用户名: 密码: 验证码:
光伏阵列及并网逆变器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光伏发电技术是新能源应用领域的重要研究课题之一,对于缓解世界范围内的能源危机和环境问题以及实现社会的可持续发展,具有重要的理论和实际意义。本文以光伏阵列和并网逆变器作为研究对象,重点针对光伏阵列的输出特性、仿真模型、优化配置、最大功率点跟踪以及并网逆变器的电流控制策略等问题进行深入的研究。
     论文首先针对复杂光照环境下集中式光伏阵列输出特性的理论推导展开研究。将三种不同拓扑结构的光伏阵列作为研究对象,分别以输出电流和输出电压作为串联式光伏阵列和并联式光伏阵列输出特性理论分析的基准,推导了两种光伏阵列在复杂光照环境下的输出特性方程,建立了峰值功率点电压表达式。在此基础上,分析了集中式光伏阵列在复杂光照环境下的输出特性,并围绕峰值功率点提出了相关结论。
     建立光伏阵列的仿真模型是分析其输出特性的主要途径。本文在单体光伏电池特性方程及其等效电路的基础上,采用MATLAB M文件建立了光伏组件的仿真模型,进而对串联式光伏阵列进行建模,结合集中式光伏阵列的等效电路,提出了一种基于模块化编程的光伏阵列仿真模型。仿真结果表明,该模型适用于不同拓扑结构和光照环境下光伏阵列的仿真,具有普适性。
     随着光伏发电系统应用环境的复杂化,局部阴影已成为制约光伏阵列发电效率的主要问题之一。本文结合光伏阵列输出特性的理论推导及仿真模型,通过对具有相同额定功率和拓扑结构的光伏阵列在不同光照分布下的输出功率进行分析,提出了工程应用中光伏阵列选型及安装等方面的优化配置原则,提高了光伏阵列在复杂环境下的输出功率。
     针对光伏组件功率输出的单峰特性,在综合考虑系统响应速度和控制精度的基础上,本文提出了一种基于改进型最优梯度法最大功率点跟踪算法,并通过仿真验证了算法的可行性。针对复杂光照环境下光伏阵列功率输出的多峰特性,提出了一种多重区间最大功率点跟踪算法,仿真结果表明,该算法提高了系统的响应速度,适用于任意光照环境下光伏阵列的最大功率点跟踪。
     逆变器电流控制策略是光伏并网发电研究的关键技术之一。本文总结了预测电流控制算法的构建原则,通过对目标电流误差方程和目标输出电压方程的构建形式进行改进,提出了一种单相并网逆变器预测电流控制模型,分析了影响控制模型稳定性的关键因素,总结了控制模型对电感参数不匹配的容忍度与各模型参数之间的关系,并通过MATLAB仿真以及实验平台进行了验证,为工程应用中器件参数的选取提供了理论依据。
Photovoltaic (PV) power generation technology is one of the most important research topics in the field of renewable energy, which is significant in theory and practice to mitigate the world-wide energy crisis and environmental problem, as well as achieve the sustainable development of society. PV array and grid-connected inverter in PV system are researched in this thesis, in which focuses on output characteristics, optimization, simulation model, maximum power point tracking (MPPT) of PV array, and current control strategies of grid-connected inverter.
     The theoretical derivation of central PV array's output characteristics under complicated illumination environment is firstly studied in the thesis. According to the different structures of PV array, the output characteristic equations of serial PV array and parallel PV array under complicated illumination environment is derived which is based on the output current and output voltage respectively; then the distribution and voltage expression of peak power points is summarized; Finally, the output characteristics of central PV array under complicated illumination environment is analyzed and related conclusions of peak power points are proposed.
     Simulation modeling is the key approach to research the output characteristics of PV array. The simulation model of PV module using MATLAB M file is established and it is based on the characteristic equation and equivalent circuit of PV cell; and then the model of serial PV array is given. According to the equivalent circuit of central PV array, a modularized programming model of central PV array is proposed. Simulation result demonstrates that the proposed model is suitable for different PV array structures and illumination distributions.
     Aiming at the complicated application environment of PV systems, local shadow becomes one of the main problems which restrict the generating efficiency of PV arrays. The output power of PV arrays with identical rated power and structure under different illumination distribution is analyzed by both theoretical derivation and simulation. Optimization rules of PV array's prototype and installation in engineering applications are proposed, which can improve the output power of PV array under complicated illumination environment.
     A new maximum power point tracking algorithm based on improved optimum gradient method is proposed for the unimodal characteristic of PV module in the case of considering both control accuracy and response speed, the feasibility of the proposed algorithm is verified by simulation. In light of the multimodal characteristic of PV array under complicated illumination environment, a multi-interval MPPT algorithm is proposed, simulation result demonstrates that the proposed MPPT algorithm can improve the response speed of maximum power point tracking, and can be used in arbitrary illumination environment.
     Current control strategy of inverter is one of the key technologies for grid-connected photovoltaic power generation. The principle to design the predictive current control algorithm is summarized, and by means of improving the expressions for target current error and target output voltage, this thesis proposes a predictive current control model of single-phase grid-connected inverter. The key factors which influence the stability of control model are analyzed, and the interaction between model parameters and the tolerance of inductance mismatching is concluded. Finally, the proposed predictive current control model is verified by both MATLAB simulation and experimental platform, which provides theoretical basis for the selection of device parameters in engineering application.
引文
[1]王佳琦,王宇奇.我国一次能源供应结构的系统分析[J].科技与管理,2011,13(1):62-65.
    [2]李晓刚.中国光伏产业发展战略研究[D].吉林:吉林大学,2007.
    [3]我国能源消费七成靠煤炭,能源强度须年均下降213%[J].中国石油和化工标准与质量,2011,08期,3.
    [4]Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies [J]. Renewable and Sustainable Energy Reviews,2011,15(3):1625-1636.
    [5]陈文章,荣士壮.我国新能源和可再生能源现状、问题及对策的探讨[J].辽宁农业职业技术学院学报,2008,10(1):34-35.
    [6]赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [7]王长贵.新能源和可再生能源的现状和展望[C].太阳能光伏产业发展论坛论文集,新疆,2003:4-17.
    [8]汉斯.太阳电池阵设计手册:光电能转换原理及其应用[M].北京:中国宇航出版社,1987.
    [9]张兴,曹仁:贤,等.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2010.
    [10]Quan L, Peter W. A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations [J]. IEEE Transactions on Power Electronics,2008,23(3):1320-1333.
    [11]Walker G R. Evaluating MPPT converter topologies using a MATLAB PV model [J]. Journal of Electrical and Electronics Engineering,2001,21(1):49-55.
    [12]Gow J A, Manning C D. Development of a photovoltaic array model for use in power electronics simulation studies [C]. IEE Proceedings on Electric Power Applications,1999, 146(2):193-200.
    [13]崔岩,蔡炳煌,李大勇,等.太阳能光伏模板仿真模型的研究[J].系统仿真学报,2006,18(4):829-834.
    [14]黄宏生.光伏最大功率跟踪系统的研究[D].汕头:汕头大学,2003.
    [15]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列MATLAB通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.
    [16]Stjepanovic A, Softie F, Bundalo Z, et al. Solar tracking system and modeling of PV module [C]. Proceedings of the 33rd International Convention MIPRO,2010,105-109.
    [17]余世杰,何慧若.光伏水泵系统中CVT及TMPPT控制比较[J].太阳能学报,1998,4, 394-398.
    [18]Chao, R.M., Ko, S.H., Pai, F.S., et al. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm [J]. Solar Energy, 2009,83(12):2177-2185.
    [19]Liu, Xuejun, Lopes, Luiz A. C. An improved perturbation and observation maximum power point tracking algorithm for PV arrays [C].2004 IEEE 35th Annual Power Electronics Specialists Conference,2004,3:2005-2010.
    [20]Liu, Chun-Xia, Liu, Li-Qun. An improved perturbation and observation MPPT method of photovoltaic generate system [C].2009 4th IEEE Conference on Industrial Electronics and Applications,2009, pages:2966-2970.
    [21]汤济泽,王丛岭,房学法.一种基于电导增量法的MPPT实现策略[J].电力电子技术,2011,45(4):73-75.
    [22]叶满园,官二勇,宋平岗.以电导增量法实现MPPT的单级光伏并网逆变器[J].电力电子技术,2006,40(2):30-32.
    [23]董密,杨建,彭可,罗安.光伏系统的零均值电导增量最大功率点跟踪控制[J].中国电机工程学报,2010,30(21):48-53.
    [24]Liu F R, Duan S X, Liu B Y, et al. A variable step size INC MPPT method for PV systems [J]. IEEE Transactions on Industrial Electronics,2008,55(7):2622-2628.
    [25]Mohamad A S M, Seyed M M B, Ewald F F. Microprocessor-controlled new class of optimal battery chargers for photovoltaic applications [J]. IEEE Transactions on Energy Conversion, 2004,19(3):599-606.
    [26]Tafticht T, Agbossou K, Doumbia M L, et al. An improved maximum power point tracking method for photovoltaic systems [J]. Renewable Energy,2008,33(7):1508-1516.
    [27]Anjidani M, Effati S. Steepest descent method for solving zero-one nonlinear propramming problems [J]. Applied Mathematics and Computation,2007,193(1):197-202.
    [28]Li Jiyong, Wang Honghua. Maximum power point tracking of photovoltaic generation based on the optimal gradient method [C].2009 Asia-Pacific Power and Energy Engineering Conference,2009.
    [29]于蓉蓉.光伏发电关键技术及电动汽车充电站可靠性研究[D].北京:北京交通大学,2011.
    [30]Altas I H, Sharaf A M. A novel maximum power fuzzy logic controller for photovoltaic solar energy systems [J]. Renewable Energy,2008,33(3):388-399.
    [31]Karlis A D, Kottas T L, Boutalis Y S. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN) [J]. Electric Power Systems Research,2007, 77(3-4):315-327.
    [32]王厦楠.独立光伏发电系统及其MPPT的研究[D].南京:南京航空航天大学,2008.
    [33]Samangkool K, Premrudeepreechacharn S. Maximum power point tracking using neural networks for grid-connected photovoltaic system [C].2005 International Conference on Future Power Systems,2005,1-4.
    [34]Hiyama T, Kouzuma S, Imakubo T, et al. Evaluation of neural network based real time maximum power tracking controller for PV system [J]. IEEE Transaction on Energy Conversion,1995,10(3):543-548.
    [35]Mishina T, Kawamura H, Ymanaka S, et al. A study of the automatic analysis for the Ⅰ-Ⅴ curves of a photovoltaic subarray [C]. The 29th IEEE Photovoltaic Specialists Conference, 2002:1630-1633.
    [36]余世杰,何慧若.太阳能的光伏利用[M].合肥:合肥工业大学出版社,1991.
    [37]苏建徽,余世杰,赵为,等.硅太阳电池[程用数学模模[J].太阳能学报,2001,22(4):409-412.
    [38]Messenger, R.A., Ventre, J.. Photovoltaic systems engineering [C]. CRC Press LLC, Boca Raton,2004.
    [39]魏晋云.太阳能电池效率与串联内阻的近似指数关系[J].太阳能学报,2004,25(3):356-358.
    [40]丁金磊.太阳电池I-V方程显式求解的原理研究及应用[D].合肥:中国科学技术大学,2007.
    [41]Virtuani, A., Lotter, E., Powalla, M.. Performance of Cu(In,Ga)Se2 solar cells under low irradiance [J]. Thin Solid Films,2003, vol:431-432, pages:443-447.
    [42]Hiren Patel, Vivek Agarwal, Senior Member. MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics [J]. IEEE Transactions on Energy Conversion, 2008,23(1):302-310.
    [43]刘邦银,段善旭,康勇.局部阴影条件下光伏模组特性的建模与分析[J].太阳能学报,2008,29(2):188-192.
    [44]Sharma A.K., Dwivedi R., Srivastava S.K.. Performance analysis of a solar array under shadow condition [J]. IEE Proceedings G,1991,138(3):301-306.
    [45]翟载腾,程晓肪,丁金磊,等.被部分遮挡的串联光伏组件输出特性[J].中国科学技术大学学报,2009,39(4):398-402.
    [46]翟载腾.任意条件下光伏阵列的输出性能预测[D].合肥:中国科学技术大学,2008.
    [47]庞志超.局部阴影条件下基于模糊控制的光伏阵列重构系统的研究[D].天津:天津大学,2010.
    [48]H.Ziar, S.Mansourpour, A.Salimi, E.Afjei. Analysis of shadow effect in photovoltaic arrays using binary coding method [C].2011 2nd International Conference on Electric Power and Energy Conversion Systems, Sharjah, United arab emirates,2011.
    [49]Kawamura H, Naka K, Yonekura N, et al. Simulation of I-V characteristics of a PV module with shaded PV cells [J]. Solar Energy Materials & Solar Cells,2003,75(3-4):613-621.
    [50]S. Silvestre, A. Boronat, A. Chouder. Study of bypass diodes configuration on PV modules [J]. Applied Energy,2009,86(9):1632-1640.
    [51]周德佳,赵争鸣,吴理博,等.基于仿真模型的太阳能光伏电池阵列特性的分析[J].清华大学学报(自然科学版),2007,47(7):1109-1112,1117.
    [52]王章权,张超,何湘宁.基于Pspice模拟行为模型的光伏阵列建模[J].2007,24(8):225-228,240.
    [53]王琢玲,李晓英.基于Matlab的光伏阵列数学模型的研究[J].工矿自动化,2011,no.12,4042.
    [54]谢柱,郑连清.基于特性参数的太阳能电池和光伏阵列建模[J].低压电器,2010,no.08,21-24.
    [55]李炜,朱新坚,曹广益.基于一种改进的BP神经网络光伏电池建模[J].计算机仿真,2006,23(7):228-230,290.
    [56]Volker Quaschning, Rolf Hanitsch. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells [J]. Solar Energy,1996,56(6):513-520.
    [57]Young-Hyok Ji, Jun-Gu Kim, Sang-Hoon Park. C-language based PV array simulation technique considering effects of partial shading [C]. Proceedings of the IEEE International Conference on Industrial Technology,2009, Churchill, VIC, Australia.
    [58]陈阿莲,冯丽娜,杜春水,等.基于支持向量机的局部阴影条件下光伏阵列建模[J].电工技术学报,2011,26(3):140-46.
    [59]刘晓艳,祁新梅,郑寿森,等.局部阴影条件下光伏阵列的建模与分析[J].电网技术,2010,34(11):192-197.
    [60]陈如亮.光伏热斑现象及多峰最大功率跟踪的研究[D].汕头:汕头大学,2007.
    [61]Ramaprabha, R., Mathur, B.L.. Modelling and simulation of solar pv array under partial shaded conditions [C].2008 IEEE International Conference on Sustainable Energy Technologies,2008, Singapore, Pages:7-11.
    [62]李大勇,陈如亮,崔岩,石德全.基于Pspice的光伏组件热斑现象仿真[J].哈尔滨工业大学学报,2006,38(11):1888-1897.
    [63]Wang Zhangquan, Chen Yourong, Ruan Yue. Modeling of arbitrary power level PV array based on circuit equivalent mechanism [C]. Advanced Research on Engineering Materials, Energy, Management and Control, Wuhan, China,2012, Pages:586-591.
    [64]刘素梅.光伏方阵失配现象研究[D].汕头:汕头大学,2008.
    [65]Jiang, Yuncong, Qahouq, Jaber A. Abu, Orabi, Mohamed. Matlab/Pspice hybrid simulation modeling of solar PV cell/module [C].2011 26th Annual IEEE Applied Power Electronics Conference and Exposition,2011, Fort Worth, TX, United states, Pages: 1244-1250.
    [66]Ding Kun, Bian, Xin Gao Liu, Hai Hao. Matlab-simulink based modeling to study the influence of nonuniform insolation photovoltaic array [C].2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China,2011.
    [67]闫荣超,李畸勇.局部阴影条件下的光伏阵列建模与特性仿真[J].机械制造与自动化,2011,40(1):123-126.
    [68]冯宝成,苏建徽.部分遮挡条件下光伏组件的建模与仿真研究[J].电气传动,2011,41(7):61-64.
    [69]Ishaque Kashif, Salam Zainal, Syafaruddin. A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model [J]. Solar Energy,2011, 85(9):2217-2227.
    [70]Tian Qi, Zhao Zhengming, Deng Yi. Modeling and analyzing to the forward PV cells for large-scale PV array [C].2011 International Conference on Electrical Machines and Systems, Beijing, China,2011.
    [71]杜柯,段善旭,刘飞.基于Matlab的一种光伏阵列模拟器的研究[J].通信电源技术,2006,23(3):8-10.
    [72]薛阳,张佳栋.部分阴影条件下的光伏阵列仿真建模与特性分析[J].华东电力,2011,39(6):949-952.
    [73]刘邦银,梁超辉,段善旭.直流模块式建筑集成光伏系统的拓扑研究[J].中国电机工程学报,2008,28(20):99-104.
    [74]T. Shimizu, M. Hirakata, T. Kamezawa, H. Watanabe. Generation control circuit for photovoltaic modules [J]. IEEE Trans. on Power Electronic,2001,16(3):293-300.
    [75]Toshihisa Shimizu, Osamu Hashimoto, Gunji Kimura. A Novel High Performance Utility Interactive Photovaltaic Inverter System [J]. IEEE Trans. on Power Electronic,2003,18(2): 704-711.
    [76]肖景良,徐政,林崇,等.局部阴影条件下光伏阵列的优化设计[J].中国电机工程学报,2009,29(11):119-124.
    [77]丁明,陈中.遮阴影响下的光伏阵列结构研究[J].电力自动化设备,2011,31(10):1-5.
    [78]Mehmet Akbaba, Isa Qamber, Adel Kemal. Matching of Separately Excited DC Motors to Photovoltaic Generators for Maximum Power Output [J]. Solar Energy,1995,54(2): 99-104.
    [79]X. Liu, L.A.C. Lopes. An improved perturbation and observation maximum power point tracking algorithm for PV arrays [C]. Proceedings of the IEEE 35th Annual Meeting of Power Electronics Specialists Conference PESC'04, Aachen, Germany,2004.
    [80]Femia. N., Petrone. G.. Optimization of perturb and observe maximum power point tracking method [J]. IEEE Transactions on Power Electronics,2005,20(4):963-973.
    [81]Tomokazu Mishima, Tokuo Ohnishi. Power compensation system for partially shaded PV array using electric double layer capacitors [C]. IEEE Industrial Electronics Society Conference,2002,4:3262-3267.
    [82]庞志超.局部阴影条件下基于模糊控制的光伏阵列重构系统的研究[D].天津:天津大学,2010.
    [83]Tomokazu Mishima, Tokuo Ohnishi. A power compensation strategy based on electric double layer capacitors for a partially shaded PV array [C]. The 15th International Conference on Power Electronics and Drive Systems,2003,2:858-863.
    [84]Karatepe E, Hiyama T, Boztepe M, et al. Power controller design for photovoltaic generation system under partially shaded insolation conditions [C]. ISAP International Conference, Niagara Falls, Canada,2007.
    [85]K. Kobayashi, I. Takano, Y. Sawada. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions [J], Solar Energy Materials and Solar Cells,2006,90(18/19):2975-2988.
    [86]熊远生,俞立,徐建明.固定电压法结合扰动观察法在光伏发电最大功率点跟踪控制中应用[J].电力自动化设备,2009,29(6):85-88.
    [87]Wenkai Wu, Pongratananukul N., Weihong Qiu, Rustom K.. DSP-based Multiple Peak Power Tracking for Expandable Power System[C]. Applied Power Electronics Conference and Exposition,2003,1:525-530.
    [88]吴大中,王晓伟.一种光伏MPPT模糊控制算法研究[J].太阳能学报,2011,32(6):808-812.
    [89]邱培春,葛宝明,毕大强.基于扰动观察和二次插值的光伏发电最大功率跟踪控制[J].电力系统保护与控制,2011,39(4):62-66.
    [90]Young-Hyok Ji, Doo-Yong Jung, Chung-Yuen Won, Byoung Kuk Lee, Jin-Wook Kim. Maximum power point tracking method for PV array under partially shaded condition [C]. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, United states,2009.
    [91]E. V. Solodovnik, S. Liu, R. A. Dougal. Power controller design for maximum power tracking in solar installations [J]. IEEE Transactions on Power Electronics,2004,19(5):1295-1304.
    [92]郭明明,沈锦飞.基于改进变步长电导增量法光伏阵列MPPT研究[J].电力电子技术,2011,45(7):14-16.
    [93]Ahmed, Nabil A, Miyatake, Masafumi. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions [J]. Electric Power Systems Research,2008,78(5):777-784.
    [94]刘艳莉,周航,程泽.基于粒子群优化的光伏系统MPPT控制方法[J].计算机工程,2010,36(15):265-267.
    [95]Toshihiko Noguchi, Shigenori Togashi, Ryo Nakamoto. Short-current pulse-based maximum power point tracking method for multiple photovoltaic and converter module system [J]. IEEE Trans. On Industrial Electronics,2002,49(1):217-222.
    [96]Bekker, B., Beukes, H.J.. Finding an optimal PV panel maximum power point tracking method [C].7th AFRICON Conference, Africa,2004,2:1125-1129.
    [97]刘立群,王志新,张华强.部分遮蔽光伏发电系统模糊免疫MPPT控制[J].电力自动化设备,2010,30(7):96-99,116.
    [98]Chia Seet Chin, Neelakantan P., Hou Pin Yoong. Maximum Power Point Tracking for PV Array Under Partially Shaded Conditions [C]. Proceedings of the 2011 3rd International Conference on Computational Intelligence, Bali, Indonesia,2011.
    [99]Young-Hyok Ji, Doo-Yong Jung, Jun-Gu Kim, Jae-Hyung Kim, Tae-Won Lee. A Real Maximum Power Point Tracking Method for Mismatching Compensation in PV ArrayUnder Partially Shaded Conditions [J]. IEEE Transactions on Power Electronics,2011,26(4): 1001-1009.
    [100]Holtz J. Pulse width modulation-A survey [J]. IEEE Transactions on Industry Electronics, 1992,39(5):410-420.
    [101]刘剑,谭甜源,乐健.三角波比较法的幅值和相位补偿原理[J].电力系统自动化,2010,34(16):69-72.
    [102]Sepe, R.B., Jr. A unified approach to hysteretic and ramp-comparison current controllers [C]. Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, Ont., Canada,1993, pages:724-31 vol.1.
    [103]Srikanthan, S., Mishra, M.K.. Constant frequency current control using a ramp comparison method for a DSTATCOM application [C]. TENCON 2008-2008 IEEE Region 10 Conference, Hyderabad, India,2008.
    [104]Faiz, J., Azizian, M.R., Aboulghasemian-Azami, M.. Simulation and analysis of brushless DC motor drives using hysteresis, ramp comparisonand predictive current control techniques [J]. Simulation Practice and Theory,1996,3(6):347-363.
    [105]Chen Donghua, Ji Zhicheng. Power circuit of shunt active power filter suitable to aircraft power supply network and its control strategy [J]. Power System Technology,2008,32(13): 75-79(in Chinese).
    [106]Hong Feng, Shan Renzhong, Wang Huizhen, et al. Varied hysteresis-band current controller with fixed switching frequency [J]. Transactions of China Electrotechnical Society,2009, 24(1):115-119(in Chinese).
    [107]谈龙成,陈永刚,常国洁,等.有源电力滤波器的电流控制新方法[J].电网技术,2006,30(21):62-65.
    [108]Zeng Jiang, Liu Yan, Ye Xiaojun, et al. A novel hysteresis current control method for active power filter with low switching loss [J]. Power System Technology,2010,34(1):73-78(in Chinese).
    [109]郑建勇,王杰,梅军,等.基于电压空间矢量的滞环电流控制方法和APF的系统设计[J].电力自动化设备,2011,31(5):49-52.
    [110]Holtz J, Stadtfeld S. A predictive controller for the stator current vector of AC machines fed from a switched voltage source [C]. Proceeding of International Power Electronics Conference,1983, pages:1665-1675.
    [111]Holmes D G, Martin D A. Implementation of a direct digital predictive current controller for single and three phase voltage source inverter[C]. Proc. Annu, San Diego, CA, USA, IEEE, 1996, pages:906-913.
    [112]Kojabadi H M, Idris B Y, Gadoura A. A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters [J]. IEEE Transactions on Power Electronics,2006, 21(4):985-993.
    [113]Bode G H, Loh P C, Newman M J, et al. An improved robust predictive current regulation algorithm [J]. IEEE Transactions on Industry Applications,2005,41(6):1720-1733.
    [114]于晶荣,滕召胜,章兢,等.有源电力滤波器预测电流控制及稳定性分析[J].电工技术学报,2009,24(7):164-170.
    [115]Rodriguez J, Pontt J, Silva C A, et al. Predictive current control of a voltage source inverter [J]. IEEE Trans. Ind. Electron.,2007,54(1):495-503.
    [116]孙向东,任碧莹,钟彦儒,等.滤波电感在线估计方法在预测电流控制中的应用[J].电工技术学报,2009,24(7):150-156.
    [117]Hossein M K, Idris A G, Liuchen C, et al. A novel DSP-based current-controlled PWM strategy for single phase grid connected inverters [J]. IEEE Transactions on Power Electronics,2006,21(4):985-993.
    [118]章兢,于晶荣.基于AD ALINE的有源电力滤波器预测电流控制策略[J].电[技术学报,2009,24(6):77-84.
    [119]Barrero F, Arahal M R, Gregor R, et al. A proof of concept study of predictive current control for VSI-driven asymmetrical dual three-phase AC machines [J]. IEEE Transactions on Industrial Electronics,2009,56(6):1937-1954.
    [120]张波,唐昆明,周小平,等.基于预测直接电流控制的APF死区效应补偿[J].电力系统保护与控制,2010,38(12):54-58.
    [121]Malesani L. Robust dead-beat current control for PWM rectifiers and active filters [J]. IEEE Transactions on Industry Applications,1999,35(3):613-6.
    [122]Ahmed, K.H.; Adam, G.P., Finney, S.J., Williams, B.W.. Voltage sensorless predictive current control with interfacing parameter estimation for grid connected converter operation [C].2011 IEEE PES PowerTech-Trondheim, Trondheim, Norway,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700