.复合材料学报. 2004, 21(5):122~127
    60郭战胜.厚截面树脂基复合材料制造过程的热化学和残余应力研究.哈尔滨工业大学博士学位论文.2004:23~50
    61郭战胜,杜善义,张博明等.碳纤维/BMI预浸料的固化动力学.化学物理学报, 2004, 17(2):219~224
    62 Zhansheng Guo, Shanyi Du, Boming Zhang, et al. Modeling the Curing Kinetics for a Modified Bismaleimide Resin Using Isothermal DSC. Journal of Applied Polymer Science. 2004, 92(5):3388~3342
    63 Zhansheng Guo, Shanyi Du, Boming Zhang. Temperature Distribution of Thick Thermoset Composites. Modelling and Simulation in Materials Science and Engineering. 2004, 12(3):443~452
    64 Jun Li, XueFeng Yao, YingHua Liu, et al. Curing Deformation Analysis for the Composite T-shaped Integrated Structures. Appl Compos Mater. 2008, (15):207~225
    65张纪奎,郦正能,关志东等.复合材料层合板固化压实过程有限元数值模拟及影响因素分析.复合材料学报. 2007, 24(2):125~130
    66张纪奎,郦正能,关志东等.热固性复合材料固化过程三维有限元模拟和变形预测.复合材料学报. 2009, 26(1):174~178
    67 A. C. Loos and G. S. Springer. Curing of Epoxy Matrix Composites. Journal of composite materials. 1983, 17:135~169
    68 P. R. Ciriscioli and G. S. Springer. Smart Autoclave Cure of Composites. USA: Technomic Publishing Company, Inc., 1990, p. 13
    69 A. O. Kays. Exploratory Development on Processing Science of Thick Section Composites. Technical Report AFWAL-TR-85-4090, Air Force Wright Aeronautical Laboratories, Wright Patterson AFB, OH, 1985
    70 T. E. Twardowski, S. E. Lin and P. H. Gell. Curing in Thick Composite Laminates: Experiment and Simulation. Journal of composite materials. 1993, 27(3):215~250
    71 M. Hojjati and S. V. Hoa. Curing Simulation of Thick Thermosetting Composites. Composites Manufacturing. 1994, 5(3):159~169
    72 T.A. Bogetti, J.W. Gillespie,Jr. Process-induced Stress and Deformation in Thick-section Thermoset Composite Laminates. Journal of Composite Materials. 1992, 26(5):626~660
    73 H. C. Park and S. W. Lee. Cure Simulation of Thick Composite Structures Using the Finite Element Method. Journal of composite materials. 2001, 35(3):188~200
    74 V. A. F. Costa and A. C. M. Sousa. Modeling of Flow and Thermo-kinetics during the Cure of Thick Laminated Composites. International Journal of Thermal Sciences. 2003, 42:15~22
    75 J. H. Oh and D. G. Lee. Cure Cycle for Thick Glass/Epoxy Composite Laminates. Journal of composite materials. 2002, 36(1):19~45
    76 G. Fernlund, N. Rahman, R. Courdji, et al.Experimental and Numerical Study of the Effect of Cure Cycle, Tool Surface, Aspect Ratio, and the Lay-up on the Dimensional Stability of Autoclave-processed Composite Parts. Composites Part A. 2002, 33:341~351
    77 A. Johnston, P. Hubert, G. Fernlund, et al. Process Modelling of Composite Structures Employing a Virtual Autoclave Concept. J Sci Engng Compos mater. 1996, 5(3-4):235~252
    78 D.W. Radford and T.S. Rennick. Separating Sources of Manufacturing Distortion in Laminated Composites. J Reinforced Plast Compos. 2000, 19(8):621~641
    79 K.D. Potter, M. Campbell, C. Langer, et al.The Generation of Geometrical Deformations due to Tool Part Interaction in the Manufacture of Composite Components. Composites Part A. 2005, 36: 301~308
    80 G. Twigg, A. Poursartip and G. Fernlund. An Experimental Method for Quantifying Tool–part Shear Interaction during Composites Processing. Compos Sci Technol. 2003, 63:1985~2002
    81 G. Twigg, A. Poursartip and G. Fernlund. Tool–part Interaction in CompositesProcessing. Part I: Experimental Investigation and Analytical Model. Composites Part A. 2004, 35:121~133
    82 G. Twigg, A. Poursartip and G. Fernlund. Tool–part Interaction in Composites Processing. Part II: Numerical Modeling. Composites Part A. 2004, 35:135~141.
    83 K.B. Satish and V.S. Lloyd. A Linear Finite Element Model to Predict Processing-induced Distortion in FRP Laminates. Composites part A. 2005, 36: 1666~1674.
    84张宁.复合材料整体化结构成形软模对压力传递的影响方式.哈尔滨工业大学硕士学位论文. 2008:16~37
    85梁宪珠.复合材料垂直安定面固化模具的设计和制造.航空制造技术. 1998, (6):32~33
    86田嘉生,王枫.复合材料成形用模具材料研究.沈阳航空工业学院学报. 1997, 14(2):34~37
    87何颖,蔡闻峰,赵鹏飞.热压罐成型中温固化复合材料模具.纤维复合材料. 2006, (1):58~59
    88 P. Salagnac, P. Dutournie, P. Glouannec. Simulations of Heat Transfers in an Autoclave Applications to the Curing of Composite Material Parts. Journal de physique IV. 2004, 120:467~472
    89张铖.大型复合材料结构热压罐工艺温度场权衡设计.哈尔滨工业大学博士学位论文. 2009:22~58
    90王永贵,梁宪珠,薛向晨等.热压罐工艺的传热分析和框架式模具温度场分布.航空制造技术. 2008, (22):80~83
    91 S.R. White, H.T. Hahn. Cure Cycle Optimization for the Reduction of Processing-Induced Residual Stresses in Composite Materials. Journal of Composite Materials. 1993, 27(14):1352~1378
    92 Madhu S. Madhukar, Mohamed S. Genidy, John D. Russell. A New Method to Reduce Cure-Induced Stresses in Thermoset Polymer Composites Part I: Test Method. Journal of Composite Materials. 2000, 34(22):1882~1904
    93 Mohamed S. Genidy, Madhu S. Madhukar, John D. Russell. A New Method to Reduce Cure-Induced Stresses in Thermoset Polymer Composites Part II: Closed Loop Feedback Control System. Journal of Composite Materials. 2000, 34(22):1905~1925
    94 John D. Russell, Madhu S. Madhukar, Mohamed S. Genidy, et al.A New Method to Reduce Cure-Induced Stresses in Thermoset Polymer Composites Part III: Correlating Stress History to Viscosity Degree of Cure and Cure Shrinkage. Journal of Composite Materials. 2000, 34(22):1926~1947
    95 T.W. Capehart, Nouman Muhammad, Hamid G.Kia. Compensating ThermosetComposite Panel Deformation using Corrective Molding. Journal of Composite Materials. 2007, 41(14):1675~1701
    96张纪奎,郦正能,关志东等.热固性树脂基复合材料固化变形影响因素分析.复合材料学报. 2009, 26(1):179~184
    97 ShihWei Hsiao, Noboru Kikuchi. Numerical Analysis and Optimal Design of Composite Thermoforming Process. Computer Methods in Applied Mechanics and Engineering. 1999, 34(1):1~34
    98杨博,薛忠民,阿茹娜等.聚合物基复合材料残余应力的研究进展.玻璃钢/复合材料. 2004, (2):49~52
    99 X.L. Liu,I.G. Crouch,Y.C. Lam. Simulation of Heat Transfer and Cure in Pultrusion with a General-purpose Finite Element Package. Composites Science and Technology. 2000, (60):857~864
    100程群峰,方征平,益小苏等.双马来酰亚胺树脂体系的固化动力学和TTT图.材料工程. 2007,增刊:188~192
    101刘天舒,张宝艳. 5428双马树脂体系动态固化反应动力学研究.材料工程. 2005, (10):7~9
    102赵渠森.先进战斗机用复合材料树脂基体.高科技纤维与应用. 2000, 25(4):14~18
    103赵渠森.先进复合材料手册.机械工业出版社. 2003:40~92
    104万里冰,武湛君,张博明等.光纤布拉格光栅监测复合材料固化.复合材料学报. 2004, 21(3):1~5
    105赵海涛.基于光纤传感技术的复合材料结构全寿命健康监测研究.哈尔滨工业大学博士学位论文. 2008
    106丁发兴,余志武,温海林.高温后Q235钢材力学性能试验研究.建筑材料学报. 2006, 9(2): 245~249
    107 M.R. Wisnom, M. Gigliotti, N. Ersoy, et al.Mechanisms Generating Residual Stresses and Distortion during Manufacture of Polymer–matrix Composite Structures. Composites: Part A. 2006, (37):522~529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700