用户名: 密码: 验证码:
编织纤维增强树脂基复合材料的制备及表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维编织纤维增强复合材料具有强度高、整体性好等优异特性,但以聚醚醚酮(PEEK)为基体的复合材料制备存在较大困难,鲜有报道;三维编织碳纤维增强聚醚醚酮(C_(3D)/PEEK)、三维编织碳纤维增强环氧树脂(C_(3D)/EP)复合材料等因表面惰性而难于进行涂覆处理,限制了应用,故有必要对其进行表面改性。
     本课题研究纤维混编加热压制备C_(3D)/PEEK复合材料的工艺,并对该材料及用传统RTM工艺制备的C_(3D)/EP和二维编织碳纤维增强环氧树脂(C_(2D)/EP)复合材料进行等离子体处理,以改善其表面物理与化学性能。通过对C_(2D)/EP复合材料表面进行等离子体处理、导电膜沉积或离子注入后进行硫酸铜电镀和纳米复合电镀,得到性能和结合力优异的金属镀层;通过对C_(3D)/PEEK复合材料进行细胞实验和钙磷层沉积实验,为获得具有优异生物特性的表面层提供实验依据。
     研究结果表明,以混编纤维预干燥2 h后370℃、0.5 MPa真空熔融热压可获得表面状态良好、纤维浸渍充分的C_(3D)/PEEK复合材料,合适的碳纤维体积含量和表面氧化处理可显著提高材料的力学性能。
     接触角测试及XPS、AFM结果证实,随等离子体处理时间延长,几种编织复合材料亲水性均明显改善,这与试样的表面粗糙度和活性基团数量增加有关,但处理时间过长会破坏表面已形成的活性基团。
     形貌分析表明,以适当工艺可在几种复合材料表面形成具有明显金属光泽的金属离子注入层。研究证实,树脂中掺杂1%聚苯胺导电纳米线可使C_(2D)/EP复合材料电镀速度加快;随导电物沉积时间延长,C_(2D)/EP复合材料表面导电性能逐渐增大,而适当的等离子体处理和金属离子注入都会对C_(2D)/EP复合材料的后续电镀起到良好作用。硬度测试及SEM分析表明,普通硫酸铜电镀液中掺杂一定量纳米SiO2可使镀层显微硬度提高,且随掺杂量提高硬度增加,掺杂后材料表面电镀层晶粒显著细化,镀层致密度提高。
     细胞实验证实,在1.0×10~4 /ml和2.0×10~4 /ml两种成骨细胞种植密度下,C_(3D)/PEEK复合材料表面细胞数量均随培养时间延长而明显增加,材料表面有形态良好的细胞存在,MTT实验表明材料无毒性。SEM和EDS结果表明,经等离子体处理、钛离子注入及碱液处理后的C_(3D)/PEEK复合材料浸入1.5倍SBF中一段时间后均有钙磷化合物层生成,且沉积28天后其球状颗粒相比7天时更多且更为细小、均匀,在几种不同的预处理方式中,碱处理的试样其沉积量和Ca/P原子比均最高。
     总之,以混编加热压制备的C_(3D)/PEEK复合材料及RTM制备的C_(3D)/EP和C_(2D)/EP复合材料经适当处理后表面更具活性,可大大方便后续处理,并可获得良好的金属化和生物活性化效果,扩展了该类编织复合材料的应用范围。
Three-dimensional braided composites are excellent materials for surgery, aviation and other applications because of their good properties such as high specific strength. But the preparation of three-dimensional braided carbon fiber reinforced PEEK (C_(3D)/PEEK) composites is difficult and with few reports. C_(3D)/PEEK, three-dimensional braided carbon fiber reinforced epoxy (C_(3D)/EP), two-dimensional braided carbon fiber reinforced epoxy (C_(2D)/EP) composites, and so forth, are unsuitable to be deposited due to their low surface free energy, poor wettability and poor adhesion. As a result, surface modification of these composites will be greatly helpful to their applications.
     In this paper, the fiber commingled braiding and hot-pressing process for the preparation of C_(3D)/PEEK composites was studied. The effects of the plasma treatment on the chemical and physical changes of C_(3D)/PEEK, C_(3D)/EP and C_(2D)/EP surfaces were investigated. C_(2D)/EP composites were plasma treated, deposited with thin electric layers or ion implanted, and then copper plated with sulfuric acid based solution or composite plated in order to obtain copper or composite coatings with good adhesion and properties. The in vitro cytotoxicity experiment and deposition of Ca-P layer on C_(3D)/PEEK surfaces were carried out to evaluate the feasibility of more biomedicine applications of the composites.
     It was shown that C_(3D)/PEEK composites with excellent appearances and good interfacial adhesions could be prepared by vacuum hot-pressing at 370℃and 0.5 MPa after 2 h pre-dryness. The mechanical properties of composites could be evidently improved by optimization of fibre volume fraction and surface oxidation.
     Appropriate plasma treatment would increase the hydrophilities of composites because of the increased roughnesses and active groups. Metal ion implanted layers on composite surfaces could be obtained after ion implantation.
     The copper electroplating rate would be improved after plasma treatment, metal ion implantation, conductive polymer doping in epoxy resin matrix of the composites, or deposition of conductive layer on C_(2D)/EP surfaces. Crystalline grains of the coatings were markedly refined by nano-SiO2 in the acidic sulfate copper plating bath and the ceramic particles caused an increase in hardness of coatings.
     Osteoblast cells on C_(3D)/PEEK surfaces increased in amount with prolonged cell seeding time and presented a good shape. Ca-P layers were deposited on C_(3D)/PEEK composites, which had been immerged into 1.5 SBF after different pre-treatments. The globular grains of Ca-P layers after 28 d deposition were smaller and more uniform than that after 7 d deposition. Both the amount of Ca-P deposit and Ca/P atom ratio after alkali treatment were higher than that after the other pre-treatments.
     In conclusion, after appropriate surface modifications, C_(3D)/PEEK, C_(3D)/EP and C_(2D)/EP composites were well activated, roughened, metallized or bioactivated and thus would be employed for more applications.
引文
[1]王晓敏.工程材料学.哈尔滨:哈尔滨工业大学出版社, 1998.
    [2] Sandeep SP, Tarun K, Yogesh MD. Application of polymer composites in civil construction: A general review. Compos Struct 2008;84:114-124.
    [3] Beinborn KM, Muller M, Huttinger KJ. The significance of the fiber coating in the production of carbon fiber-reinforced carbons from HT carbon fibers I.Poly (dimethylsiloxane) and poly (methylphenylsiloxane) coatings. Carbon 1998;33(8):1029-1031.
    [4]赵立新,王玉林.碳纤维空气氧化处理对聚合物基复合材料影响的机理.河北建筑学院学报2002;19(4):51-53.
    [5] Ibarra L,辜晓东.氧化碳纤维含量对热塑性弹性复合材料性能的影响.橡胶参考资料1997;27(12):40-46.
    [6]陈祥宝,包建文,娄葵阳.树脂基复合材料制造技术.北京:化学工业出版社, 2000.
    [7]孙宏杰,张晓明,宋中健.纤维增强热塑性复合材料的预浸渍技术发展概况.玻璃钢/复合材料1999(4):40-44.
    [8] Lutz A, Funck R, Harnrisel T. A New Impregnation Tool for On-line Manufacturing of Thermoplastic Composites. ICCM-11; 1997; 1997. p. 14-18.
    [9] Ye L, Friedrich K, Cutolo D. Manufacturing of CF/PEEK composite from powder/sheath fiber perform. Compos Manufa 1994;5(1):25-28.
    [10]李龙,王善元,俞建勇.混纤技术在纤维增强热塑性塑料加工中的应用.工程塑料应用1996;24(1):7-11.
    [11]刘其贤.热塑性基体复合材料工艺现状(上).纤维复合材料1991;9(2):2.
    [12]张晓明,刘雄亚.纤维增强热塑性复合材料及其应用.北京:化学工业出版社, 2007.
    [13]吴培熙,沈健.特种性能树脂基复合材料.北京:化学工业出版社, 2003.
    [14] Perng LH, Tsai CJ, Ling YC. Mechanism and kinetic modeling of PEEK pyrolysis by TG/MS. Polym Prepr 1999;40:7321-7325.
    [15]邓杰,李辅安,刘建超.连续纤维增强PEEK预浸带制备中的纤维分散.纤维复合材料2004;3(12):12-14.
    [16] Sun XK, Sun CJ. Mechanical properties of three-dimensional braided composites. Compos Struct 2004;65:485-492.
    [17] Hiermer T, Schmitt, Thomas KG, et al. Mechanical properties and failure behavior of cylindrical CFRP-implant-rods under torsion load. Composites Part A 1998; 29A(11):1453.
    [18]杨桂,敖大新.编织结构复合材料制作、工艺及工业实践.北京:科学出版社, 1999.
    [19] Yau SS, Chou TW, Ko FK. Flexural and axial compressive failures of three-dimensionally braided composite I-beams. Composites 1986;17(3):178-184.
    [20] Chang LW, Yau SS, Chou TW. Notched strength of woven fabric composites with molded in holes. Composites 1987;18(3):89-95.
    [21] Fukuta K. Three-dimensional braided composite materials. J Jpn Soc Compos Mater 1995;21(2):51-60.
    [22]孙慧玉,吴长春.三维多向编织复合材料性能预报与优化设计研究.实验力学1997;12(3):335-341.
    [23]戴达煌,周克崧.现代材料表面技术科学.北京:冶金工业出版社, 2004.
    [24] Wang CQ, He XN. Preparation of hydrophobic coating on glass surface by dielectric barrier discharge using a 16 kHz power supply. Appl Surf Sci 2006;252:8348-8351.
    [25]陈国荣,张开.低温等离子体在高分子材料表面改性中的应用.塑料1992;20:5-11.
    [26]潘育松,熊党生.聚醚醚酮复合材料摩擦学性能研究现状.工程塑料应用2006;34(2):68-70.
    [27]田冶,杨菊林,杨媛.聚乳酸膜氨等离子处理的表面性能.化工进展2007;26(8):1155-1158.
    [28]吴利英,高建军,靳武刚.复合材料制件表面金属化技术-金属喷涂转移法.表面技术2001(12):96-102.
    [29]乔希恩.碳/环氧波导滤波器导电层电铸工艺研究.第九届全国复合材料学术会议论文集, 1996.
    [30]敖辽辉.高精度碳纤维复合材料天线金属化技术.电讯技术1999(4):84-86.
    [31]姜郁英.电镀塑料亚微观粗化表面参数的分析.电镀与精饰1995;7(5):12-15.
    [32]李志君,李学成.碳纤维复合材料抛物面天线的研制.通讯与测控1998(4):55-58.
    [33]蔡积庆.印制板直接孔金属化电镀.电镀与环保1994;14(6):8-10.
    [34] Meyer HR, Nichols RJ, Schroer DH. The use of conducting polymersand collosads in the through hole plating of printed boards. Electrodion Acta 1994;39:l325-1329.
    [35]王丽丽.印制板直接镀工艺.电镀与精饰1998;20(6):3.
    [36]蔡积庆.利用导电聚合物悬浮渡的直接镀工艺.电镀与环保1999;19(22):10.
    [37]粱辉,徐庭献,杨德安.玻璃纤维增强双马来酰亚胺树脂基复合材料表面金属化的研究.材料工程2001(11):17-20.
    [38]王建智,王以进.国外医学研究.生物医学工程1989;12(6):329-333.
    [39]顾汉卿,徐国风.生物医用材料.天津:天津科技翻译出版公司, 2004.
    [40]凌强,朱建民.实用骨折固定手册.南昌:江西科学技术出版社, 1999.
    [41] Elst M, Klein CP, Blieck-Hogervorst JM. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation:A long-term in vivo studying sheep femora. Biomaterials 1999;20(2):121.
    [42]俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社, 2004.
    [43] William DF. Biocompatibility of Clinical implant Materials. Florida: CRC Press Inc, 1982.
    [44]李建保,周益春.新材料科学及其应用技术.北京:清华大学出版社, 2004.
    [45] Ahmed T, Long M, Silvestri J. A new low modulus biocompatible titanium alloy. the 8th World Titanium Conference; 1995; Birmingham, UK; 1995.
    [46]崔福斋,冯庆玲.生物材料学.北京:科学出版社, 1997.
    [47] Okazaki Y, Kyo K, Rao S. Corrosion resistance and the relative growth ratios of mouse fibroblasts L929 cells for various pure metals. J Japan Inst Metals 1993;57(3):332-337.
    [48] Wickstrom JK. Surgical implants-their mechanical and environmental problems. J metal 1966(1):366-372.
    [49]王玉果,王玉林.骨折内固定材料研究进展.材料导报2004;18(3):38-40.
    [50]万怡灶,王玉林,韩可瑜.炭纤维增强聚合物复合材料骨折内固定板的研究进展.高分子材料科学与工程2001;17(1):35-38.
    [51] Beddoes J, Bucci K. The influence of surface condition on the localized corrosion of 316L stainless steal orthopedic implants. Mater Sci : Mater Med 1999;10(7):389-392.
    [52] Manso M, Jimenez C, Morant C. Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials 2000;11(17)):1755-1758.
    [53] Ding SG, Ju CP, Lin JHC. Morphology and immersion behavior of plasma-sprayed hydroxyapatite/bioactive glass coatings. Mater Sci : Mater Med 2000;11(3):183.
    [54] Cerrai P, Gue GD, Tricoli M. New composites of hydroxyapatite and bioresorbable macromolecular material. Mater Sci : Mater Med 1999;10(5):283-286.
    [55]郭振河,郑晓明,杨家辉.交锁髓内钉在下肢长骨骨折中的应用.临床医药杂志2003;16(1):31-33.
    [56] Kim HM, Miyaji F, Kokubo T. Bonding strength of bonelike apatite layer to Ti metal substrate. J Biomed Mater Res 1997;38(2):121-127.
    [57] Sanchez JL, Guy G, Vankan JA. Proton micromachining of substrate scaffolds for cellular and tissue engineering. Nucl Instrum Methods Phys Res Sect B 1999;158(9):185-189.
    [58] Friedrich K. Mesoscopic aspects of polymer composites: Processing, structure and properties. J Mater Sci 1998;33(23):5535-5556.
    [59]郝建原,邓先模.复合生物材料的研究进展.高分子通报2002;5:1-10.
    [60]葛建华,王迎军,贾德民.可降解、可吸收性骨科材料类型及发展.生物医学工程学杂志2004;21(1):151-159.
    [61] Christel P, Chabot F, Vert M. In vivo fate of bioresorbable bone plates in long-lasting poly(l-lactic acid). Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium; 1984; 1984. p. 279.
    [62] Tormala P, Vasenius J, Vainionpaa S. Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures. J Biomed Mater Res 1991;25(1):1-22.
    [63] Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite(HA) particles and poly-L-lactide(PLLA): Part I Basic characteristics. Biomaterials 1999;20:859-867.
    [64] Ignjatovic N, Tomic S, Dakic M. Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials 1999;20(9):809-813.
    [65]陆博,郑启新.羟基磷灰石/聚DL-乳酸复合内固定材料对成骨细胞活性影响的体外研究.中国生物医学工程学报2003;22(4):350.
    [66] Kettunen J, Malela EA, Turunen V. Percutaneous bone grafting in the treatment of the delayed union and non-union of tibial fractures. Injury 2002;33(3):239-244.
    [67]李保强,胡巧玲,钱秀珍.原位层析法制备可吸收壳聚糖/羟基磷灰石骨折内固定棒材.高分子学报2002(6):828-831.
    [68] Pantoustier N, Alexandre M. Poly(e-caprolactone) layered silicate nanocomposites: effect of clay surface modifiers on melt intercalation process. Ph, e-Polymer 2001;9:1-10.
    [69] Lim ST, Hyun YH, Choi HJ. Rheological properties of biodegradable aliphatic polyester/montmorillonite nano-composites. Polym Prepr 2001;42(1):640-645.
    [70] Elst M, Klein CPAT, Blieck-Hogervorst JM. Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: A long-term in vivo study in sheep femora. Biomaterials 1999;20(2):121-125.
    [71]那天海,宋春雷,莫志深.可生物降解聚合物的现状及生物降解性研究.功能高分子学报2003;16(3):423-432.
    [72]王正梅,樊曙先,谢学俭.骨折内固定器材料的研究进展.南通大学学报(医学版) 2005;25(3):229-232.
    [73]牟静芳,孙红,唐应武.可降解聚酰胺类骨折内固定材料表面的HAP涂层.高分子材料科学与工程2003;19(1):212-216.
    [74] Venezian RA, Shenker BJ, Datar S, et al. Modulation of chondrocyte proliferation by ascorbic acid and BMP-2,. J Cell Physiol 1998;74:331-341.
    [75]俞耀庭.生物医用材料.天津:天津大学出版社, 2000.
    [76]王迎军.生物活性梯度涂层中羟基磷灰石的相转变与结构稳定性.硅酸盐学报1998;26(5):656-661.
    [77] Jonasova L, Muller FA, Strnad J. Biomimetic apatite formation on chemically treated titanium. Biomaterials 2004;25:1187-1194.
    [78]周俊,储成林,钟志源.复合活化处理镍钛合金及磷灰石层的仿生沉积.稀有金属材料与工程2006;35(6):994-997.
    [79] Pino M, Stingelin N, Tanner KE. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials. Acta Biomaterialia 2008(4):1827-1836.
    [80] Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition. J Mat Sci Mater Med 1994;5:219-224.
    [81]康健强,吴慧敏,李卫东,等.电化学方法制备生物活性陶瓷.电镀与精饰2004;26(1):19.
    [82] Milella E, Cosentino F, Licciulli A. Preparation and characterization of titanin/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 2001;22(11):1425-1431.
    [83] Montenero A, Gnappi G, Ferrari E, et al. Sol-gel derived hydroxyapatite coatings on titanium substrate. J Mater Sci 2000;35(11):2791-2797.
    [84] Kaciulis S, Mattogno G, Pandolfi L, et al. XPS study of apatite-based coatings prepared by sol-gel technique. Appl Sruf Sci 1999;151(1-2):1-5.
    [85]邓迟,李秀芬,邓敏,等.生物材料表面改性的研究进展.乐山师范学院学报2004;19(5):79.
    [86] Gross KA, Berndt CC. Thermal processing of hydroxyapatite for coating production. J Biomed Mater Res 1998;33:580-585.
    [87] Gross KA, Gross V. Thermal analysis of amorphous phases in hydroxyapatite coatings. J Am Ceram Soc 1998;81(1):106-112.
    [88] Tong W, Yang Z, Zhang X, et al. Studies on diffusion maximum in x-ray diffraction patterns of plasma-sprayed hydroxyapatite coatings. J Biomed Mater Res 1998;40:407-413.
    [89]李世普.生物医用材料导论.武汉:武汉工业大学出版社, 1999.
    [90] Wang CK, Chern LJH, Ju CP, et al. Structural characterization of pulsed laser-deposited hydroxyapatite film on titanium substrate. Biomaterials 1997;8(20):1331-1338.
    [91] Piran S, Eric JT. Surface treatment of biomaterials by ion beam processes. Surf Coat Technol 1996;83:175-182.
    [92]陈勇军.金属表面改性-离子注入技术的发展与应用.表面技术2003;32(6):4.
    [93] Baumann H, Bethge K. Thin hydroxyapatite surface layers on titanium produced by ion implantation. Nucl Instrum Methods Phys Res Sect B 2002;196(3-4):286-292.
    [94] Stefano P, Lucio CC, Erik V. Bioactivity of TiN-coated titanium implants. Acta Mater 2004;52(5):1237-1245.
    [95] Maitz MF, Pham MT, Matz W, et al. Promoted calcium-phosphate precipitation from solution on titanium for improved biocompatibility by ion implantation. Surf Coat Technol 2002;158-159:151-156.
    [96] Tsuji H, Sato H, Sasaki H, et al. Modification of polystyrene surface for neuron cell attachment properties by negative ion implantation and pattern treatment. Shinku 2001;44(2):87-93.
    [97] Chen XY, Zhang XF, Zhu Y, et al. Surface modification of polyhydroxyalkanoates by ion implantation. Characterization and cytocompatibility improvement. Polym J 2003;35(2):148-154.
    [98] Chou FW, Ko FW. Textile Structure Composite,Composite Materials Series. Amsterdam: Elsevier Science Publishers, 1989.
    [99] Wan YZ, Wang YL, Luo HL, et al. Moisture absorption behavior of C3D/EP composite and effect of external stress. Mater Sci Eng A 2002;326(2):324-329.
    [100]王玉果,王玉林,万怡灶.骨折固定用三维编织复合材料的性能.天津大学学报2004;37(11):1009-1013.
    [101] Wan YZ, Wang YL, Huang Y, et al. Hygrothermal aging behaviour of VARTMed three-dimensional braided carbon-epoxy composites under external stresses. Composites Part A 2005;36(8):1102-1109.
    [102] Yumitori S. Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix. Composites Part A 1996;27:1059-1066.
    [103]安学峰,张明,唐邦铭.柔性混编CF/PEEK预浸料成型复杂曲面结构件.第十四届全国复合材料大会论文集(上); 2005;北京; 2005. p. 341-344.
    [104]李泽青.材料热成型.北京:化学工业出版社, 2005.
    [105]槐荫论坛. [EB/OL].模具基本知识. 2008-03-25 [cited; Available from: http://www.xgrb.cn/bbs/simple/index.php386700.html
    [106]胡俊.材料压制成型.北京:化学工业出版社, 2005.
    [107]吴晓青,李嘉禄,焦亚男.三维整体编织热塑性复合材料的研究.纺织学报1998;19(1):51-53.
    [108]何芳.三维编织超高分子量聚乙烯纤维/碳纤维混杂复合材料性能研究.天津:天津大学; 2006.
    [109]张晓明,刘其贤,张淑萍. PEEK流变特性及其流动性能改善研究.纤维复合材料1998;9(3):1-5.
    [110]王吉会,郑俊萍,刘家臣.材料力学性能.天津:天津大学出版社, 2006.
    [111] Gong JC. Impact properties of three-dimensional braided graphite/epoxy composites. J Compos Mater 1991;25:715-731.
    [112]杜慷慨,林志勇.碳纤维表面氧化的研究.华侨大学学报(自然科学版) 1999;20(2):136-141.
    [113] Wan YZ, Wang YL, Huang Y, et al. Moisture sorption and mechanical degradation of VARTMed three-dimensional braided carbon-epoxy composites. Compos Sci Technol 2005;65:1237-1243.
    [114] Wan YZ, Chen GC, Raman S, et al. Friction and wear behavior of three-dimensional braided carbon fiber/epoxy composites under dry sliding conditions. Wear 2006;260:933-941.
    [115] Mukhopadhyay SM, Joshi P, Datta S, et al. Plasma assisted hydrophobic coatings on porous materials: influence of plasma parameters. J Phys D: Appl Phys 2002;35(16):1927-1933.
    [116] Li RZ, Ye L, Mai YW. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments. Composites Part A 1997;28A:73-86.
    [117] Kim JK, Lee DG. Characteristics of plasma surface treated composite adhesive joints at high environmental temperature. Compos Struct 2002;57:37-46.
    [118] Meyer M, Mittasch A, Staudigl G, et al. Surface etching of three-dimensional carbon-fibre-reinforced plastics in a dual-frequency mode plasma (40kHz and 2.45 GHz). Surf Coat Technol 1993;59:297-300.
    [119] Khunova V, Hurstb J, Janigova I, et al. Plasma treatment of particulate polymer composites for analyses by scanning electron microscopy II. A study of highly filled polypropylene/calcium carbonate composites. Polym Test 1999;18:501-509.
    [120] Janigova I, Khunov V, Kozankova J. Plasma treatment of particulate polymer composites for analysis by scanning electron microscopy: I. Morphology of silica filled low density polyethylene. Polym Test 1999;18:51-61.
    [121] Ruaan RC, Wu TH, Chen SH, et al. Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma. J Membr Sci 1998;138:213-220.
    [122] Haruna K, Hamada H, Maekawa Z. Strength prediction of adhesively bonded carbon/epoxy joints. J Adhes Sci Technol 1996;10:1089-1104.
    [123] Zhang R, Haeger AM, Friedrich K, et al. Study on tribological behaviour of plasma-treated PEEK and its composites. Wear 1995;181-183:613-623.
    [124] Kim MH, Rhee KY, Kim J, et al. Surface modification of carbon/epoxy prepreg using oxygen plasma and its effect on the delamination resistance behavior of carbon/epoxy composites. Mater Sci Eng A 2007;448:269-274.
    [125] Kyong Y, Rhee, Yang JH. A study on the peel and shear strength of aluminum/CFRP composites surface-treated by plasma and ion assisted reaction method. Compos Sci Technol 2003;63:33-40.
    [126] Emil C. On some relations between advancing, receding and Young's contact angles. Adv Colloid Interface Sci 2007;133:51-59.
    [127]靳正国,郭瑞松,师春生.材料科学基础.天津:天津大学出版社, 2005.
    [128]曹雪娟,李超,张爱民.不同引发剂引发马来酸酐接枝SBS热处理前后表面结构的研究.高分子材料科学与工程2003;19(2):153-160.
    [129]周灵君,汤建新,何农跃.聚四氟乙烯表面等离子体修饰氨基及XPS分析.化工时刊2004;18(10):27-29.
    [130] Shang LG, Serge F. Carbon fibers and composites with epoxy resin: topography, fractography and interphases. Carbon 2004;42:515-529.
    [131] Chwastiak S. A Wicking Method of Measuring Wetting Properties of Carbon Yarns. J Colloid Interface Sci 1973;42:298.
    [132]王晓东,彭晓峰,陆建峰.接触角测试技术及粗糙表面上接触角的滞后性.应用基础与工程科学学报2003(3):17-21.
    [133] Kwok DY, Leung A, Lam CNC, et al. Low-Rate Dynamic Contact Angles on Poly(methyl methacrylate) and the Determination of Solid Surface Tensions. J Colloid Interface Sci 1998;206:44-51.
    [134] Johnson RE, Dettre RH. Contact Angle, Wettability and Adhesion. Washington DC: American Chemical Society, 1964.
    [135] Lam CNC, Wu R, Li D, et al. Study of the advancing and receding contact angles: liquid sorption as a cause of contact angle hysteresis. Adv Colloid Interface Sci 2002;96:169-191.
    [136] Marmur A. Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods. Colloid Surf A 1998;136:209-215.
    [137] Gong YK, Nakanishi F, Abe K. Stability of a Photoreactive Polymer LB Film. Mol Cryst Liq Cryst Sci Technol A 1999;327:123-126.
    [138]张丽惠,陈亚芍,刘鹏.低温等离子体对聚烯烃材料表面改性的研究.塑料工业2003;31(6):17-20.
    [139] Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 2003;23:1-23.
    [140] Briggs D, Seah MP. Practical Surface Analysis Volume 1: Auger and X-ray Photoelectron Spectroscopy. Chichester: John Wiley and Sons, 1990.
    [141] Wang CQ, He XN. Effect of atmospheric pressure dielectric barrier discharge air plasma on electrode surface. Appl Surf Sci 2006;253:926-929.
    [142] Geyter ND, Morent R, Leys C, et al. DBD treatment of polyethylene terephthalate: Atmospheric versus medium pressure treatment. Surf Coat Technol 2008;202:3000-3010.
    [143] Morent R, Geyter ND, Leys C, et al. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf Coat Technol 2007;201:7847-7854.
    [144] Danish N, Garg MK, Rane RS, et al. Surface modification of Angora rabbit fibers using dielectric barrier discharge. Appl Surf Sci 2007;253:6915-6921.
    [145] Fang Z, Qiu Y. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air. J Phys D: Appl Phys 2004;37:2261-2267.
    [146] Fang Z, Qiu Y, Luo Y. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air. J Phys D: Appl Phys 2003;36:2980-2988.
    [147] Darinka F, Alenka O, Sonja CB. The impact of corona modified fibres’chemical changes on wool dyeing. J Mater Process Tech 2009;209:584-589.
    [148] Xiao ZY, Liu YC, Zhang JY, et al. Electrical and structural properties of p-type ZnO: N thin films prepared by plasma enhanced chemical vapour deposition. Semicond Sci Technol 2005;20:796-800.
    [149] Perkins CL, Lee SH, Li XN, et al. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J Appl Phys 2005;97:034907-034914.
    [150] Torres J, Perry CC, Bransfield SJ, et al. Low-temperature oxidation of nitrided iron surfaces. J Phys Chem B 2003;107:5558-5567.
    [151] Tanaka A, Oiwa R, Yoshihara K. Unintended degradation of organic specimens during measurements (1) X-ray photoelectron spectroscopy of nitrocellulose-celluloseacetate specimen and discussions using the rate constants for N 1s photoemission. J Surf Sci Soc Jpn 1999;20(11):791-798.
    [152] Liu WJ, Lan YC, Chen YC, et al. Study of photo-resistance and polyimide strip by atmospheric plasma technology. Surf Coat Technol 2007;201:6530-6535.
    [153] Takashi O, Tsutomu K. Functional Polymers XXV Fluorescence Spectra of Derivative of Methylsalicylate and Copolymers of methylvinylsalicylate. J Macromol Sci Chem 1985;A22(8):1121-1134.
    [154] Everhart, Reilley. Specific features of the chemical reaction of carbonyl groups with hydrazine accosting to the data of X-ray photoelectron spectroscopy. Anal Chem 1981;53:665.
    [155]张瑞锋,于亚莉,刘学恕.等离子体处理高密度聚乙烯的ESCA研究.真空科学与技术1988;8(4):240-245.
    [156]张瑞锋,于亚莉,刘学恕. XPS研究等离子体处理的聚苯乙烯表面结构.高分子学报1991(3):293-300.
    [157]张瑞锋,于亚莉,刘学恕.等离子体改性的聚偏氟乙烯表面结构的XPS研究.应用化学1992(6):42-45.
    [158]任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究进展.材料导报2007;21(1):56-60.
    [159]严志云,石虹桥,刘安华.低温等离子体改性芳纶表面的XPS分析.纺织学报2007;28(8):19-22.
    [160] Borcia G, Chiper A, Rusu I. Using a He + N2 dielectric barrier discharge for the modification of polymer surface properties. Plasma Sources Sci Technol 2006;15:849-855.
    [161] Esena P, Riccardi C, Zanini S, et al. Surface modification of PET film by a DBD device at atmospheric pressure. Surf Coat Technol 2005;200:664-667.
    [162] Borcia G, Dumitrascu N, Popa G. Influence of helium-dielectric barrier discharge treatments on the adhesion properties of polyamide-6 surfaces. Surf Coat Technol 2005;197:316-321.
    [163] Xu RD, Wang JL, He LF, et al. Study on the characteristics of Ni-W-P composite coatings containing nano-SiO2 and nano-CeO2 particles. Surf Coat Technol 2008;202:1574-1579.
    [164] Sikder AK, Misra DS, Singhbal D, et al. Surface engineering of metal-diamond composite coatings on steel substrates using chemical vapour deposition and electroplating routes. Surf Coat Technol 1999;114:230-234.
    [165] Feng QY, Li TJ, Zhang ZT, et al. Preparation of nanostructured Ni/Al2O3 composite coatings in high magnetic field. Surf Coat Technol 2007;201:6247-6252.
    [166] Vaezi MR, Sadrnezhaad SK, Nikzad L. Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf A 2008;315:176-182.
    [167] Gyftou P, Pavlatou EA, Spyrellis N, et al. Nickel matrix composite coatings: application in textile machinery and evaluation of cotton products quality. Trans Inst Met Finish 2000;78:223-226.
    [168] Hou KH, Ger MD, Wang LM, et al. The wear behaviour of electro-codeposited Ni-SiC composites. Wear 2002;253:994-1003.
    [169] Radhakrishnan S, Siju CR, Mahanta D, et al. Conducting polyaniline-nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 2009;54:1249-1255.
    [170] Lekka M, Koumoulis D, Kouloumbi N, et al. Mechanical and anticorrosive properties of copper matrix micro- and nano-composite coatings. Electrochim Acta 2009;54:2540-2546.
    [171] Chiou YC, Lee RT, Yau CL. A Novel Method of Composite Electroplating on Lap in Lapping Process. Int J Mach Tools Manufact 2007;47:361-374.
    [172]郭忠诚,杨显万.电沉积多功能复合材料的理论与实践.北京:冶金工业出版社, 2002.
    [173] Celis JP, Roos JR, Beulens C. Analysis of the electrolytic codeposition of non -brownian particles with a metal matrix. J Electrochem Soc 1987;134(6):1402-1405.
    [174] Valdes JL, Cheh HY. A mathematical model for the elctrolytic codeposition of particle with a metallic matrix. J Electrochem Soc 1987;134(4):223-226.
    [175] Fransaer J, Celis JP, Roos JR. Analysis of the electrolytic codeposition of nonbrownian particles with metals. J Electrochem Soc 1992;139(2):413.
    [176] Ferkel H, Mueller B, Riehemann W. Electrodeposition of particle-strengthened nickel films. Mater Sci Eng A 1997;234-236:474-476.
    [177] Moller A, Hahn H. Synthesis and characterization of nanocrystalline Ni/ZrO2 composite coatings. NanoStruct Mater 1999;12:259-263.
    [178]于朝清,郑昂,向艳,等.纳米电镀技术的研究.机电元件2003;23(4):37-39.
    [179] Robin A, Fratari RQ. Deposition and characterization of nickel-niobium composite electrocoatings. J Appl Electrochem 2007;37:805-812.
    [180]吕晓迎, Kappert HF.牙科材料细胞毒性评定的新方法.中华口腔医学杂志1995;30:377-380.
    [181]赵克,程祥荣,燕高,等. Comfort义齿粘附剂的体外细胞毒性评价.华西口腔医学杂志2004;22:162-164.
    [182]邱晓霞,王桃,莫三心.超高相对分子质量聚乙烯纤维的体外细胞毒性.郑州大学学报(医学版) 2007;42(4):711-712.
    [183]张彩霞.应用细胞培养法对复合树脂充填材料的毒性研究.口腔医学1982;2(1):40-42.
    [184] Morrison C, Macnair R, MacDonald C, et al. In vitro biocompatibility testing of polymers for orthopaedic implants using cultured fibroblasts and osteoblasts. Biomoterials 1995;16:987-992.
    [185] Zhao JL, Fu T, Han Y, et al. Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Mater Lett 2003;58:163-168.
    [186] Yokoyama Y, Oyane A, Ito A. Preparation of a Bonelike Apatite-Polymer Fiber Composite Using a Simple Biomimetic Process. J Biomed Mater Res 2008;86B:341-352.
    [187]赵治国.离子注入改善Ti和ZrO2表面生物活性的研究[硕士学位论文].天津:天津大学; 2006.
    [188]刘瑶.镁/碳离子注入医用纯钛表面改性的研究[硕士学位论文].天津:天津大学; 2007.
    [189] Kim HM, Miyaji F, Kokubo T, et al. Effect of heat treatment on apatite - forming ability of Ti metal induced by alkali treatment. J Mater Sci :Mater Med 1997;8:341-347.
    [190] Kim HM, Miyaji F, Kokubo T, et al. Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res A 1999;45:100-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700