用户名: 密码: 验证码:
水平轴风力机气动性能预测及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶片是水平轴风力机的核心部件,可将风能转化为机械能。叶片的气动性能不仅直接决定风力机的能量转换效率,还影响风力机及其部件的运行可靠性。风力机运行在自然环境中,由大气湍流、风剪切以及阵风等引起的流动不稳定性,同时由叶片、塔架等部件的气动-结构耦合问题进一步增加了叶片流动的复杂性。建立具有明确物理意义,准确高效的风力机定常/非定常气动性能的预测方法,不但可为风力机叶片设计和控制策略确定提供基础数据,也是具有重要学术价值的研究工作。
     本文基于升力面涡方法,建立水平轴风力机叶片定常与非定常工况下气动性能的预测模型,在此基础上构建可计及弯掠三维形状的风力机叶片气动优化设计平台,以及独立变桨控制策略的气动分析方法。具体研究内容如下:
     1.建立空间迭代自由尾迹数值计算方法,结合升力面法编制能预测风力机在定常和准定常工况下气动性能的计算程序。数值研究了风力机在正对来流及不同偏航角工况下的尾迹空间结构,成功地捕捉到叶尖涡发展的基本特征,准确预测风力机在正对来流时叶尖涡的膨胀过程及叶尖涡在不同偏航角下的偏转角变化趋势。在低风速及较小偏航角工况下,气动性能预测结果与实验值吻合较好。
     2.在采用空间迭代自由尾迹的升力面模型准确预测出风力机在定常及准定常工况下的气动性能的基础上,详细分析了具有弯掠三维形状的叶片对风力机气动性能的影响。弯掠叶片通过改变叶尖涡和叶片主体的相对位置影响叶片上的径向环量分布,进而改变风力机气动性能。
     3.建立时间步进自由尾迹数值计算方法,改进了计算的稳定性,结合升力面法,建立能预测更为复杂非定常工况的风力机气动性能计算程序。分别预测了桨距角突变,塔架影响,风剪切等工况下的风力机的气动性能,并研究了独立变桨时的气动特性。
     4.利用时间步进自由尾迹的升力面模型,在桨距角突变过程中准确获得具有下冲与过冲特征的风力机非定常气动性能。发现脱落涡对风轮上的气动性能影响的时间尺度较短,其数量级为c/Ωr级别,近场尾迹和叶尖涡达到新的平衡状态所需时间尺度较大,其数量级为。
     5.通过引入塔架对上游和下游流场影响的模型,采用时间步进法预测了塔架对上风向和下风向风力机的气动性能的影响。叶片经过塔影区域时输出功率和载荷有所下降,并在相位角上存在滞后效应,塔影对下风向风力机的性能影响波动幅值更大,风力机在偏航工况下运行时,风力机受塔架影响更为明显。
     6.采用时间步进法,研究了风剪切对风力机风轮的气动性能的影响,类似偏航,在周向呈现周期性变化的趋势。并对独立变桨技术在风剪切工况下应用的气动特性进行了分析,认为该技术能有效减小叶片根部挥舞力矩、风轮偏航力矩和俯仰力矩波动幅值。
     7.建立可实现不同优化目标的风力机优化设计平台,分别以风力机年发电量、低风速启动性能等为设计目标对一款600W小型风力机进行优化设计。建立了多目标风力机优化设计平台,采用基于Pareto最优解概念的多目标优化算法,采取先优化后决策的方式对NREL PHASE VI风力机叶片进行多目标优化改进。
As one of the most important key parts of horizontal axis wind turbines, therotors not only extract energy from wind but also transfer loads to other parts. Theaerodynamic performance of the rotors has a main influence on the quantity of thepower output and the reliability of almost all parts of wind turbines. Theaerodynamics of a wind turbine is extremely complicated. Such problems include thechallenges in understanding and predicting the unsteady blade air-loads and rotorperformance under complicated environmental effects that may affect the air-loads ona wind turbine, as well as the predicting the dynamic stresses and aero-elasticresponse of the blades due to the increasing size of the wind turbines. It has greatvalue not only in engineering applications but also in theoretical research to setupreliable, precision and efficient tools to predict the aerodynamic performance ofHAWTs under both steady and unsteady conditions.
     In this thesis models are established for the purpose of predicting theaerodynamic performance of HAWTs under both steady and unsteady flow conditions,by which the influence of3D geometry effects and the aerodynamic responses subjectto the complicated effects such as wind shear, tower shadow, pitching motion andindividual pitch control are studied. Following are the main work and findings of thisresearch project:
     1. A lifting surface method based on a relaxation free wake model is developed and aerodynamic performance of HAWTs under steady flow condition is studied. The relaxation free wake model can capture the main characters of the distortional wake such as the expansion ratio under both axial flow and yawed flow condition and the skew angle of the wake under yawed flow condition.
     2. The numerical predictions based on the lifting surface method with the relaxation free wake model under rated and low load working conditions show good agreement against the experiment data. The effects of dihedral and sweep3-D shape on blade aerodynamic performance are studied. The aerodynamic results analysis show that the3-D shape has a major influence along the blade due to the changing the relative postion between the blade and the tip vortex.
     3. A lifting surface method based on a time marching free wake model is developed. A new backward difference scheme is deduced. The linear stability analysis shown that the new scheme is stable for all values of time discretization. The aerodynamic performance of HAWTs under unsteady flow condition such as pitching motion, tower shadow, wind shear and individual pitch control are studied.
     4. The numerical predictions based on the lifting surface method with the time marching free wake model under pitching step motion show excellent agreement with the measured results. There are two stages during the entire dynamic inflow process. The first stage, the sudden change of the angle of attack due to the blade pitch motion leads to the instantaneous change of the torque which has a slight delay compared to the pitch motion. At this stage the shed vortex plays an important role and its influence has a very short time scale in the order of c/Ωr. The second stage is the recovery stage. The second stage is the induced velocity caused by the shed vortex go wake and the induced velocity caused by trailed vortex take the main part of the whole induced velocity. At this stage the trailed vortex is a mixture of the ‘new’ and ‘old’ vortex and an end with the ‘old’ vortex has travelled away from the rotor and the ‘new’ vortex takes the dominant influence to the induced velocity. Then the rotor goes into the new equilibrium. This stage takes place with a longer time scale in the order of.
     5. The influence of the tower shadow to both upwind and downwind rotor are studied. It is shown an impulsive response of the blade loading when the blade is passing through the tower shadow region, the reason of which is that the ‘sharp’ velocity gradient at the tower shadow region. Compaered to the unyawed flow condition the tower shadow has a wider influence region to the rotor in yawed flow.
     6. The aerodynamic performace of the wind turbine working under wind shear flow is studied which is shown that the wind shear flow has a periodic influence to the rotor. Then the individual pitch control technic is used to improve the performance of the wind turbine under sheared flow condition. It is an effective active control system that not only aims at good quality power control but also focuses on the reduction of fatigue relevant loads on the turbine component caused by wind shear, tower shadow and turbulence.
     7. A general procedure of multi-objective optimization of wind turbine blades with sweep and dihedral3-D shape is proposed in this thesis. A600W type small wind turbine is designed which takes the AEP, starting performance and blade mass as objectives. Two objectives the AEP and thrust of the rotor are optimized bases on the NREL Phase VI rotor blade using the NSGA-II algorithm as the optimization algorithm which can provide the Pareto optimal front of conflicting objectives.
引文
[1]. Sahin, a. Progress and recent trends in wind energy[J]. Progress in Energy andCombustion Science,2004,30(5):501-543.
    [2]. Sesto, E. Wind energy in the world: Reality and prospects[J]. RenewableEnergy,1999,16(1–4):888-893.
    [3]. Lew, D. J. Alternatives to coal and candles: wind power in China[J]. EnergyPolicy,2000,28(4):271-286.
    [4]. Gs nger, S.,Pitteloud, J.-D. The World Wind Energy Association2012Annual Report[R]. WWEA Head Office, Charles-de-Gaulle-Str.5,53113Bonn, Germany: World Wind Energy Association,2012.
    [5]. Hansen, M. O. L. Aerodynamics of wind turbines[M]. Earthscan/James&James,2008.
    [6]. Schmitz, S.,Chattot, J. J. Application of a "Parallelized CoupledNavier-Stokes/Vortex-Panel Solver" to the NREL VI Rotor[A].43rd AIAAAerospace Sciences Meeting and Exhibit[C], Reno, Nevada:AmericanInstitute of Aeronautics and Astronautics,2005.
    [7]. James, H.,Jean Jacques, C. Validation of Helicoidal Vortex Model with theNREL Unsteady Aerodynamic Experiment[A].43rd AIAA AerospaceSciences Meeting and Exhibit[C], Reno, Nevada:American Institute ofAeronautics and Astronautics,2005.
    [8]. Glauert, H. Airplane propellers [J]. Aerodynamic Theory,1935,4:169-360.
    [9]. SANT, T. Improving BEM-based Aerodynamic Models in Wind TurbineDesign Codes[D]. Ph.D. Thesis, University of Malta2007.
    [10]. Shen, W. Z.,Mikkelsen, R.,S rensen, J. N., etc. Tip loss corrections for windturbine computations[J]. Wind Energy,2005,8(4):457-475.
    [11]. Shen, W. Z.,Sorensen, J. N.,Mikkelsen, R. Tip Loss Correction forActuator/Navier--Stokes Computations[J]. Journal of Solar EnergyEngineering,2005,127(2):209-213.
    [12]. Stoddard, F. Momentum theory and flow states for windmills[J]. WindTechnology Journal,1978,1:3-9.
    [13]. S rensen, N. N.,Hansen, M. O. L.,S rensen, N. N., etc. Rotor PerformancePredictions using a Navier-Stokes Method[A].36th Aerospace SciencesMeeting and Exhibition[C], New York, NY:American Institute of Aeronauticsand Astronautics,1998:52-59.
    [14]. Wilson, R.,Lissaman, P.,Walker, S. Aerodynamic performance of windturbines[R]. Rep. No. NSF/RA-760228, Corvallis, Oregon: Oregon StateUniversity,,1976.
    [15]. Eggleston, D. M.,Stoddard, F. Wind turbine engineering design[M]. New York:Van Nostrand Reinhold Co. Inc.,1987.
    [16]. Spera, D. A. Wind turbine technology[M]. United States: American Society ofMechanical Engineers,1994.
    [17]. Snel, H. Review of the present status of rotor aerodynamics[J]. Wind Energy,1998,1(1):46-69.
    [18]. Brown, R. E. Rotor wake modeling for flight dynamic simulation ofhelicopters[J]. AIAA journal,2000,38(1):57-63.
    [19]. Gaonkar, G. H.,Peters, D. Review of dynamic inflow modeling for rotorcraftflight dynamics[J]. VERTICA.,1988,12(3):213-242.
    [20]. Joglekar, M.,Loewy, R. An actuator-disc analysis of helicopter wake geometryand the corresponding blade response[R]. Report69–66, Fort Eustis:USAAVLABS Tech,1970.
    [21]. Carpenter, P. J.,Fridovich, B. Effect of a rapid blade-pitch increase on thethrust and induced-velocity response of a full-scale helicopter rotor[R]. NACATN3044, National Advisory Committee for Aeronautics,1953.
    [22]. D.M., P.,Peters, D. A. Rotor dynamic inflow derivatives and time constantsfrom various inflow models[A]. Proceedings of9th european rotorcraftforum[C], Italy:Stresa:1983.
    [23]. Pitt, D. M.,Peters, D. A. Theoretical prediction of dynamic-inflowderivatives[J]. Vertica,1981,5(1):21-34.
    [24]. Gaonkar, G. H.,Peters, D. A. Effectiveness of current dynamic-inflow modelsin hover and forward flight[J]. Journal of the American Helicopter Society,1986,31(2):47-57.
    [25]. Peters, D. A.,Cao, W.-M. Finite State Induced Flow Models Part I:Two-Dimensional Thin Airfoil[J]. JOURNAL OF AIRCRAFT,1995,32(2):313–322.
    [26]. Peters, D. A.,He, C. Finite state induced flow models part II:three-dimensional rotor disk[J]. Journal of Aircraft,1995,32(2):323-333.
    [27]. He, C. Development and application of a generalized dynamic wake theory forlifting rotors[D]. Ph.D.Thesis, GEORGIA INSTITUTE OF TECHNOLOGYSchool of Aerospace Engineering1989.
    [28]. Majhi, J. R.,Ganguli, R. Helicopter blade flapping with and without smallangle assumption in the presence of dynamic stall[J]. Applied mathematicalmodelling,2010,34(12):3726-3740.
    [29]. Murakami, Y.,Houston, S. Dynamic inflow modelling for autorotating rotors[J].Aeronautical Journal,2008,112(1127):47-53.
    [30]. Murakami, Y.,Houston, S. Correction of the definition of mass flow parameterin dynamic inflow modelling[J]. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering,2009,223(7):1037-1040.
    [31]. Swift Jr, A. Effects of yawed flow on wind turbine rotors[D]. Ph.D.Thesis,ST.Louis: Washington University School of engineering and applied science1981.
    [32]. Coleman, R. P.,Feingold, A. M.,Stempin, C. W. Evaluation of theInduced-Velocity Field of an Idealized Helicoptor Rotor[R]. NACA-WRL-126,Langley Field,Va: NACA,1945.
    [33]. DEVRIES, O. Comment on the yaw stability of a horizontal-axis wind turbineat small angles of yaw[J]. Wind Engineering,1984,9(1):42-49.
    [34]. Hansen, A. C. Yaw dynamics of horizontal axis wind turbines[R].NREL/TP-442-4822,1617Cole Boulevard,Golden, Colorado80401-3393:NREL,1992.
    [35]. Snel, H.,Schepers, J. Engineering moles for dynamic inflow phenomena[J].Journal of wind engineering and industrial aerodynamics,1992,39(1-3):267-281.
    [36]. Schepers, J.,Snel, H.,Bussel, G. J. W. Dynamic inflow: yawed conditions andpartial span pitch control[R]. ECN-C--95-056, The Netherlands: ECN,1995.
    [37]. Snel, H.,Schepers, J. Investigation and modelling of dynamic inflow effects[R].ECN-RX-93-029, The Netherlands: ECN,1993.
    [38]. Snel, H. Survey of induction dynamics modeling within BEM-like codes-Dynamic inflow and yawed flow modeling revisited[A]. Aerospace SciencesMeeting and Exhibit,39th[C], Reno, NV; UNITED STATES;:2001:72-80.
    [39]. Kecskemety, K. M.,McNamara, J. J. Investigation into the Impact of WakeEffects on the Aeroelastic Response and Performance of Wind Turbines[A].52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference[C], Denver, Colorado:2011.
    [40]. Xiong, L.,Xianmin, Z.,Gangqiang, L., etc. Dynamic Response Analysis of theRotating Blade of Horizontal Axis Wind Turbine[J]. Wind Engineering,2010,34(5):543-560.
    [41]. Sebastian, T.,Lackner, M. A Comparison of First-Order Aerodynamic AnalysisMethods for Floating Wind Turbines[A].48th AIAA Aerospace SciencesMeeting, Orlando, Florida[C]:2010.
    [42]. Meng, F.,Masarati, P.,Van Tooren, M. Free/Open Source Multibody andAerodynamic Software for Aeroelastic Analysis of Wind Turbines[A].Proceedings of the47th Aerospace Sciences Meeting and Exhibit [C], Orlando,FL:2009.
    [43].陈严,刘雄,刘吉辉, etc.动态尾流模型在水平轴风力机气动性能计算中的应用[J].太阳能学报,2008,(10):1297-1302.
    [44].刘雄,张宪民,陈严, etc.基于动态入流理论的水平轴风力机动态气动载荷计算模型[J].太阳能学报,2009,(04):412-419.
    [45]. Suzuki, A. Application of dynamic inflow theory to wind turbine rotors[D].Ph.D.Thesis, Utah: The University of Utah2000.
    [46]. Powles, S. The effects of tower shadow on the dynamics of a horizontal-axiswitn turbine[J]. Wind Engineering,1983,7(1):26-42.
    [47]. Fadaeinedjad, R.,Moschopoulos, G.,Moallem, M. The Impact of TowerShadow, Yaw Error, and Wind Shears on Power Quality in a Wind&DieselSystem[J]. Energy Conversion, IEEE Transactions on,2009,24(1):102-111.
    [48]. Helmis, C.,Papadopoulos, K.,Asimakopoulos, D., etc. An experimental studyof the near-wake structure of a wind turbine operating over complex terrain[J].Solar energy,1995,54(6):413-428.
    [49]. McSwiggan, D.,Littler, T.,Morrow, D. J., etc. A study of tower shadow effecton fixed-speed wind turbines[A]. Universities Power EngineeringConference[C], Padova:2008.
    [50]. Thiringer, T.,Dahlberg, J. A. Periodic pulsations from a three-bladed windturbine[J]. Energy Conversion, IEEE Transactions on,2001,16(2):128-133.
    [51]. Yoshida, S.,Kiyoki, S. Load Equivalent Tower Shadow Modeling forDownwind Turbines[J]. Nippon Kikai Gakkai Ronbunshu B Hen(Transactionsof the Japan Society of Mechanical Engineers Part B)(Japan),2007,19(6):1273-1279.
    [52]. Moriarty, P. J.,Hansen, A. C. Aerodyn theory manual[R].NREL/EL-500-36881,1617Cole Boulevard, Golden, Colorado: NationalRenewable Energy Laboratory,2005.
    [53]. Schmitz, S.,Chattot, J. J. Wind Turbine Blade Aerodynamics of the NRELPhaseVI Rotor Near Peak Power[A].23rd AIAA Applied AerodynamicsConference[C], Toronto, Ontario Canada:2005.
    [54]. Schmitz, S.,Chattot, J.-J. Influence of the vortical wake behind wind turbinesusing a coupled Navier-Stokes/Vortex-Panel methodology[A]. Third MITConference on Computational Fluid and Solid Mechanics[C], MIT:2005.
    [55].吴望一.流体力学[M].北京:北京大学出版社,2004.
    [56]. Chattot, J. J. Helicoidal Vortex Model for Steady and Unsteady Flows[A].42nd AIAA Aerospace Sciences Meeting and Exhibit,23rd ASME WindEnergy Symposium[C], Reno, Nevada:January5-8,2004.
    [57].王国强,董世汤.船舶螺旋桨理论与应用[M].第一版ed.哈尔滨:哈尔滨工程大学出版社,2005.
    [58]. Katz, J.,Plotkin, A. Low-speed aerodynamics[M]. Cambridge University Press,2001.
    [59]. Anderson, J. Fundamentals of aerodynamics[M]. McGraw-Hill New York,1991.
    [60]. Kuethe, A. M.,Chow, C.-Y. Foundations of aerodynamics: bases ofaerodynamic design[M]. New York: Wiley,1976.
    [61]. Weissinger, J. The lift distribution of swept-back wings[R]. Washington DC:National Advisory Committee for Aeronautics,1947.
    [62]. Ginzel, I.,Ludwieg, H. Theory of the Broad-Bladed Propeller[R]. Report ARLR208, London: Aeronautical Research Council,1955.
    [63]. Olsen, A. Optimisation of propellers using the Vortex-Lattice method[D]. Ph.D.thesis, Denmark: Technical University of Denmark Department of MechanicalEngineering, Maritime Engineering2001.
    [64]. Kerwin, J. E.,Lee, C.-S. Prediction of steady and unsteady marine propellerperformance by numerical lifting-surface theory[J]. Transactions Society ofNaval Architects and Marine Engineers,1978,86:218-253.
    [65]. Lan, C. E. A quasi-vortex-lattice method in thin wing theory[J]. Journal ofAircraft,1974,11(9):518-527.
    [66]. Streckwall, H. Application of a Vortex-Lattice Method to Ship Propellers[J].Ship Technology Res,1994,41(1):31-43.
    [67]. Choi, J.-K.,Kinnas, S. A. Prediction of unsteady effective wake by a Eulersolver/vortex-lattice coupled method[J]. Journal of ship research,2003,47(2):131-144.
    [68]. James, R. M. On the remarkable accuracy of the vortex lattice method[J].Computer methods in applied mechanics and engineering,1972,1(1):59-79.
    [69]. Feifel, W. M. Optimization and design of three-dimensional aerodynamicconfigurations of arbitrary shape by a vortex lattice method[A]. A workshopheld at LANGLEY RESEARCH CENTER[C], Hampton, Virginia:1976.
    [70]. Tangler, J. L. The nebulous art of using wind tunnel aerofoil data forpredicting rotor performance[J]. Wind Energy,2002,5(2-3):245-257.
    [71]. Kocurek, J. D. Hover performance methodology at bell helicopter textron[A].Proc.36th Annual National Forum of AHS[C], Washington, DC:1980:80-3.
    [72]. Thresher, R. W.,Wright, A. D.,Hershberg, E. L. A Computer Analysis of WindTurbine Blade Dynamic Loads[J]. Journal of Solar Energy Engineering,1986,108(1):17-25.
    [73]. Robin, G. An aerodynamic analysis of a single-bladed rotor in hovering andlow-speed forward flight as determined from smoke studies of the vorticitydistribution in the wake[R]. Report No.356, Princeton, NJ: PrincetonUniversity,1957.
    [74]. Landgrebe, A. J. An analytical method for predicting rotor wake geometry[J].Journal of the American Helicopter Society,1969,14(4):20-32.
    [75]. Landgrebe, A. J. An analytical and experimental investigation of helicopterrotor hover performance and wake geometry characteristics[R]. Usaamrdl tr71-24,Ft. Eustis: U.S. Army Air Mobility Research and DevelopmentLaboratory USAAMRDL, June1971.
    [76]. Egolf, T. A.,Landgrebe, A. J. Helicopter Rotor Wake Geometry and ItsInfluence in Forward Flight. Volume1. Generalized Wake Geometry and WakeEffect on Rotor Airloads and Performance[R]. NASA-CR-3726, East Hartford,CT.: NASA,1983.
    [77]. Clayton, B.,Filby, P. Measured effects of oblique flows and change in bladepitch angle on performance and wake development of model wind turbines[A].Proc4th BWEA Wind Energy Conference[C]:Cranfield Institute ofTechnology, March,1982.
    [78]. Grant, I.,Parkin, P.,Wang, X. Optical vortex tracking studies of a horizontalaxis wind turbine in yaw using laser-sheet, flow visualisation[J]. Experimentsin fluids,1997,23(6):513-519.
    [79]. Kocurek, D. Lifting surface performance analysis for horizontal axis windturbines[R]. SERI/STR-217-3163, Golden, CO (USA): Solar Energy ResearchInst,1987.
    [80]. Kocurek, J. D.,Tangler, J. L. A prescribed wake lifting surface hoverperformance analysis[J]. Journal of the American Helicopter Society,1977,22(1):24-35.
    [81]. Marchuk, G. I.,Ruzicka, J. Methods of numerical mathematics[M].Springer-Verlag New York,1975.
    [82]. Coton, F.,Wang, T. The prediction of horizontal axis wind turbine performancein yawed flow using an unsteady prescribed wake model[J]. Proceedings of theInstitution of Mechanical Engineers, Part A: Journal of Power and Energy,1999,213(1):33-43.
    [83]. Haans, W.,Kuik, G. v.,Bussel, G. v. The Inverse Vortex Wake Model: AMeasurement Analysis Tool[J]. Journal of Solar Energy Engineering,2008,130(3):031009.1-14.
    [84]. Haans, W.,Sant, T.,van Kuik, G., etc. HAWT near‐wake aerodynamics, Part I:axial flow conditions[J]. Wind Energy,2008,11(3):245-264.
    [85]. Wang, T.,Coton, F. N. A high resolution tower shadow model for downwindwind turbines[J]. Journal of wind engineering and industrial aerodynamics,2001,89(10):873-892.
    [86]. Munduate, X.,Coton, F. N.,Galbraith, R. A. M. An Investigation of theAerodynamic Response of a Wind Turbine Blade to Tower Shadow[J]. Journalof Solar Energy Engineering,2004,126(4):1034-1040.
    [87]. Munduate, X.,Coton, F. N.,Galbraith, R. A. M. An Investigation of theAerodynamic Response of a Wind Turbine Blade to Tower Shadow[J]. Journalof Solar Energy Engineering,2004,126(7):1034-1040.
    [88]. Chattot, J. J. Extension of a Helicoidal Vortex Model to Account for BladeFlexibility and Tower Interference[J]. Journal of Solar Energy Engineering,2006,128(4):455-460.
    [89]. Chattot, J. J. Tower shadow modelization with helicoidal vortex method[J].Computers&Fluids,2008,37(5):499-504.
    [90].徐国华,王适存.前飞状态直升机旋翼的自由尾迹计算[J].南京航空航天大学学报,1997,29(6):648-653.
    [91]. Clark, D. R.,Leiper, A. C. The Free Wake Analysis[J]. Journal of the AmericanHelicopter Society,1970,15(1):3-11.
    [92]. Landgrebe, A. J. An analytical and experimental investigation of helicopterrotor hover performance and wake geometry characteristics[R].0538827, FortEustis, Va: Eustis Directorate, U.S. Army Air Mobility Research andDevelopment Laboratory,, June,1971.
    [93]. Sadler, S. G. A Method for Predicting Helicopter Wake Geometry,Wake-Induced Inflow and Wake Effects on Blade Airloads[A]. AmericanHelicopter Society27th Annual Forum Proceedings[C], Washington,DC:1971.
    [94]. Nagashima, T.,Nakanishi, K. Optimum Performance and Wake Geometry ofCo-axial Rotor in Hover[A]. Proceedings of the7th European RotorcraftForum[C], Aix en Provence, France:1981.
    [95]. Berry, J. D. Prediction of time-dependent fuselage pressures in the wake of ahelicopter rotor[A]. International Conference on Rotorcraft Basic Research[C],College Park, MD,United States:Feb.16-18,1988.
    [96]. Miller, W. O.,Bliss, D. B. Direct periodic solutions of rotor free wakecalculations[J]. Journal of the American Helicopter Society,1993,38(2):53-60.
    [97]. Scully, M. P. Computation of helicopter rotor wake geometry and its influenceon rotor harmonic airloads[R]. ASRL TR178-1, Massachusetts: MassachusettsInstitute of Technology,1975.
    [98]. Johnson, W. A Comprehensive Analytical Model of Rotorcraft Aerodynamicsand Dynamics. Part1. Analysis Development[R]. NASA TM81182, Palo Alto,CA: NASA,1980.
    [99]. Schepers, J.,Snel, H. JOULE2: Dynamic Inflow: Yawed Conditions and PartialSpan Pitch[R]. ECN-C-95-056, Netherlands: Energy Research Center of theNetherlands,1995.
    [100]. Bhagwat, M. J.,Leishman, J. G. Stability, consistency and convergence oftime-marching free-vortex rotor wake algorithms[J]. Journal of the AmericanHelicopter Society,2001,46(1):59-71.
    [101]. Bagai, A.,Leishman, J. G. Rotor free-wake modeling using a pseudo-implicittechnique including comparisons with experimental data[J]. Journal of theAmerican Helicopter Society,1995,40(3):29-41.
    [102]. Bhagwat, M.,Leishman, J. Stability, Consistency and Convergence of TimeMarching Free Vortex Rotor Wake Algorithms[J]. Journal of the AmericanHelicopter Society,2001,46(1):59-71.
    [103]. Sankar, N.,Malone, J.,Tassa, Y. Implicit Conservative Algorithm for Steadyand Unsteady Three-Dimensional Transonic Potential Flows[A]. AIAA5thComputational Fluid Dynamics Conference[C], Palo Alto,CA:1981.
    [104]. Caradonna, F.,Tung, C.,Desopper, A. Finite difference modeling of rotor flowsincluding wake effects[J]. Journal of the American Helicopter Society,1984,29(2):26-33.
    [105]. TAUBER, M.,ARIELI, R. Computation of subsonic and transonic flow aboutlifting rotor blades[R]. AIAA Paper No.79-1667, AIAA,1979.
    [106]. Borland, C.,Rizzetta, D.,Yoshihar, H. Numerical solution of three-dimensionalunsteady transonic flow over swept wings[J]. AIAA Journal,1982,20(3):340-347.
    [107]. S rensen, N.,Hansen, M. Rotor performance predictions using a Navier-Stokesmethod[A]. Proceedings1998ASME Wind Energy Symposium,36th AIAAAerospace Sciences Meeting and Exhibit, AIAA-98-0025, Reno, NV[C]:1998.
    [108]. Duque, E. P. N.,Van Dam, C.,Hughes, S. Navier-Stokes simulations of theNREL combined experiment phase II rotor[A]. Proceedings1999ASME WindEnergy Symposium,37th AIAA Aerospace Sciences Meeting and Exhibit,AIAA-99-0037,[C], Reno, NV:1999.
    [109]. Xu, G.,Sankar, L. N. Computational Study of Horizontal Axis WindTurbines[J]. Journal of Solar Energy Engineering,2000,122(1):35-39.
    [110]. Zahle, F.,S rensen, N. N.,Johansen, J. Wind turbine rotor-tower interactionusing an incompressible overset grid method[J]. Wind Energy,2009,12(6):594-619.
    [111]. Xu, G.,Sankar, L. N. Effects of transition, turbulence and yaw on theperformance of horizontal axis wind turbines[A].19th ASME Wind EnergySymposium and the38th AIAA Aerospace Sciences Meeting[C], Reno,Nevada:2000.
    [112]. Tongchitpakdee, C.,Benjanirat, S.,Sankar, L. N. Numerical Simulation of theAerodynamics of Horizontal Axis Wind Turbines under Yawed FlowConditions[J]. Journal of Solar Energy Engineering,2005,127(4):464-474.
    [113]. Jiménez, á.,Crespo, A.,Migoya, E. Application of a LES technique tocharacterize the wake deflection of a wind turbine in yaw[J]. Wind Energy,2010,13(6):559-572.
    [114].刘凤君,王仲奇.适用于具有弯扭叶片的叶轮机械设计的正问题计算方法[J].工程热物理学报,1990,11(02):169-171.
    [115].王仲奇,杨弘,刘凤君, etc.具有弯扭叶片的燃气透平正问题计算方法[J].航空动力学报,1992,7(02):177:180+197:198.
    [116]. Dunham, J. A parametric method of turbine blade profile design[A]. AmericanSociety of Mechanical Engineers, Gas Turbine Conference and ProductsShow[C], Zurich, Switzerland:1974.
    [117]. Hibbs, B.,Radkey, R. Calculating Rotor Performance with the Revised 'PROP'Computer Code[R]. RFP-3508, Rockwell International, Rocky Flats Plant,Golden, CO: Wind Energy Research Center,1983.
    [118]. Volpe, G.,Melnik, R. The design of transonic aerofoils by a well posed inversemethod[J]. International journal for numerical methods in engineering,1986,22(2):341-361.
    [119]. Giles, M. B.,Drela, M. Two-dimensional transonic aerodynamic designmethod[J]. AIAA journal,1987,25(9):1199-1206.
    [120]. ZEDAN, M.,SEHRA, A. Application of an inverse design procedure to axialcompressor blading[A]. ASME,35th International Gas Turbine andAeroengine Congress and Exposition[C], Brussels, Belgium:1990.
    [121]. Selig, M. S.,Tangler, J. L. Development and application of a multipoint inversedesign method for horizontal axis wind turbines[J]. Wind Engineering,1995,19(2):91-106.
    [122]. Selig, M. S.,Coverstone-Carroll, V. L. Application of a Genetic Algorithm toWind Turbine Design[J]. Journal of Energy Resources Technology,1996,118(1):22-28.
    [123]. Zhu, Z.,Chan, Y. A new genetic algorithm for aerodynamic design based ongeometric concept[A]. Proceedings of the29th Fluid Dynamics Conference[C],Albuquerque:1998.
    [124]. Quagliarella, D.,Della Cioppa, A. Genetic algorithms applied to theaerodynamic design of transonic airfoils[J]. Journal of Aircraft,1995,32(4):889-891.
    [125]. Jameson, A. Aerodynamic design via control theory[J]. Journal of ScientificComputing,1988,3(3):233-260.
    [126]. Reuther, J.,Jameson, A. Aerodynamic shape optimization of wing andwing-body configurations using control theory[A]. AIAA33rd AerospaceSciences Meeting[C], Reno, Nevada:1995.
    [127]. Jameson, A.,Martinelli, L.,Pierce, N. Optimum aerodynamic design using theNavier–Stokes equations[J]. Theoretical and Computational Fluid Dynamics,1998,10(1-4):213-237.
    [128]. Lee, Y.-T.,Luo, L.,Bein, T. W., etc. Direct Method for Optimization of acentrifugal compressor vaneless diffuser. Discussion. Closure[J]. Journal ofturbomachinery,2001,123(1):73-80.
    [129]. Lampart, P. Numerical Optimisation of a High Pressure steam TurbineStage[A]. International conference CMFF on fluid technology[C], Berlin:2004.
    [130].王红涛.汽轮机低压排汽系统内部流动及其气动优化设计研究[D].博士论文,上海交通大学2011.
    [131]. Oyama, A.,Liou, M.-S.,Obayashi, S. Transonic axial-flow blade optimization:Evolutionary algorithms/three-dimensional Navier-Stokes solver[J]. Journal ofpropulsion and power,2004,20(4):612-619.
    [132].汪光文,周正贵,胡骏.基于优化算法的压气机叶片气动设计[J].航空动力学报,2008,23(07):1218-1224.
    [133].刘小民,张文斌.采用遗传算法的离心叶轮多目标自动优化设计[J].西安交通大学学报,2010,44(01):31-35.
    [134]. Shahrokhi, A.,Jahangirian, A. Airfoil shape parameterization for optimumNavier–Stokes design with genetic algorithm[J]. Aerospace science andtechnology,2007,11(6):443-450.
    [135]. Ferguson, J. Multivariable curve interpolation[J]. Journal of the ACM (JACM),1964,11(2):221-228.
    [136]. Schoenberg, I. J. ON SPLINE FUNCTIONS[R]. MRC Report625, WisconsinUniversity of Wisconsin,1966.
    [137]. Bézier, P. Numerical control; mathematics and applications[M]. London: JohnWiley&Sons,1972.
    [138].周凡贞,冯国泰,蒋洪德.采用基于神经网络及遗传算法的叶轮机械叶片三维优化设计方法开发高载荷透平动叶片(英文)[J]. Chinese Journal ofAeronautics,2003,16(04):198-202.
    [139]. Gordon, W. J.,Riesenfeld, R. F. Bernstein-Bézier methods for thecomputer-aided design of free-form curves and surfaces[J]. Journal of theACM (JACM),1974,21(2):293-310.
    [140]. Hampsey, M. Multiobjective Evolutionary Optimisation of Small WindTurbine Blades[D]. Ph.D.Thesis, University of Newcastle2002.
    [141]. Oyama, A.,Liou, M.-S.,Obayashi, S. Transonic axial-flow blade shapeoptimization using evolutionary algorithm and three-dimensionalNavier-Stokes solver[A].9th AIAA/ISSMO Symposium and Exhibit onMultidisciplinary Analysis and Optimization[C], Atlanta, GA:2002.
    [142].郑金,李国君,任光辉, etc.考虑压差影响的非轴对称端壁成型方法及在环形叶栅中的应用[A].2006中国工程热物理学会热机气动力学学术会议[C],重庆,2006.
    [143]. Versprille, K. J. Computer-aided design applications of the rational B-splineapproximation form[D]. Ph.D.Thesis, Syracuse University Electrical1975.
    [144]. Tiller, W. Rational B-splines for curve and surface representation[J]. IEEECOMP. GRAPHICS APPLIC.,1983,3(6):61-64.
    [145]. Piegl, L. A geometric investigation of the rational bezier scheme of computeraided design[J]. Computers in industry,1986,7(5):401-410.
    [146]. Piegl, L.,Tiller, W. Curve and surface constructions using rational B-splines[J].Computer-Aided Design,1987,19(9):485-498.
    [147]. Piegl, L. On the use of infinite control points in CAGD[J]. Computer AidedGeometric Design,1987,4(1):155-166.
    [148]. Piegl, L. Modifying the shape of rational B-splines. part2: surfaces[J].Computer-Aided Design,1989,21(9):538-546.
    [149]. Piegl, L. Modifying the shape of rational B-splines. Part1: curves[J].Computer-Aided Design,1989,21(8):509-518.
    [150]. Piegl, L.,Tiller, W. A menagerie of rational B-spline circles[J]. IEEE ComputerGraphics and Applications,1989,9(5):48-56.
    [151]. Ghaly, W. S.,Mengistu, T. T. Optimal geometric representation ofturbomachinery cascades using NURBS[J]. Inverse Problems in Science andEngineering,2003,11(5):359-373.
    [152]. Hasenj ger, M.,Sendhoff, B.,Sonoda, T., etc. Single and Multi-ObjectiveApproaches to3D Evolutionary Aerodynamic Design Optimisation[A].Proceedings of6th World Congress on Structural and MultidisciplinaryOptimization[C], Rio de Janeiro, Brazil: May-03June,2005.
    [153]. Wilson, R.,Lissaman, P. Applied aerodynamics of wind power machines[R].PB-238595, Corvallis (USA): Oregon State Univ.,1974.
    [154]. Wilson, R. Wind-turbine aerodynamics[J]. Journal of wind engineering andindustrial aerodynamics,1980,5(3-4):357-372.
    [155]. Bak, C. Sensitivity of Key Parameters in Aerodynamic Wind Turbine RotorDesign on Power and Energy Performance[J]. Journal of Physics: ConferenceSeries,2007,75(1):012008.1-10.
    [156]. S rensen, J. N. Aerodynamic Aspects of Wind Energy Conversion[J]. AnnualReview of Fluid Mechanics,2011,43:427-448.
    [157]. Johansen, J.,Madsen, H. A.,Gaunaa, M., etc.3D Navier-Stokes simulations ofa rotor designed for maximum aerodynamic efficiency[A]. Proceedings of the42nd AIAA Aerospace Sciences Meeting and Exhibit[C], Reno, Nevada:2007.
    [158]. Morgan, C.,Garrad, A. The design of optimum rotors for horizontal axis windturbines[A]. Proceedings of the10th BWEA Wind Energy ConversionConference[C], London, England:1988.
    [159]. Fuglsang, P. L.,Madsen, H. A. A design study of a1MW stall regulatedrotor[R]. Report Riso-R-799(EN), Roskilde, Denmark: Riso NationalLaboratory,1995.
    [160]. Fuglsang, P.,Madsen, H. A. Optimization method for wind turbine rotors[J].Journal of wind engineering and industrial aerodynamics,1999,80(1-2):191-206.
    [161]. Fuglsang, P.,Thomsen, K. Cost optimization of wind turbines for large-scaleoffshore wind farms[R]. Report Riso-R-1000(EN), Roskilde, Denmark: RisoNational Laboratory,1998.
    [162]. Fuglsang, P.,Thomsen, K. Site-Specific Design Optimization of1.5--2.0MWWind Turbines[J]. Journal of Solar Energy Engineering,2001,123(4):296-303.
    [163]. Fuglsang, P.,Bak, C.,Schepers, J. G., etc. Site-specific Design Optimization ofWind Turbines[J]. Wind Energy,2002,5(4):261-279.
    [164]. Bulder, B.,Nederland, E. C. Theory and user Manual BLADOPT[R]. ReportECN-C-01-011, Netherlands: ECN,2001.
    [165]. Bulder, B.,Hendriks, H.,Langen, P. v., etc. The ICORASS feasibility study[R].ECN-E--07-010, Netherlands: ECN,2013.
    [166]. Xudong, W.,Shen, W. Z.,Zhu, W. J., etc. Shape optimization of wind turbineblades[J]. Wind Energy,2009,12(8):781-803.
    [167]. Benini, E.,Toffolo, A. Optimal Design of Horizontal-Axis Wind TurbinesUsing Blade-Element Theory and Evolutionary Computation[J]. Journal ofSolar Energy Engineering,2002,124(4):357-363.
    [168]. Betz, A.,Helmbold, H. B. Zur Theorie stark belasteter Schraubenpropeller[J].Ing. arch,1932,3(1):1-23.
    [169]. Vries, O. d. Fluid dynamic aspects of wind energy conversion[R].AD-A-076315, Neuilly-sur-Seine, France: North Atlantic Treaty Organization,Advisory Group for Aerospace Research and Development,1979.
    [170]. Shen, W. Z.,N RKAER S RENSEN, J.,Mikkelsen, R. Tip loss correction foractuator/Navier-Stokes computations[J]. Journal of Solar Energy Engineering,2005,127(2):209-213.
    [171].陈云程等编.风力机设计与应用[M].北京:机械工业出版社,1990.
    [172].马文生.多级轴流压气机气动优化设计研究[D].博士论文,清华大学2009.
    [173].王会社,袁新,岳国强, etc.弯曲叶片积叠线对压气机叶栅气动性能的影响[J].航空动力学报,2002,(03):327-331.
    [174]. Lamb, H. Hydrodynamics[M]. New York: Dover,1932.
    [175]. Rankine, W. J. M. A manual of applied mechanics[M]. London: CharlesGriffin,1872.
    [176]. Vatistas, G. H.,Kozel, V.,Mih, W. A simpler model for concentrated vortices[J].Experiments in Fluids,1991,11(1):73-76.
    [177]. Scully, M. P. A method of computing helicopter vortex wake distortion[R].ASRL TR138-1, Massachusetts: Massachusetts Institute of Technology,1967.
    [178]. Leishman, J. G.,Bagai, A. Challenges in understanding the vortex dynamics ofhelicopter rotor wakes[J]. AIAA Journal,1998,36(7):1130-1140.
    [179].李春华.时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析[D].博士论文,南京航空航天大学2007.
    [180]. Bhagwat, M. J. Transient Dynamics of Helicopter Rotor Wakes Using aTime-accurate Free-vortex Method[D]. Ph.D.Thesis, University of MarylandCollege Park2001.
    [181]. Mahalingam, R.,Komerath, N. M. Measurements of the near wake of a rotor inforward flight[A]. Proceedings of the36th Aerospace Sciences Meeting&Exhibit[C], Reno, NV:1998.
    [182]. Cotel, A. J.,Breidenthal, R. E. Turbulence inside a vortex[J]. Phys Fluids,1999,11(10):3026.
    [183]. Chigier, N.,Corsiglia, V. Tip vortices-velocity distributions[R]. NASA TMX-62,087, USA: NASA,1971.
    [184]. Sullivan, J. P. An Experimental Investigation of Vortex Rings and HelicopterRotor Wakes Using a Laser Doppler Velocimeter[D]. Ph.D.Thesis,Massachusetts Institute of Technology1973.
    [185]. Squire, H. The growth of a vortex in turbulent flow(Vortex growth in turbulentincompressible flow)[J]. Aeronautical Quarterly,1965,16(4):302-306.
    [186]. F rsching, H. W. Grundlagen der Aeroelastik[M]. Berlin Heidelberg:Springer-Verlag,1978.
    [187]. Leishman, J. G. Principles of Helicopter Aerodynamics[M]. Cambridge:Cambridge Univ Pr,2006.
    [188]. Haans, W.,Sant, T.,Van Kuik, G., etc. Measurement and modelling of tipvortex paths in the wake of a hawt under yawed flow conditions[A].43rdAIAA Aerospace Sciences Meeting and Exhibit[C], Reno, Nevada:10-13January,2005:136-145.
    [189]. Haans, W.,Sant, T.,van Bussel, G. Stall in yawed flow conditions: A correlationof blade element momentum predictions with experiments[J]. Journal of SolarEnergy Engineering,2006,128(4):472.
    [190]. Haans, W.,Sant, T.,van Kuik, G., etc. Velocity Measurements in the Near Wakeof a Horizontal Axis Wind Turbine[A].31st European Rotorcraft Forum[C],Florence, Italy:September,2005.
    [191]. Somers, D. M. Design and Experimental Results for S809airfoil[R].NREL/SR-440-6918, Golden, Colorado: National Renewable EnergyLaboratory,1997.
    [192]. Tangler, J. L.,Drive, R.,Matilda, P. NREL Airfoil Families for HAWTs[R].NREl/TP-442-7109, Golden, Colorado: National Renewable EnergyLaboratory,1995.
    [193]. Tongchitpakdee, C. Computational studies of the effects of active and passivecirculation enhancement concepts on wind turbine performance[D].Ph.D.Thesis, Georgia Institute of Technology Aerospace Engineering2007.
    [194]. Bhagwat, M. J. Mathematical Modeling of the Transient Dynamics ofHelicopterRotor Wakes Using a Time-Accurate Free-Vortex Method[D].Ph.D.Thesis, University of Maryland College Park2001.
    [195].忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].北京:国防科技大学出版社,1989.
    [196]. Lomax, H.,Pulliam, T. H.,Zingg, D. W. Fundamentals of computational fluiddynamics[M]. Springer Berlin,2001.
    [197]. Hand, M. M.,Simms, D. A.,Fingersh, L. J., etc. Unsteady AerodynamicsExperiment Phase VI: Wind Tunnel Test Configurations and Available DataCampaigns[R]. Golden, Colorado: National Renewable Energy Laboratory,2001.
    [198]. Simms, D. A.,Hand, M. M.,Fingersh, L. J., etc. Unsteady AerodynamicsExperiment Phases II–IV Test Configurations and Available DataCampaigns[R]. NREL/TP-500-25950,1617Cole Boulevard,Golden, Colorado:National Renewable Energy Laboratory,1999.
    [199]. Shen, X.,Zhu, X.,Du, Z. Optimization of Wind Turbine Blades Using LiftingSurface Method and Genetic Algorithm[A]. Proceedings of ASME TurboExpo2011[C], Vancouver, British Columbia, Canada:ASME,2011.
    [200]. Prandtl, L.,Tietjens, G. Fundamentals of Hydro-and Aeromechanics[M].McGraw-Hill Book Co., Inc,1934.
    [201]. Wright, R. H.,Barger, R. L. Wind-tunnel lift interference on sweptback wingsin rectangular test sections with slotted top and bottom walls[M]. NationalAeronautics and Space Administration,1966.
    [202]. Panofsky, H. A. The atmospheric boundary layer below150meters[J]. AnnualReview of Fluid Mechanics,1974,6(1):147-177.
    [203]. Freris, L. L. Wind energy conversion systems[M]. UK: Prentice Hall,1990.
    [204]. Giguere, P. and M. Selig, Design of a tapered and twisted blade for the NRELcombined experiment rotor[R]. NREL/SR-500-26173,1617ColeBoulevard,Golden, Colorado: National Renewable Energy Laboratory,1999.
    [205]. Deb, K.,Pratap, A.,Agarwal, S., etc. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. Evolutionary Computation, IEEE Transactions on,2002,6(2):182-197.
    [206]. Deb, K. Multi-Objective Optimization. In Search Methodologies, Burke, E.K.,Kendall, G., Eds. Springer US:2005;273-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700