用户名: 密码: 验证码:
双开关磁阻电机无位置传感器控制系统控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实时而准确的转子位置信息是开关磁阻电机(SRM)可靠运行和高性能控制的必要前提。然而位置传感器提高了系统成本和复杂度,更重要的是降低了系统的坚固性和适应性,影响系统运行的可靠性,尤其是在潮湿、振动、多尘等环境较恶劣的场合。因此,无位置传感器的SRM控制技术成为国内外的研究热点。
     本文以双SRM电牵引采煤机为研究背景,研发无位置传感器的双机电牵引采煤机控制系统,以提高SRM控制系统的可靠性,具有极高的社会效应和经济价值。以三相12/8极18.5kW SRM为研究对象,研究了SRM的磁链特性在线检测、全速度范围的无位置传感器控制、双机交叉耦合同步控制和PWM整流器预测电流控制策略。
     在简要分析SRM数学模型、运行特性与控制方式的基础上,对样机进行了堵转试验,获得了静态磁链-电流-转子位置角度的特性曲线族;通过JMAG软件对样机进行了三维有限元分析,其结果验证了堵转试验获得的磁链特性数据的可信度。针对现有堵转试验或有限元分析方法获取磁链特性的局限性,提出了磁链特性在线检测方法,通过DSP中的串行通信接口(SCI)模块,将磁链-电流-转子位置数据发送至上位机,由边界值限制径向基神经网络对所获取的样本数据进行训练,最终获得磁链特性数据,三种功率等级的SRM磁链特性数据实验结果验证了方法的可行性和可移植性。
     针对位置传感器的使用带来的不便与弊端,简要介绍了位置传感器反馈与速度反馈原理,在对电感曲线进行傅立叶级数展开和谐波分析的基础上,提出了基于动态电感模型的SRM转子位置估计方法,分析了三相电感的计算方法和傅立叶级数展开系数的变化规律,给出了SRM转子位置角度的计算方法。提出了激励脉冲法与动态电感模型相结合的四象限全速度范围的无传感器控制策略,设计实现了无位置传感器SRM控制器。
     针对双机牵引采煤机的功率输出平衡问题,提出了SRM平均转矩在线计算模型。针对现有双机交叉耦合控制采用单一反馈造成负载运行时双机功率偏差问题,提出了速度差与转矩差双反馈交叉耦合双机同步控制策略,同时分析了双SRM无传感器控制系统的主CPU硬件架构与系统软件设计,并给出了模糊控制转矩调节器的设计方法。
     针对采煤机SRM双机牵引系统中的整流单元普遍采用不控整流或简单回馈方式,提出满足采煤机在大倾角工作面上可靠实现四象限运行的PWM整流器控制策略。分析了整流器的拓扑结构及低频数学模型,分析了电流控制过程中滞后一拍对整流器性能的影响,给出了波特图分析。在此基础上,提出了无差拍预测电流控制策略,给出了控制算法。
     在分析采煤机负载特性的基础上,将依托本文研究成果的SRM无位置传感器控制器应用于国产某型双滚筒电牵引采煤机系统中,牵引实验结果和性能指标验证了本文整体方案的可行性和有效性。
Real-time and accurate rotor position information is a necessary prerequisite forreliable operation and high performance control of switched reluctance motor (SRM).However, shaft position sensor of SRM increases system cost and complexity, themore important is that it reduces robustness and adaptability of the system, affectingthe reliability of the operating system, especially in the humid, vibration, dust andother harsher environment situations. Therefore, sensorless SRM control technologybecomes a research hotspot at home and abroad.
     Sensorless control of SRM is studied, using double SRM traction shearer as theresearch background. For the purpose of improving the reliability of SRM controlsystem, it has very high social effects and economic value. Three phase12/8-pole18.5kW SRM is the research object, on-line flux linkage characteristics detectionmethod, position sensorless control over the entire speed range, dual cross-couplingsynchronization control of double motor and predictive current control strategy forPWM rectifier are studied.
     On the basis of a brief analysis of mathematical model, operating characteristicsand control mehtod, off-line static flux linkage characteristics experiment is carried on,static flux linkage-current-rotor position angle curves are obtained; three-dimensionalfinite element analysis of prototype SRM is analyzed by JMAG software, the resultsverified the credibility of the flux linkage characteristics data. In order to elimatelimitations of static locked-rotor test or finite element analysis method, on-line fluxlinkage characteristics detection method is proposed, obtaining flux linkagecharacteristics data by the serial communication interface (SCI) module when SRM isoperating. Flux linkage-current-rotor position sample data are sent to host computerand then trained by boundary value constraints radial basis function neural network(BVC-RBF). Ultimately, the flux linkage characteristic data results of three powerlevels of SRM verified feasibility and portability of the on-line detection method.
     In order to avoid the inconvenience and drawbacks of SRM position sensor, abrief introduction of position sensor feedback and speed feedback is taken. Fourierseries expansion and harmonic analysis of inductance curve is carried on, rotorposition estimation method based on dynamic inductance model of SRM is proposed.Three-phase inductance calculation method and Fourier series expansion coefficientschange law are given. Calculation method of rotor position angle based on dynamic inductance model is proposed. Excitation pulse method combining with dynamicinductance model method for four-quadrant sensorless control strategy over all speedrange including standstill is proposed, a position sensorless SRM controller isdesigned and achieved.
     Considering electrical power output balance of double SRM in traction shearer,on-line SRM average torque calculation model is proposed. Double motor powerdeviation caused by single feedback method has many disadvantages. Dualcross-coupling feedback of speed and torque is proposed. Double position sensorlessSRM control system hardware architecture and software design is produced. Fuzzycontrol regulator design method of double SRM torque is given.
     Exsisting topology using diode rectifier or simple feedback method in doubleSRM traction system caused harmonic pollution. Deadbeat predictive current controlstrategy is proposed for the shearer in large inclined work surface and reliablefour-quadrant operation. Rectifier topology and low-frequency mathematical model isanalyzed. PWM rectifer performance caused by one unit delay in current controlperiod and Bode graph analysis are given. On this basis, the deadbeat predictivecurrent control strategy is proposed and control algorithms are given.
     On the basis of shearer load characteristics analysis, SRM sensorless controller isapplied to a domestic double drum electrical traction shearer system relying on theresearch of this article, traction experimental results and its performance verified thefeasibility and effectiveness of the overall strategy.
引文
[1] Krishnan R. Switched reluctance motor drives: modeling, simulation, analysis, design andapplications [M]. Boca Raton, FL: CRC Press,2001.
    [2]王宏华.开关型磁阻电动机调速控制技术[M].北京:机械工业出版社,1995.
    [3]詹琼华.开关磁阻电动机[M].武汉:华中理工大学出版社,1992.
    [4]吴建华.开关磁阻电机设计与应用[M].北京:机械工业出版社,2001.
    [5]李俊卿,李和明.开关磁阻电机发展综述[J].华北电力大学学报,2002(1):1-5.
    [6] K.Vijayakumar, R.Karthkeyan, S.Paramasivam, R.Arumugam, and K. N. Srinivas. Switchedreluctance motor modeling, design, simulation, and analysis: A comprehensive review [J].IEEE Trans. Magn. Dec.2008, vol.44, no.12, pp.4605-4617.
    [7] I.Husain, S.A.Hossain. Modeling, simulation, and control of switched reluctance motordrives [J]. IEEE Trans. Ind. Electron. Dec.2005, vol.52, no.6, pp.1625-1634.
    [8]何凤有,谭国俊.矿井直流提升机计算机控制技术[M].中国矿业大学出版社,2003.
    [9]刘旭,潘再平.煤矿输送机用开关磁阻电机驱动系统[J].煤炭学报,2009,34(2):280-283.
    [10]李建平,杜长龙,张永忠.我国薄与极薄煤层开采设备的现状和发展趋势[J].煤炭科学技术,2005,33(6):65-67.
    [11]刘卫刚.开关磁阻电动机调速系统在采煤机中的应用[J].科技资讯,2012(8):98-99.
    [12]张武东,冯振忠,张建荣.浅析薄煤层采煤机现状及发展方向[J].矿山机械,2011,2(39):23-26.
    [13]闫志平,高超,王眉林,薛安东.开关磁阻调速电动机在无极绳牵引车中的应用[J].煤矿机电,2007(6):53-55.
    [14]马正兰.变速截割采煤机关键技术研究[D].徐州:中国矿业大学,2009.
    [15] Lin Zhengyu, Reay D S, Williams B W, et al. Online modeling for switched reluctancemotors using B-Spline neural networks [J]. IEEE Transactions on Industrial Electronics,2007,54(6):3317-3322.
    [16]蔡燕,许镇琳,高超.基于神经网络非线性模型的开关磁阻电机调速系统动态仿真[J].电工技术学报,2006,21(8):25-30.
    [17]纪良文,蒋静坪,何峰.基于径向基函数神经网络的开关磁阻电机建模[J].电工技术学报,2001,16(4):7-11.
    [18]郑洪涛.开关磁阻电动机驱动系统建模及其控制策略研究[D].杭州:浙江大学,2003.
    [19] H. J. Chen, D. Q. Jiang, J. Yang and L.X.Shi. A new analytical model for switched reluctancemotors [J]. IEEE Trans. Magn. Aug.2009, vol.45, no.8, pp.3107-3113.
    [20] S.H.Mao, D.Dorrell and M.C.Tsai. Fast analytical determination of aligned and unalignedflux linkage in switched reluctance motors based on a magnetic circuit model [J]. IEEE Trans.Magn. Jul.2009, vol.45, no.7, pp.2935-2942.
    [21] C.L.Xia, M.Xue and T.N.Shi. A new rapid nonlinear simulation method for switchedreluctance motors [J]. IEEE Trans. Energy Convers.2009, vol.24, no.3, pp.578-586.
    [22] A.V.Radun. An analytical model of switched reluctance machines [J]. IEEE Trans. Magn. Jul.2000, vol.36, no.4, pp.1996-2003.
    [23] A.Kjalil and I.Husain. A Fourier series generalized geometry based analytical model ofswitched reluctance machines [J]. IEEE Trans. Ind.Appl. Jun.2007, vol.43, no.3, pp.673-684.
    [24] V.P.Vujicic. Modeling of a switched reluctance machine based on the invertible torquefunction [J]. IEEE Trans. Magn. Sep.2009, vol.44, no.9, pp.2186-2194.
    [25] H.Sahraoui, H.Zeroug and H.A.Toliyat. Switched reluctance motor design using neuralnetwork method with static finite-element simulation [J]. IEEE Trans. Magn. Dec.2007,vol.43, no.12, pp.4089-4095.
    [26] I.S.Manolas, A.G.Kladas and S.N.Manias. Finite-element-based estimator forhigh-performance switched reluctance machine drives [J]. IEEE Trans. Magn. Mar.2009, vol.45, no.3, pp.1266-1269.
    [27] Z.Y.Liu, S.S.Wang and Z.Q.Deng. Solution of inductances for bearingless switchedreluctance motors with3-D FEM based on different degree of freedom [C]. in Proc. Int. Conf.Electrical Machines and Systems, Wuhan, China,2008, pp.439-443.
    [28] D.Liang and W.Ding. Modeling and predicting of a switched reluctance motor drive usingradial basis function network-based adaptive fuzzy system [J]. IET Electr.Power Appl.2009,vol.3, no.3, pp.218-230.
    [29] S.Chen, X.Hong and C.J.Harris. Sparse multioutput radial basis function networkconstruction using combined locally regularized orthogonal least square and D-optimalityexperimental design [C]. IEE Proc.Control Theory Appl. Mar.2003, vol.150, no.2,pp.1210-1214.
    [30] R.J.Schilling, J.J.Carroll and A.F.Al-Ajlouni. Approximation of nonlinear systems with radialbasis function neural networks [J]. IEEE Trans. Neural Networks, Jan.2001, vol.12, no.1,pp.838-844.
    [31] Sharma V K, Murthy S S, Singh B. An improved method for the determination of saturationcharacteristics of switched reluctance motors [J]. IEEE Transactions on Instrumentation andMeasurement,1999,48(5):995-1000.
    [32]蔡燕.开关磁阻电动机非线性建模及其高性能系统研究[D].天津大学,2006.
    [33]王双红.混合动力电动车用开关磁阻电机控制系统研究[D].武汉:华中科技大学,2005.
    [34] Chancharoensook P, Rahman M F. Magnetization and static torque characterization of afour-phase switched reluctance motor: experimental investigations [C].PEDS2001, DenpasarIndonesia,2001,2:456-460.
    [35] Wang S C, Chen W S, Liao W B, et al. A PC-based measurement system for determiningmagnetic characteristics of switched reluctance motors [C].Power Con.2002, KunmingChina,2002,4:2256-2260.
    [36]曹家勇,周祖德,陈幼平,等.开关磁阻电动机特性检测与参数辨识方法研究[J].电工技术学报,2004,19(11):25-30.
    [37]蔡燕,许镇琳,高超.基于DSP的开关磁阻电动机特性检测[J].控制与检测,2005,11:22-24.
    [38]张海军,高瑞贞,张京军,等.基于有限元模型的开关磁阻电机系统控制仿真[J].煤炭学报,2008,33(7):831-836.
    [39]夏长亮,王娟,史婷娜,等.基于自适应径向基函数神经网络的无刷直流电机直接电流控制[J].中国电机工程学报,2003,23(6):123-126.
    [40] H.S.Lim, D.G.Roberson, N.S.Lobo, et al. Novel flux linkage control of switched reluctancemotor drives using observer and neural network-based correction methods [C]. in Proc. IEEEIECON, Nov.2005, pp.1431-1436.
    [41] N.W.Phillips, H.R.Bolton, J.D.Lewis, C.Pollock, and M.Baranes. Simulation of switchedreluctance motor drive system using commercially available simulation package [C]. in Proc.IEE Conf. Electrical Machines and Drives, Sep.1995, pp.257-260.
    [42] O.Ichinikura, T.Onda, M.Kimura, T.Watanake, T.Vanada and H.J. Guo. Analysis of dynamiccharacteristics of switched reluctance motor based on SPICE [J]. IEEE Trans. Magn. Jul.1998,vol.34, no.4, pp.2147-2149.
    [43] J.Faiz, J.Raddadi and J.W.Finch. Spice-based dynamic analysis of a switched reluctancemotor with multiple teeth per stator pole [J]. IEEE Trans. Magn. Jul.2002, vol.8, no.4, pp.1780-1788.
    [44] M.G.Gieseselmann. Dynamic modeling of switched reluctance machines with PSPICE forWINDOWS [C]. in Proc. Int. Conf. Energy Conversion Engineering,1996, pp.298-303.
    [45] K.N.Srinivas and R.Arumugam. Analysis and characterization of switched reluctance motor:Part1-dynamic, static, and frequency spectrum analyses [J]. IEEE Trans. Magn. Apr.2005,vol.41, no.4, pp.1306-1320.
    [46] F.Soares and P.J.C.Branco. Simulation of a6/4switched reluctance motor based onMatlab/Simulink environment [J]. IEEE Trans. Aero-Space Electron. Syst. July.2001, vol.37,no.3, pp.989-1009.
    [47] W.Ding and D.L.Liang. Modeling of a6/4switched reluctance motor using adaptive neuralfuzzy inference system [J]. IEEE Trans. Magn. Jul.2008, vol.4, no.7, pp.1796-1804.
    [48] H.J.Chen, D.Q.Jiang, J.Yang and L.X.Shi. A newanalytical model for switched reluctancemotors. IEEE Trans. Magn. Aug.2009, vol.45, no.8, pp.3107-3113.
    [49] S.H.Mao, D.Dorrell and M.C.Tsai. Fast analytical determination of aligned and unalignedflux linkage in switched reluctance motors based on a magnetic circuit model [J]. IEEE Trans.Magn. Jul.2009, vol.45, no.7, pp.2935-2942.
    [50] C.L.Xia, M.Xue and T.N.Shi. A new rapid nonlinear simulation method for switchedreluctance motors [J]. IEEE Trans. Energy Convers.2009, vol.24, no.3, pp.578-586.
    [51] A.V.Radun. An analytical model of switched reluctance machines [J]. IEEE Trans. Magn.Jul.2000, vol.36, no.4, pp.1996-2003.
    [52] A.Kjalil and I.Husain. A Fourier series generalized geometry based analytical model ofswitched reluctance machines. IEEE Trans. Ind.Appl. Jun.2007, vol.43, no.3, pp.673-684.
    [53] K.N.Srinivas and R.Arumugam. Static and dynamic vibration analyses of switched reluctancemotors including bearings, housing, rotor dynamics and applied loads [J]. IEEE Trans.Magn.Jul.2004, vol.40, no.4, pp.1911-1919.
    [54] H.Sahraoui, H.Zeroug and H.A.Toliyat. Switched reluctance motor design using neuralnetwork method with static finite-element simulation [J]. IEEE Trans. Magn. Dec.2007,vol.43, no.12, pp.4089-4095.
    [55] I.S.Manolas, A.G.Kladas and S.N.Manias. Finite-element-based estimator forhigh-performance switched reluctance machine drives [J]. IEEE Trans. Magn. Mar.2009, vol.45, no.3, pp.1266-1269.
    [56] Z.Y.Liu, S.S.Wang and Z.Q.Deng. Solution of inductances for bearingless switchedreluctance motors with3-D FEM based on different degree of freedom [C]. in Proc. Int. Conf.Electrical Machines and Systems, Wuhan, China,2008, pp.439-443.
    [57] A.D.Cheok and Z.F.Wang. DSP-based automated error reducing flux-linkage-measurementmethod for switched reluctance motors [J]. IEEE Trans. Instrum. Meas. Dec.2007, vol.56,no.5, pp.376-379.
    [58] S.Paramasivam, S.Vijayan, M.Vasudevan, R.Arumugam and R.Krishnan. Real-timeverification of AI based rotor position estimation techniques for a6/4pole switchedreluctance motor drive [J]. IEEE Trans.Magn. Jul.2007, vol.43, no.7, pp.3209-322.
    [59] D.Liang and W.Ding. Modelling and predicting of a switched reluctance motor drive usingradial basis function network-based adaptive fuzzy system [J]. IET Electr.Power Appl.2009,vol.3, no.3, pp.218-230.
    [60] E.K.Blum and L.K.Li. Approximation theory and feedforward networks [J]. Neural Networks,1991, vol.4, pp.511-515.
    [61] S.S.Yang and C.S.Tseng. An orthogonal neural network for function approximation [J]. IEEETrans. Syst., Man, Cybern. B,1996, vol.26, pp.779-783.
    [62] D.R.Hush and B.Horne. Efficient algorithms of function approximation with piecewise linearsigmoidal networks [J]. IEEE Trans. Neural Networks, Nov.1998,vol.9, pp.1129-1141.
    [63] J.Park and I.W.Sandberg. Universal approximation using radialbasis-function networks [J].Neural Networks,1991, vol.3, pp.246-257.
    [64] S.Chen, C.F.N.Cowan and P.M.Grant. Orthogonal least squares learning algorithm for radialbasis function networks [J]. IEEE Trans.Neural Networks, Mar.1991, vol.2, no.2, pp.302-309.
    [65] S.Chen, X.Hong and C.J.Harris. Sparse multioutput radial basis function networkconstruction using combined locally regularized orthogonal least square and D-optimalityexperimental design [C]. IEE Proc.—Control Theory Appl. Mar.2003, vol.150, no.2,pp.262-268.
    [66] R.J.Schilling, J.J.Carroll and A.F.Al-Ajlouni. Approximation of nonlinear systems with radialbasis function neural networks [J]. IEEE Trans. Neural Networks, Jan.2001, vol.12, no.1,pp.583-592.
    [67] X.Hong and S.Chen. A new RBF neural network with boundary value constraints [J]. IEEETrans. Syst., Man, Cybern. B: Cybernetics, Feb.2009, vol.39, no.1, pp.127-136.
    [68] Yamamoto K, Shinohara K. Comparison between space vector modulation and subharmonicmethods for current harmonics of DSP-based permanent-magnet [J]. AC servo motor drivesystem. IEEE Proc. Electr. Power Appl.1996,143(2):151-156.
    [69] Acarnley P P, Hill R J, Hooper C W. Detection of rotor position in stepping and switchedreluctance motors by monitoring of current waveforms [J]. IEEE Transactions on IndustrialElectronics,1985,32(3):215-222.
    [70] Gallegos L G, Kjaer P C, Miller T J E. High-grade position estimation for SRM drives usingflux linkage/current correction model [J]. IEEE Transactions on Industry Applications,1998,34(4):859-869.
    [71]邱亦慧,詹琼华,马志源,等.基于简化磁链法的开关磁阻电机间接位置检测[J].中国电机工程学报,2001,21(10):59-62.
    [72] Gao Hongwei, Salmasi F R, Ehsani M. Inductance model-based sensorless control of theswitched reluctance motor drive at low speed [J]. IEEE Transactions on Power Electronics,2004,19(6):1568-1573.
    [73]陈坤华,孙玉坤,吴建兵,等.基于电感模型的开关磁阻电机无位置传感技术[J].电工技术学报,2006,21(11):71-75.
    [74]夏长亮,王明超,史婷娜,等.基于神经网络的开关磁阻电机无位置传感器控制[J].中国电机工程学报,2005,25(13):123-128.
    [75]夏长亮,谢细明,史婷娜,等.开关磁阻电机小波神经网络无位置传感器控制[J].电工技术学报,2008,23(7):33-38.
    [76] Elmas C, Parra H Z L. Application of a full-order extended Luenberger observer for aposition sensorless operation of a switched reluctance motor drive [C]. IEE Proceedings ofControl Theory and Applications,1996:401-408.
    [77] Husain I, Sodhi S, Ehsani M. A sliding mode observer based controller for switchedreluctance motor drives [C]. Proceedings of IEEE Industry Applications Society Conference,1994:635-643.
    [78] Islam M S, Husain I, Veillette R J, et al. Design and performance analysis of sliding-modeobservers for sensorless operation of switched reluctance motors [J]. IEEE Transactions onControl Systems Technology,2003,11(3):383-389.
    [79] Komatsuzaki A, Bamba T, Miki I. A position sensorless speed control for switched reluctancemotor at low speeds[C]. IEEE Power Engineering Society General Meeting,2007:1-7.
    [80]田兆垒,孙玉坤,段青,张玉峰.一种基于FPGA的开关磁阻电动机无位置传感器调速系统实验研究[J].微电机,2009(4):36-40.
    [81] Fahimi B, Emadi A, Sepe R B. Four-quadrant position sensorless control in SRM drives overthe entire speed range [J]. IEEE Transactions on Power Electronics,2005,20(1):154-163.
    [82] A. D. Cheok and Z. F. Wang. DSP-based automated error reducing flux-linkage-measurementmethod for switched reluctance motors [J]. IEEE Trans. Instrum. Meas. Dec.2007, vol.56,no.5, pp.1280-1288.
    [83] S.Paramasivam, S.Vijayan, M.Vasudevan, R.Arumugam and R.Krishnan. Real-timeverification of AI based rotor position estimation techniques for a6/4pole switchedreluctance motor drive [J]. IEEE Trans.Magn. Jul.2007, vol.43, no.7, pp.3209-3222.
    [84]宋宏志,谭国俊,张旭隆,蒯松岩.基于DSP的全速度范围开关磁阻电动机无位置传感器控制[J].工矿自动化,2009(10):50-53.
    [85]吴江潦,易灵芝,彭寒梅,等.开关磁阻电机自适应模糊神经网络系统(ANFIS)无位置传感器控制[J].煤炭学报,2010,35(8):1401-1405.
    [86]蒯松岩,张旭隆,王其虎,张能.开关磁阻电机神经网络无位置传感器控制[J].电机与控制学报,2011,15(8):18-22.
    [87] I.Husain, S.Sodhi and M.Ehsani. Sliding mode observer based control for switchedreluctance motors [C]. In Proc. IEEE-IAS Conf.1994, Rec. Denver, CO, pp.635-643.
    [88] W.S.Baik, M.H.Kim, N.H.Kim, et al. Position sensorless control system of SRM using neuralnetwork [C]. Proc. IEEE PESC, Jun.2004, vol.5, pp.3471-3475.
    [89]武兴华,王自强.用于煤矿井下的变速风机[J].山西煤炭,2000(30):16-18.
    [90]杨树勇.开关磁阻电机调速系统在煤矿的应用[J].能源技术与管理,2008(4):126-128.
    [91]张魁.电动车用小功率开关磁阻电机及系统的设计与分析[D].济南:山东大学,2010.
    [92] A.kitomo Komatsuzaki, T.Bamba and I.Miki. A Position Sensorless Speed Control forSwitched Reluctance Motor at Low Speeds [C]. IEEE Power Engineering Society2007General Meeting,2007.
    [93] Mahesh Krishnamurthy, Chris S. Edrington and Babak Fahimi. Prediction of Rotor Positionat Standstill and Rotating Shaft Conditions in Switched Reluctance Machines [J]. IEEETransactions on Power Electronics, Jan.2006, vol.21, no.1, pp.225-233.
    [94] Gao H, Salmasi F R, Ehsani M. Sensorless Control of SRM at Standstill [C]. Applied PowerElectronics Conference and Exposition,2001. APEC2001. Sixteenth Annual IEEE Volume2.2001, vol.2, pp.850-856.
    [95] Dong Hee Lee, Tae Hyoung Kim, Jin Woo Ahn. A Simplified Novel Sensorless Control ofSRM [C]. Industry Applications Conference,2006.41st IAS Annual Meeting. ConferenceRecord of the2006IEEE Volume:4Digital Object Identifier:10.1109/IAS.2006.256810Publication Year:2006, pp.2001-2005.
    [96]邱亦慧,马志源.无位置传感器开关磁阻电机的无反转起动研究[J]电工技术学报2001,(4):18-22
    [97]王大方,谢顺依.无位置传感器开关磁阻电机的转子位置检测与启动[J]海军工程大学学报,2004,(6):36-39
    [98] Komatsuzaki A, Bamba T, Miki I. A Position Sensorless Speed Control for SwitchedReluctance Motor at Low Speeds [C]. Power Engineering Society General Meeting,2007.pp.1-7.
    [99] Ehsani M, Husain I, Mahajan S, et a1. New modulation encoding techniques for indirect rotorposition sensing in switched reluctance motors [J]. IEEE Transactions on IndustryApplications,1994,30(1):85~91.
    [100] N H Mvungi. Sensorless Commutation Control of Switched Reluctance Motor [C]. WorldAcademy of Science, Engineering and Technology252007:325~330.
    [101]3-Phase Switched Reluctance (SR) Sensorless Motor Control Using a56F80x,56F8100or56F8300Device, Freescale Semiconductor, Inc.2005.
    [102] Gabriel Gallegos-Lopez, Philip C Kjaer, T J E Miller. High-grade position estimation forSRM drives using flux linkage-current correction model [J]. IEEE Transactions on IndustryApplications,1999,35(4):859-869.
    [103]张旭隆,谭国俊,蒯松岩,吴涛.基于径向基神经网络的无位置传感器开关磁阻电机采煤机牵引系统[J].煤炭学报,2011(9):1570-1574.
    [104] Yojiro Miura, A.kitomo Komatsuzaki, Ichiro Miki, and Kouki Matsuse. A new SensorlessControl for Switched Reluctance Motor [C]. The13th European Conference on electronicsand Applications (EPE2009),2009.
    [105] Komatsuzaki A. Bamba T. Miki I. A Position Sensorless Control for Switched ReluctanceMotor [C]. Power Conversion Conference Nagoya,2007PCC'07Digital Object Identifier:10.1109/PCCON.2007.373068Publication Year:2007, pp.867-873.
    [106] A Komatuzaki, T Bamba and I Miki. A Position Sensorless Drive using Estimation ofTurn-off Angle under Regenerative Braking in Switched Reluctance Motor [C]. Proceedingof International Conference on Electrical Machines and Systems (ICEMS2007),2007, pp.450-455.
    [107]沈磊,吴建华,杨仕友.基于自举电路的开关磁阻电机初始位置估计方法[J].中国电机工程学报,2011,31(6):98-102.
    [108] Xu Longya, Wang Chuanyang. Accurate rotor position detection and sensorless control ofSRM for super-high speed operation [J]. IEEE Transactions on Power Electronics,2002,17(5):757-763.
    [109]张旭隆,谭国俊,蒯松岩,王其虎.磁链模型的双开关磁阻电机无位置传感器控制[J].电机与控制学报,2011(11):55-60.
    [110] Fahimi B, Emadi A, Sepe R B. Four-Quadrant Position Sensorless Control in SRM DrivesOver the Entire Speed Range [J]. Power Electronics, IEEE Transactions on Volume:20, Issue:1Digital Object Identifier:10.1109/TPEL.2004.839817(410)20Publication Year:2005,Page(s):154-163.
    [111] Misawa S, Miki I. A rotor position estimation using Fourier series of phase inductance forSwitched Reluctance Motor [C]. Power Electronics Electrical Drives Automation and Motion(SPEEDAM),2010International Symposium on Digital Object Identifier:10.1109/SPEEDAM.2010.5542399:2010.
    [112] T.Bamba, A.Komatsuzaki and I.Miki. Estimation of Rotor Position for Switched ReluctanceMotor at Standstill [C]. Proceedings of the Forth Power Conversion Conference (PCC2007),2007.
    [113] Lumsdaine A, Lang J H. State observers for variable reluctance motors [J]. IEEE Trans. OnIndustrial Electronics,1990,37(2):133~142.
    [114] Elmas C. Position sensorless operation of a switched reluctance drive based on observer [C],Proc.EPE’93,1993,6:82~87
    [115] Elmas C. Application of a full-order extender Luenberger observer for position sensorlessoperations of a switched reluctance motor drive [C]. IEE-Proceeding on control theory andapplications,1996,143:401~408.
    [116] Zhan Y J, Chan C C, Chau K T. A novel sliding-mode observer for indirect position sensingof switched reluctance motor drives [J]. IEEE Transactions on Industrial Electronics, Vo1.46,Apr1999, pp.390-397
    [117]张旭隆,谭国俊,蒯松岩,刘送永,王其虎.在线建模的开关磁阻电机四象限运行无位置传感器控制[J].电工技术学报,2012(27):26-33.
    [118] Yang L W, Kim Y S. Rotor speed and position sensorless control of a switched reluctancemotor using the binary observer [C]. IEE Proceedings-Electric Power Applications, Vo1.147,May2000, pp.220-26.
    [119] Guojun Tan, Zhenglan Ma, Songyan Kuai, Xulong Zhang. Four-quadrant positionsensorless control in Switched Reluctance Motor drives based on Sliding Mode Observer [C].Electrical Machines and Systems,2009. International Conference on ICEMS2009, pp.1-5.
    [120]张旭隆,谭国俊,蒯松岩,李广超.基于滑模观测器的开关磁阻电机无位置传感器控制[J].电力电子,2009(5):25-28.
    [121] Chalupa L, Visinka R. On-Fly Phase Resistance Estimation of Switched Reluctance Motorfor Sensorless based Control Techniques [C]. Conference Power Conversion and IntelligentMotion, Nurnberg, PCIM,2000.
    [122]宋宏志.无位置传感器开关磁阻电机控制系统研究[D].徐州:中国矿业大学,2009.
    [123] W.-S. Baik, M.-H. Kim, N.-H. Kim, et al. Position sensorless control system of SRM usingneural network [C]. in Proc. IEEE PESC, Jun.2004, vol.5, pp.3471-3475.
    [124] J.Bu and L.Xu. Eliminating starting hesitation for reliable sensorless control of switchedreluctance motors [J]. IEEE Transactions on Industrial Application, Jan./Feb.2001, vol.37,no.1, pp.59–66.
    [125]谭国俊,李广超,叶生文,张旭隆.无位置传感器开关磁阻发电机控制系统研究[J].电气技术,2009(8):54-57.
    [126]蒯松岩,张能,张旭隆,丁娟.基于DSP的开关磁阻电机无位置传感器控制[J].电力电子技术,2009,43(9):23-25.
    [127] Lorenz R D, Schmid P B. Synchronized Motion Control For Process Automation [C].Proceedings of the1989IEEE Industry Applications Annual Meeting.1989:1693-1698.
    [128] Koren Y. Cross-coupled Biaxial Computer Control for Manufacturing Systems [J]. Journalof Dynamic Systems, Measurement, and Control1980,102(12):265-272.
    [129]高超,阎志萍.双开关磁阻电机功率平衡的解决方案[J].煤矿机械,2003,(11):44-46.
    [130]何仁,陈庆樟.用双开关磁阻电机的汽车能量再生制动技术[J].吉林大学学报(工学版),2009,9(39):1137-1141.
    [131]李晓豁,张飞虎,付伟丽,曹江卫.双SRM牵引采煤机功率平衡系统[J].计算机系统应用,2011,11(20):72-75.
    [132]陈庆伟,郭毓,杨非,胡维礼.双电机同步联动控制系统[J].南京理工大学学报,2005,10(29):103-107.
    [133]谭国俊,钱苗旺,赵忠祥,赵忆.双电机独立驱动电动车辆电子差速控制[J].微特电机,2009(6):33-37.
    [134] Wang Xiaoyuan, Pan Hao, Guo Zhi. Double switch reluctance motors synchronizationcontrol system [C].2008Chinese Control and Dicesion Conference.CCDC2008, July.2008,pp.3754-3756.
    [135]汤杰,李志勇.变频调速在双电机同步传动中的应用[J].电气传动,2008,11(38):8-11.
    [136]李新民,马志瀛.基于DSP和CPLD及IPM的双电机控制系统[J].微特电机,200(34):22-30.
    [137]许宏,李乐宝,刘芳璇,王凌.基于变摩擦负载的双电机同步控制系统设计[J].微电机,2012,3(45):40-43.
    [138]彭继慎,王辉俊,宋绍楼.基于差频理论的双电机传动系统研究[J].中国电机工程学报,2005,8(25):150-154.
    [139]张超,裴延涛.基于矢量控制的同轴串联双电机负载平衡系统[J].电工电气,2010(2):33-35.
    [140]潘浩.基于嵌入式系统的双开关磁阻电机同步控制系统设计[D].天津大学自动化学院,2008.
    [141]林程,孟祥,曹万科,周逢军.电动汽车双电机独立驱动系统的CAN控制研究[J].电力电子技术,2011,12(45):31-33.
    [142]聂刚,何森,郑州.采煤工作面刮板机双电机控制的改造与应用[J].煤炭技术,2011,5(30):24-25.
    [143]万沛霖,张志远,陈渝光,陈旭川.双模结构模糊控制器在伺服系统中的应用[J].微计算机信息,2006(5):18-21.
    [144]曾令侯,麦继平.一种采用模糊控制的小区换热机组[J].天津工业大学学报,2001(6):35-39.
    [145]温海燕,王增强.模糊PID控制器在水压机控制系统中的应用[J].成都信息工程学院学报,2006(4):12-15.
    [146] Silva J.Fernando, Martins J F. Space vector alfa beta current regulator for sliding modecontrolled unity power factor PWM rectifiers [C]. IECON recordings, Germany,1998,3:1877-1882.
    [147]陈坚.电力电子学—电力电子变换和控制技术[M].北京:高等教育出版社,2002.
    [148]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998.
    [149]胡寿松.自动控制原理[M].北京:国防工业出版社,1994.
    [150]张崇巍,张兴. PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [151]张兴. PWM整流器及其控制策略的研究[D].合肥:合肥工业大学,2003.
    [152] Stihi O, Ooi B T. A single-phase controlled current PWM rectifier [J]. IEEE Trans. onPower Electronics,1988,3(4):453-459.
    [153] Nishida Y, Miyashita O, Haneyoshi T. A predictive instantaneous-current PWM controlledrectifier with AC-side harmonic current reduction [J]. IEEE Transactions on IndustrialElectronics,1997,44(3):337-343.
    [154] Kwong R H, Johnston E W. A variable step size LMS algorithm [J]. IEEE Transactions onSignal Processing,1992,40(7):1633-1642.
    [155]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-12.
    [156]孔雪娟.数字控制PWM逆变电源关键技术研究[D].武汉:华中科技大学,2005.
    [157] Heng Deng, Oruganti R, Srinivasan D. PWM methods to handle time delay in digitalcontrol of a UPS inverter [J]. IEEE Power Electronics Letters,2005,3(1):1-6.
    [158] Buso S, Fasolo S, Mattavelli P. Uninterruptible power supply multiloop control employingdigital predetive voltage and current regulators [J]. IEEE Transactions on IndustryApplications,2001,37(6):1846-1854.
    [159]杨勇,阮毅,叶斌英,汤燕燕.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报,2009,29(33):40-46.
    [160]韩力,韩学山,陈芳.基于综合预测和自适应滤波器的电力系统动态状态估计[J].电工技术学报,2008,23(8):108-113.
    [161]薛花,姜建国.并联型有源滤波器的自适应无源性控制方法研究[J].中国电机工程学报,2007,27(25):114-118.
    [162]李辉,吴正国,邹云屏,等.变步长自适应算法在有源滤波器谐波检测中的应用[J].中国电机工程学报,2006,26(9):99-103.
    [163]罗世国,侯振程.一种谐波及无功电流的自适应检测方法[J].电工技术学报,1993,8(3):42-46.
    [164]吴振兴,邹云屏,张允,等.单相PWM整流器输入电流波形改善技术[J].高电压技术,2008,34(3):603-608.
    [165] Sakda Somkun, Panarit Sethakul, Viboon Chunkag. Novel control technique of single-phasePWM rectifier by compensating output ripple voltage [C].IEEE International Conference onIndustrial Technology,2005:969-974.
    [166] Lee H D, Lee G M.A novel over-modulation technique for Space-Vector PWM inverters [J].IEEE Trans. on Power Electronics,1998,13(6):1144-1151.
    [167] Zhou and D Wang. Relationship between space-vector modulation and three-phasecarrier-based PWM: A comprehensive analysis [J]. IEEE Trans. on Ind. Electronics,2002,49(1):186-196.
    [168]屈克庆,陈国呈,孙承波,等.一种三相软开关PWM变流器电流极性检测与电流补偿方法[J].中国电机工程学报,2005,25(15):46-50.
    [169]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [170]邓卫华,张波,丘东元,等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2004,32(6):10-17.
    [171]王英,张纯江,陈辉明.三相PWM整流器新型相位幅值控制数学模型及其控制策略[J].中国电机工程学报,2003,23(11):85-89.
    [172]张纯江,顾和荣,王宝诚,等.基于新型相位幅值控制的三相PWM整流器数学模型[J].中国电机工程学报,2003,23(7):28-31.
    [173] Chilakapati N, Ramsden V S, Ramaswamy V. Performance evaluation of doubly-fed twinstator induction machine drive with voltage and current space vector control schemes [J].IEEE Proc. Electr. Power Appl.2001, Electric Power Applications,148(3):287-292.
    [174]方宇,裘迅,邢岩,胡育文.基于预测电流控制的三相高功率因数PWM整流器研究[J].中国电机工程学报,2006,26(20):69-73.
    [175] Yu Fang,Yan Xing,Yuwen Hu.A fast algorithm for SVPWM in three phase power factorcorrection application[C].IEEE PESC’2004,Germany,2004.
    [176] Chen Chern Lin,Lee Che Ming,Tu Rong jie,et al.A novel simplified space-vectormodulated control schem for three-phase switch-mode rectifier [J]. IEEE Trans. on IndustrialElectronics,1999,86(3):513-515.
    [177]刘温暖.电牵引采煤机牵引特性及调速系统浅析[J].通用机械,2009(1):19-21.
    [178]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真与应用[M].北京:清华大学出版社,2003.
    [179]薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版社,2005.
    [180]苏奎峰,吕强,耿庆锋,陈圣俭. TMS320F2812原理及开发[M].北京:电子工业出版社,2005.
    [181](美)Texas Instrument Incorporated著.张卫宁.编译.TMS320C28x系列DSP的CPU与外设[M].北京:清华大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700