用户名: 密码: 验证码:
小波理论在系统建模与控制中的若干应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波函数及小波变换近乎完美的数学特性使得它日益受到控制科学家和工程人员的青睐,1991年瑞典控制学家Astr(?)m就提出小波函数逼近将成为系统建模、辨识和控制的最新研究方法。其后十几年间,随着小波理论的不断发展和完善,小波在系统辨识和控制中的应用越来越广,部分地解决了系统辨识与控制科学面临的一些问题。本文在前人研究成果的基础上,结合笔者本人的研究工作,给出了小波理论在系统辨识和控制领域中的若干应用算法,主要内容包括:
     1.严格证明了白噪声经正交尺度(小波)分解和重构后方差减半的定理,因此可对辨识数据进行多分辨正交尺度分解和重构,尽可能消除噪声对数据的污染,提高辨识精度。在该定理的基础上,笔者将有显式表达的非正交小波作为基函数逼近系统的脉冲响应过程,并经多尺度变换消噪,取得了良好的辨识效果。
     2.根据面向控制的辨识理论,推导出一种基于小波分解的线性时变系统在线分频辨识算法,对于工作频段时变的控制系统(如随动系统)可在线调整各子频段的辨识模型加权系数,以期模型在当前工作频段附近尽可能接近真实系统。
     3.小波逼近在非线性动态系统辨识中的应用。一是利用小波时频局部化的特点,提出一种尺度因子可调的自适应小波核最小二乘支持向量机,并应用于非线性系统的黑箱建模。二是推导出了等距分布节点的三次B样条函数公式,以此为尺度函数结合B样条高通滤波器系数构造了三次B样条小波,并以B样条小波为基函数,逼近Hammerstein模型中的非线性环节。
     4.基于小波逼近的控制策略研究。一是采用离散仿射小波网络逼近一类非匹配不确定性非线性系统,并结合Popov超稳定性理论设计控制参数的自适应律,克服了普通神经网络固有的训练算法计算量大,容易陷入局部极小,收敛性难以保证等缺陷。二是提出以小波函数为基函数应用于预测函数控制,由小波的尺度伸缩特性,根据预测时域内逼近精度要求的高低调整基函数的尺度因子,既保证了预测时域整体优化目标和逼近精度要求,又尽可能减少了基函数个数,实现了优化变量的集结,同时改善了系统的动态特性,增强了系统抑制外部干扰的能力。
     5.在正交小波(尺度)分解和重构算法的基础上,得到等效于小波分解和重构
The perfect mathematical characteristics of wavelets and wavelets transform are winning more and more favor from control scientists and engineering personnel. In 1991, Astrom---a Sweden control scientist advanced that wavelets approximation would become the latest researching method in system modeling, identification and control. During the later period over one decade, following with the development of wavelet theory, wavelet has been broadly applied in system identification and control, and partially resolved some problems in system identification and control science. On the base of predecessors's achievements and my research work, some algorithms about the application of wavelets theory in system modeling and control are presented in this paper , the main contents as follows:1. The paper strictly proved the theorem that variance of white noise would decrease to 50% through orthogonal scale (wavelet) decomposition and reconstruction, therefore identification data would be decomposed and reconstructed through orthogonal scaling transform in order to filter noises of data. According to the theorem, non-orthogonal wavelets is taken as basis function of impulse response process and noises is removed through multi-scale decomposition, and good identification result is achieved.2. According to the theory of control-relevant identification, a band-wise identification method online to the linear time-varying system based on wavelets decomposition is presented. According to the method, weighting coefficients of sub-band decomposed by wavelets can be adjusted online if the time-varying system's work band is changed, so the time-varying control request can be implemented by weighting coefficients. The method is fit to some system especially such as servo system.3. The application of wavelets approximation to nonlinear dynamic system. The first is that an adaptive least square wavelets support vector machine whose scale parameter is adjusted and its application to nonlinear system identification. The second is that 3-order B-spline function formula of equidistant points is deduced, and 3-order B-spline wavelet is constructed via B-spline High-Pass filter, then B-spline wavelet is taken as basis function and applied to approximate to the nonlinear part of a Hammerstein model.
    4. Some research of control strategy based on wavelet approximation. The first is that discrete affine wavelet network is applied to approximation of nonlinear system with mismatched uncertainties, and adaptive control law is designed according to the theory of hyperstability, so the drawbacks of BP network such as large computation online, local minimum aiid uncertain convergency are overcomed. The second is that a predictive functional control using wavelets as basis function is presented. Because wavelets has the properties of compact support and multi-scale analysis, the number of wavelets functions and their location are set flexibly according to the system's controlling precision and the different requirements of approximation precision at different intervals of the horizon. So the target function of the whole horizon are optimized and some important points are emphasized, meanwhile the optimal parameters have been aggregated. 5. On the base of orthogonal wavelet (scaling function) decomposition and reconstruction algorithm, the paper presents the equivalent wavelet (scaling function) FIR filter, and provides two theorems about filter coefficients. The filters are applied to solve the next two problems: The first, aiming at that the relay is sensitive to noise and extracting characteristic parameters from output values polluted by noises is hard, applying equivalent wavelet filter to eliminate noise online from feedback signal, and denoising of output wave-forms offline using wavelet thresholding to extract characteristic parameters easily . The second, in order to eliminate measurement noises in system's outputs for dynamical matrix control (DMC), output measurements are filtered by wavelets denoising online, and the reduction coefficient of reference locus in DMC is automatically adjusted according to wavelets correlation values, so system's anti-disturb (such as load disturb) ability is enhanced.6. Based on operation matrix via orthogonal wavelets, two simplified control algorithm based on orthogonal wavelets transform are presented: The first, the integral operation matrix of Harr wavelets is applied to approximation of hierarchical control of linear large scale systems, the differential equations are converted into a set of linear algebraic equations, so complicated calculous operation has been transformed to simple matrix operation, and computation has been reduced effectively. The second, an iterative learning control algorithm based on Harr wavelets is presented to address the terminal control
    problem of a linear time-varying systems. By employing the orthogonality and boundary values of Harr wavelets, the differential equations are converted into a set of linear algebraic equations, and the control problem is simplified to finding Harr wavelets coefficients of control variables, so the method avoids computing the state transfer matrix, and the coefficients are determined iteratively by steepest descent learning algorithm.
引文
1.夏德钤.自动控制理论,北京:机械工业出版社,1998.
    2.刘豹.现代控制理论(第二版).北京:机械工业出版社,1998.
    3.冯培悌.系统辨识.杭州:浙江大学出版社,1999.
    4.吴旭光.系统建模和参数估计—理论与算法.北京:机械工业出版社,2002.
    5.陈翰馥,郭雷.现代控制理论的若干进展及展望.科学通报,1998,43(1):1-7.
    6.陈翰馥.作为基础研究的自动控制理论.自动化学报,2002,28(增1):1-3.
    7.郑南宁,贾新春,袁泽剑.控制科学与技术的发展及其思考.自动化学报,2002,28(增1):7-17
    8. Bennett S. A brief history automatic control. IEEE Control Systems, 1996, 16(3):17-25.
    9. Zhiwen Z, Leung H. Identification of linear systems driven by chaotic signals using nonlinear prediction. IEEE Trans. on Circuits and systems Ⅰ, 2002, 49(2): 170-180.
    10. Siettos C I, Bafas G V, Boudouvis A G. Truncated Chebyshev series approximation of fuzzy systems for control and nonlinear system identification. Fuzzy Seta and Systems, 2002, 126(1): 89-104.
    11. Liu R H, Zhang Q, Yin G. Asymptotically optimal controls of hybrid linear quadratic regulators in discrete time. Automatica, 2002, 38(3): 409-419.
    12.Albert B, Francis J N. A First Course in Wavelets with Fourier Analysis.北京:电子工业出版社,2002.
    13.Mallet S G著,杨力华等译.信号处理的小波导引.北京:机械工业出版社,2002.
    14. Morlet J, Arens G, Foruteau E, et al. Wave propagation and sampling theory and complex waves. Geophysics, 1982, 47(2): 222-236.
    15. Grossmann A, Morlet J. Decomposition of Hardy function into square integrable wavelets of constant shape. SIMA J. Math. Anal, 1984, 15: 723-726.
    16. Meyer Y. Ondelettes et functions splines. Seminaire EDP. Ecole Polytechnique, Paris, 1986.
    17. Mallet S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans on PAMI, 1989, 11(7): 674-693.
    18. Mallet S G. Multifrequency channel decomposition of images and wavelet models. IEEE Trans on Acoustics, Speech and Signal Processing, 1989, 37(12): 2091-2109.
    19. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans on Information Theory, 1990, 36(5): 961-1005.
    20.程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998.
    21.杨福生.小波变换的工程分析与应用.北京:科学出版社,2000.
    22.成礼智,王红霞,罗永.小波的理论与应用.北京:科学出版社,2004.
    23.徐晨,赵瑞珍,甘小冰.小波分析.应用算法.北京:科学出版社,2004.
    24. Wickerhauser V. INRIA lectures on wavelets packet algorithms, 1991.
    25. Kim W. Wavelets packet based optimal subband coder. IEEE Proc. ICASSP, 1995: 2225-2228.
    26.罗晓,陈耀,孙优贤.基于小波包分解的非线性时变系统辨识.高校应用数学学报 A,2004,19(1):51-56.
    27.向前,林春生,龚沈光.基于小波包变换的非高斯噪声信号结构分析.电子与信息学报,2004,26(1):60-64.
    28.冷劲松,程正兴.α尺度多重正交小波包的L~2(R)分解.工程数学学报,2004,21(3):391-396.
    29.高协平,张钹.区间小波神经网络(Ⅰ)—理论与实现.软件学报,1998,9(3):217-221.
    30.高协平,张钹.区间小波神经网络(Ⅱ)—性质与模拟.软件学报,1998,9(4):246-250.
    31. Goodman T N T, Lee S L. Wavelets of multiplicity. Trans. on Amer. Math. Soc., 1994, 342: 307-324.
    32. Chui C K, Lian J. A study on orthonormal multiwavelets. J. Appl. Numer. Math., 1996, 20: 273-298.
    33. Hardin D P, Marasovich J A. Biorthogonal multiwavelets on [-1,1]. Appl. Comp. Harm. Anal. 1999, 7: 34-53.
    34.高西奇,甘露,邹采荣.多小波变换的理沦及其在图像处理中的应用.通信学报.1999,20(11):55-60.
    35.杨守志,杨晓忠.α尺度紧支撑双正交多小波.应用数学,2001,14(3):92-96.
    36. Wim S. The lifting Scheme: A New Philosophy in Biorthonormal Wavelets Constructions. Proc. SPIE 2569, 1995: 68-79.
    37.邓集锋.第二代小波变换及其遥感图像应用.中国图象图形学报,1998,3(2):100-104.
    38.全海英,杨源,张懿等.一种基于第二代小波变换的图像融合算法.系统工程与电子技术,2001,23(5):74-76.
    39.郑军,诸静.基于第二代小波变换的电力设备图像特征提取.电工技术学报,2003,18(6):98-102.
    40.段晨东,姜洪开,何正嘉.一种基于信号相关性检测的自适应小波变换及应用.西安交通大学学报,2004,38(7):674-677.
    41. Donoho D L. Digital ridgelet transform via rectopolar coordinate transform. Stanford Univ, Stanford CA, Tech Rep, 1998.
    42. Donoho D L. Orthonormal ridgelets and linear singularities. SIMA J. Math. Anal., 2000, 31(5): 1062-1099.
    43.焦李成,侯彪,刘芳.基函数网络逼近:进展与展望.工程数学学报,2002,19(1):21-36.
    44.侯彪,刘芳,焦李成.基于脊波变换的直线特征检测.中国科学E,2003,33(1):65-73.
    45.肖亮,韦志辉,吴慧中.基于图像内容的脊波变换域数字水印模型和算法研究.电子与信息学报,2004,26(9):1440-1449.
    46. Donoho D L, Duncan M R. Digital curvelet transform: Strategy, implementation and experiments. Proc SPIE, 2000: 12-29.
    47. Starck J L, Candes E, Donoho D L. The curve transform for Image denoising. IEEE Trans on Image Processing, 2002: 670-684.
    49.倪林,Y Miao.一种更适合图像处理的变换—Curevelet变换.计算机工程与应用,2004,28:21-26.
    50. Devote R A, Konyagin S V, Temlyakov V N. Hyperbolic wavelet approximation. Constr. Approx, 1998, 14: 1-26.
    51.蒋艳杰.混和光滑函数类的双曲波逼近.华北电力大学学报,2004,31(5):102-104.
    52. Benveniste A, Astrom K J. Meeting the challenge of computer science in the industrial application of control. Automatica, 1993, 29(5): 1169-1175.
    53.Daubechies I著,李建平,杨万年译.小波十讲.北京:国防工业出版社,2004.
    54.崔锦泰著,程正兴译.小波分析导论.西安:西安交通大学出版社,1995.
    55. Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. of Math. Anal., 1984, 15(4):723-736.
    56. Jaffard S. Pointwise smoothness, two-microlocalization and wavelet coefficients. Publications Matematiques, 1991, 35: 155-168.
    57. Duffin R J, Schaeffer A C. A class of nonharmonic Fourier Series. Trans Amer. Math. Soc., 1952, 72: 341-366.
    58. Chui C K, Shi X. Inequalities of Littlewood-Paley type for frames and wavelets. SIAM J. Math. Anal., 1991.
    59. Daubechies I. Orthonormal bases of compactly supported wavelet. Comm. on Pure and Appl. Math., 1988, 41: 909-996.
    60. Strang G. Wavelet and dilation equations, a brief introduction. SIAM Review, 1989, 31: 614-627.
    61. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. On Inform. Theory, 1990, 36: 961-1005.
    62. Meyer Y. Ondelettes, functions splines et analyses graduees, Lectures given at the University of Torino, Italy, 1986.
    63. Meyer Y. Wavelets and Operators. Advanced mathematics. Cambridge University Press, 1992.
    64. Mallat S G. Multiresolution approximations and wavelet orthonormal bases of L~2(R). Trans. Amer. Math. Soc., 1989, 315: 69-87.
    65. Battle G. A block spin construction of ondelettes. Part Ⅰ: Lemarie function. Comm. Math. Phys., 1987, 110: 601-615.
    66. Mallat S G. An efficient image representation for multiscale analysis. In Proc. of Machine Vision Conference, Lake Taho, February 1987.
    67.张莉,周伟达,焦李成.子波核函数网络.红外与毫米波学报,2001,20(3):223-227.
    68. Mintzer F. Filters for distortion-free two-band multiscale filter banks. IEEE Trans. Acoust., Speech, and Signal Proc., 1985, 33(3): 626-630.
    69. Vetterli M. Filter banks allowing perfect reconstruction. Signal Proc., 1986, 10(3): 219-244.
    70. Daubechies I, Sweldens Wim. Factoring wavelet transforms lifting steps. J. Fourier Anal., 1998, 4(3): 245-267.
    71. Albert B. A class of basis in L~2 for the sparse representation of integral operators. SIMA J. Math. Anal., 1993, 24: 159-184.
    72. Strela V. Mulitiwavelet: Theory and Applications, Doctoral thesis, Massachusetts Institute of Technology, 1996.
    73. Plonka G, Strela V. From Wavelets to Multiwavelets, Mathematical Methods for curves and surfaces Ⅱ. Vandebilt University Press, Nashville, TN, 1998.
    74. Chui C K, Lian J. A study on orthonormal multi-wavelets. J. Appl. Numer. Math., 1996, 20: 273-298.
    75.石钧.多小波:理论和应用.信号处理,1999,15(4):329-334.
    76.程正兴,张玲玲.多小波分析与应用.工程数学学报,2001,18(1):99-107.
    77. Candes E J, Donoho D L. Ridgelets: a key to higher-dimensional intermittency. Technical report, Stanford Univ., 1999.
    78. Candes E J. Rideglets: estimating with ridge function. Technical report, Stanford Univ., 1999.
    79. Candes E J. Monoscale rideglets for the representation of images with edges. Technical report, Stanford Univ., 1999.
    80. Zhang Qinghua, Benveniste A. Wavelet Networks. IEEE Trans. on Neural Networks, 1992, 3(6): 889-898.
    81. Szu H H, Telfer B. Neural Network adaptive wavelets for signal representation and classification. Optimal Engineering, 1992, 31(9): 1907-1916.
    82. Pati Y C, Krishnaprasad P S. Analysis and Synthesis of Feedforward Neural Networks Using Discrete Affine Wavelet Transformations. IEEE Trans. on Neural Networks, 1993, 4(1): 73-85.
    83. Bakshi B R, Stephanopouios G. Wave-Net: a Multiresolution, Hierarchical Neural Network with Localized Learning. AIChE Journal, 1993, 39(1): 57-80.
    84. Zhang Jun, Walter G G, Miao Yubo, etc. Wavelet Neural Networks for Function Learning. IEEE Trans. on Signal Processing, 1995, 43(6): 1485-1496.
    85. Mukherjee S, Nayar S. Automatic Generation of RBF Networks Using Wavelets. Pattern Recognition, 1996, 29(8): 1369-1383.
    86.吴耀军,陶宝祺,袁慎芳.B样条小波神经网络.模式识别与人工智能,1996,9(3):228-233.
    87. Zhang Qinghua. Using Wavelet Network in Nonparametric Estimation. IEEE Trans. on Neural Networks, 1997, 8(2): 227-236.
    88.丁宇新,沈雪勤.基于能量密度的小波神经网络.计算机学报,1997,20(9):832-838.
    89. Sanner R M, Slotine J E. Structurally dynamic wavelet networks for adaptive control of robotic systems. Int. J. Control, 1998,70(3): 405-421.
    90.李向武,韦岗.基于小波网络的动态系统辨识方法及应用.控制理论与应用,1998,15(4):494-500.
    91.何振亚,李文化,蔚承建.用于信号逼近的自适应时延小波神经网络.电子科学学刊,1998,20(5):604-610.
    92. Reyneri L M. Unification of Neural and Wavelet Networks and Fuzzy Systems. IEEE Trans. on Neural Networks, 1999, 10(4): 801-814.
    93.王海斌,黄显林,王永富等.优化小波神经元的辨识算法.控制与决策,1999,14(4):438-442.
    94. Fang Y, Chow T W S. Orthogonal Wavelet Neural Networks Applying to Identification of Winer Model. IEEE Trans. on Cir.& Sys., 2000, 47(4): 591-594.
    95.陈哲,冯天瑾.小波分析与神经网络结合的研究进展.电子科学学刊,2000,22(3):496-504.
    96.黄德先,金以慧.基于小波神经网络的通用多变量非线性系统辨识算法和应用.控制理论与应用,2001,18(增):63-68.
    97.杨宜康,万少松,宋安军等.基于时-频图和小波神经网络的时间序列鲁棒建模方法.模式识别与人工智能,14(2):225-230.
    98.吕立华,宋执环,李平.用改进的多分辨小波网络辨识非线性动态系统.浙江大学学报(工学版),2002,36(1):36-39.
    99.张茁生,刘贵忠,张宗平.基于小波框架的自适应径向基函数网络.自动化学报,2002,28(2):229-237.
    100. Wan J, Xu D M, He Y Y. Multidimensional Wavelet Networks Based on a Tensor Product Structure. Journal of Control Theory and Applications, 2002, 19(3): 381-386.
    101.张兆宁,喻文焕,郁惟庸.动态非线性连续时间系统的小波神经网络辨识.控制理论与应用,2002,19(5):709-712.
    102.丁勇,刘守生,胡寿松.一种广义小波神经网络的结构及其优化方法.控制理论与应用,2003,20(1):125-128.
    103.李德强,黄莎白.基于最小二乘法的小波网络在系统辨识中的应用.控制与决策,2003,18(3):378-381.
    104. Wei H L, Billings S A. A unified wavelet-based modeling for non-linear system identification: the WANARX model structure. Int. J. Control, 2004, 77(4): 351-366.
    105. Chen Y M, Chen B S, Shiau F Y. Adaptive Wavelet Network Control Design for Nonlinear Systems. Proc. Natl. Sci. Counc. ROC(A), 1998, 22(6): 783-799.
    106. Rying E A, Bilbro G, Lu J C. Focused Local Learning with Wavelet Neural Networks. IEEE Trans. on Neural Networks, 2002, 13(2): 304-318.
    107.丁哨卫,王煦法,冯焕清等.基于自组织联想小波神经网络的QRS波聚类方法.中国科学技术大学学报,1998,28(3):310-315.
    108.胡寿松,周川,王源.基于小波神经网络的组合故障模式识别.自动化学报,2002,28(4):540-543.
    109.王树亮,王东,冯珍.基于小波包—神经网络故障诊断系统研究.南京理工大学学报,2004,28(4):356-359.
    110. Huang J N, Lay S R, Maechler M, et al. Regression Modeling in Back-Propagation and Projection Pursuit Learning. IEEE Trans. on Neural Networks, 1994, 5(3): 342-353.
    111.徐长江,宋文忠.基于小波变换估计传递函数.自动化学报,1997,23(6):835-838.
    112.杨晓艺,汪远征,文成林.信号序列经小波变换后的相关性分析.河南大学学报(自然科学版),2000,30(4):30-34.
    113.张建刚,张杰,毛剑琴.一种基于多分辨分析的脉冲响应辨识方法.自动化学报,1998,24(5):652-657.
    114.叶吴,王桂增,方崇智.一种基于脉冲响应函数的正交小波变换系数的故障检测方法.控制理论与应用,1999,16(1):6-10.
    115.郑军,颜文俊,诸静.基于小波逼近和尺度变换的非参数辨识方法.控制与决策,2004,19(10):1190-1193.
    116. Li H S, Mao J Q, Zhang F T, et al. An Algorithm for Impulse Response Identification Based on Fixed Scale Orthogonal Wavelet Packet Transform. Acta Automatica Sinica, 2003, 29(2): 242-251.
    117. Palavajjhala S, Motard R L, Joseph B. Process Identification Using Discrete Wavelet Transforms: Design of Prefilters. AIChE Journal, 1996, 42(3): 777-790.
    118. Carrier J F, Stephanopoulos G. Wavelet-Based Modulation in Control-Relevant Process Identification. AIChE Journal, 1998, 44(2): 341-360.
    119.宋执环,王海清,李平.采用小波分解的分频段加权辨识方法.自动化学报,2001,27(2):285-287.
    120.龙图景,孙政顺,李春文.基于小波分解的系统辨识最优实验设计.系统仿真学报,2002,14(8):1067-1069.
    121.余世明,冯浩,王守觉.基于小波和最小绝对误差的去噪抗扰动辨识方法.电子学报,2003,31(2):1-4.
    122.吕立华,宋执环,李平.一种基于小波多分辨分析的多率采样系统辨识方法.控制理论与应用,2002,19(2):225-234.
    123.王群仙,陈增强,袁著祉.基于小波网络的非线性系统建模与控制.控制与决策,1999,14(4):359-363.
    124.王海清,宋执环,李平.采用正交小波网络的非线性系统辨识方法.控制理论与应用,2001,18(2):200-204.
    125. Ghanem R, Romeo F. A wavelet-based approach for model and parameter identification of non-linear systems. Int. J. Non-Linear Mechanics, 2001, 36: 835-859.
    126. Wang W S, Ding J. Wavelet Network Model and Its Application to the Prediction of Hydrology. Nature and Science, 2003, 1(1): 67-71.
    127.汪辉,皮道映,孙优贤.支持向量机在线训练算法及其应用.浙江大学学报(工学版),2004,38(12):1642-1646.
    128.崔万照,朱长纯,保文星等.最小二乘小波支持向量机在非线性系统辨识中的应用.西安交 通大学学报,2004,38(6):562-566.
    129.丁锋,杨家本,徐用懋.广义时变系统的最小二乘辨识算法.清华大学学报(自然科学版),2000,40(3):86-89.
    130.赵勇,冯纯伯.时变最优化信息处理技术及其应用Ⅰ—基本思想与系统辨识.东南大学学报,1999,29(4):1-6.
    131.张天德,张承慧.一类基于先验信息的时变参数辨识算法.工程数学学报,2000,17(1):17-21.
    132.丁肇红,袁震东.时变系统的FIR模型辨识及设计变量.华东师范大学学报(自然科学版),2002.2:1-6.
    133.丁肇红,袁震东.时变系统的Laguerre模型辨识及设计变量.华东师范大学学报(自然科学版),2002,4:22-28.
    134. Chen S, Billings S A, Grant P M. Non-linear system identification using neural networks. Int. J. of Control, 1990, 51: 1191-1214.
    135. Yingwei L, et al. Identification of time-varying nonlinear systems using minimal radial basis function neural networks. IEE Proc. Control Theory Applications, 1997, 144: 202-208.
    136. Iatrou M, et al. Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks. IEEE Trans. on Neural Networks, 1999, 10(2): 327-339.
    137.邹高峰,王正欧.基于回归神经网络的非线性时变系统辨识.控制与决策,2002,17(5):517-521.
    138.舒怀林.基于PID神经网络的非线性时变系统辨识.自动化学报,2002,28(3):474-476.
    139. Doroslovacki M I, Fan H. Wavelet-Based Linear System Modeling and Adaptive Filtering. IEEE Trans. on Signal Processing, 1996, 44(5): 1156-1167.
    140.张拥军,赵光宙.基于小波分解的时变系统辨识方法研究.浙江大学学报(工学版),2000,34(5):541-543.
    141. Ghanem R. A Wavelet-Based Approach for The Identification of Linear Time-Varying Dynamical Systems. Journal of Sound and Vibration, 2000, 234(4): 555-576.
    142.刘建春,王正欧.一种非线性时变系统小波网络辨识算法.系统工程学报,2002,17(5):401-406.
    143.徐亚兰,陈建军,胡太彬.系统模态参数辨识的小波变换方法.西安电子科技大学学报(自然科学版),2004,31(2):281-285.
    144. Kasparian V, Batur C, Zhang H, et al. Davidon Least Square - Based Learning Algorithm for Feedward Neural Networks. Neural Networks, 1994, 4(4): 661-670.
    145. Eykhoff D. System Identification-Parameter and State Estimation. New York: John Wiley & Sons, INC, 1974.
    146. Ljung L. System Identification: Theory for. the User. Englewood Cliffs, NJ: Prentice-Hall, 1987.
    147.徐长江,宋文忠.基于小波变换估计频域模型误差界.控制理论与应用,1997,14(1):117-121.
    148.徐长江,宋文忠.基于小波变换的分频集员辨识.控制与决策,1997,12(1):49-52.
    149.李弼程,罗建书.小波分析及其应用.北京:电子工业出版社,2003.
    150. Haykin S. Adaptive filter theory. Englewood Cliffs, USA: Prentice Hall, 2002.
    151. Yao L. Genetic algorithm based identification of nonlinear systems by sparse Volterra filters. IEEE Signal Process Magazine, 1999, 47(12): 3433-3435.
    152.张晔,任广辉,孙翠莲.B-样条小波基的构造与实现算法.哈尔滨工业大学学报,1996,28(6):27-31.
    153. Grenier Y. Time-dependent ARMA modeling of nonstationary signals. IEEE Trans. on Acoust, Speech, Signal Processing, 1983, 31(8): 899-911.
    154. Yingwei L, et al. Identification of time-varying nonlinear systems using minimal radial basis function neural networks, IEE Proc. Control Theory Applications, 1997, 144: 202-208.
    155. Iatrou M, et al. Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks. IEEE Trans. on Neural Networks, 1999, 10: 327-339.
    156.王群仙,李少远,李俊芳.小波分析及其在控制中的应用.控制与决策,2000,15(4):385-389.
    157. Chen C F, Hsiao C H. Harr wavelet method for solving lumped and disturbuted-parameters systems. IEE Proc. Control Theory Appl., 1997, 144(1): 87-94.
    158. Chen C F, Hsiao C H. Wavelet approach to optimizing dynamic systems. IEE Proc. Control Theory Appl., 1999, 146(2): 213-219.
    159.高桂革,顾幸生,曾宪文.基于小波变换的线性定常分布参数系统最优逼近控制.控制理论与应用,2001,18(增):106-110.
    160. C.H.Hsiao, W.J.Wang. State analysis and optimal control of linear time-varying systems via Haar wavelets. Optimal Control Applications and Methods, 1998, 19(6): 423-433.
    161.张成科.基于小波的混和 H2/H∞鲁棒控制数值解法.华东理工大学学报,2004,30(3):332-335.
    162.高桂革,顾幸生,曾宪文.Harr小波运算矩阵与性质在分布参数系统控制中的应用.华东理工大学学报,2004,30(4):458-461.
    163. Lee J H, Chikkula Y, Yu Z, et al. Improving computational efficiency of model predictive control algorithm using wavelet transformation. Int. J. Control, 1995, 61(4): 859-883.
    164.丁斗章,顾幸生.基于小波变换的一阶线性变参数分布参数系统预测控制.华东理工大学学报,2004,30(3):328-331.
    165.解三明,吴沧浦,赵纯均.大规模系统两层递阶控制的直接分解算法.信息与控制,1997,26(1):12-16.
    166. Delyon B, Juditsky A, Benvensite A. Accuracy analysis for wavelet approximation. IEEE Trans. on Neural Networks, 1995, 6(2): 332-348.
    167.诸静等.智能预测控制及其应用.杭州:浙江大学出版社,2002.
    168. Astrom K J, Wittenmark B. Adaptive Control. NewYork: Addison-Wesley Publishing.Company, 1989.
    169. Narendra K S, Annaswamy A M. Stable Adaptive Systems. Englewood Cliffs: Prentice Hall, 1989.
    170. Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control. Wiley Interscience, 1995.
    171.谢新民,丁锋.自适应控制系统.北京:清华大学出版社,2002.
    172.刘山,吴铁军.一种基于小波逼近的稳定直接自适应控制算法.自动化学报,1997,23(5):636-640.
    173.施阳,严卫民,徐德民.一类非匹配不确定性非线性系统子波网络稳定自适应控制.控制与决策,1999,14(3):212-216.
    174.戴宪华.基于神经网络模型的最小预测误差非线性自适应控制器.自动化学报,1999,25(4):504-508.
    175.林辉,戴冠中.迭代学习控制理论进展与挑战.控制理论与应用,1994,11(2):250-255.
    176. Moore K L. Iterative learining control-an expository overeview. Applied and Computational Controls, Signal Processing and Circuits, 1998, 1(2): 151-214.
    177. Xu J X, Qu Z. Robust iterative learning control for a class of nonlinear systems. Automatica, 1998, 34(8): 983-988.
    178.李士勇.模糊控制神经控制和智能控制论.哈尔滨工业大学出版社,1998.
    179.徐敏,林辉.迭代学习控制理论与应用新进展.自动化技术与应用,2003,22(1):4-7.
    180. Kuntze H B, et al. On the predictive functional control of an Elastic Industrial Robot. Proc. 25th CDC Athens Greecl, 1986:1877-1881.
    181. Richalet J, et al. Predictive Funcional Control-Application to Fast and Accurate Robots. IFAC the Wald Congress Munich, FRG, 1987: 251-258.
    182.张泉灵,王树青.基于ARMAX模型自适应预测函数控制.信息与控制,2000,29(5):432-436.
    183.胡家升,潘红华,苏宏业等.预测函数控制系统的闭环性能分析.控制理论与应用,2001,18(5):774-778.
    184.张泉灵,王树青.化学反应器温度跟踪预测函数控制的研究及应用.控制理论与应用,2001,18(4):559-563.
    185.刘钢,范大鹏,李圣怡.预测函数控制及其在火箭炮控制系统中的应用.弹箭与制导学报,2003,23(3):43-45.
    186.潘红华,胡家升,朱森等.一种改进的预测函数控制法.系统工程与电子技术,2003,25(11):1389-1391.
    187.杜晓宁,席裕庚.预测控制优化变量的集结策略.控制与决策,2002,17(5):563-566.
    188.陈新海,李言俊,周军.自适应控制及应用.西安:西北工业大学出版社,1998.
    189.李元诚,李波,方廷健.基于小波支持向量机的非线性组合预测方法研究.信息与控制,2004,33(3):303-307.
    190.蒋静坪.计算机实时控制系统.杭州:浙江大学出版社,1992.
    191.王群仙,李少远,李焕枝等.基于小波网络动态补偿的广义预测控制器.自动化学报,1999,25(5):701-704.
    192.王玉平,蔡元龙,耿中行.基于小波变换的滤波方法.信息与控制,1996,25(8):199-205.
    193. Shensa M J. The discrete wavelet transform: wedding the a trous and Mallat Algorithms. IEEE Trans. on Signal Processing, 1992, 40(10): 2464-2482.
    194.傅瑜,徐晨.紧支集双正交小波及其对应的FIR滤波器的一种构造方法.现代电子技术,1996,2:7-9.
    195.谢长珍.二维正交不可分的小波滤波器.河南科学,2003,21(5):505-508.
    196.李建平,严中洪,唐远炎.小波低通滤波器系数的普遍性构造.工程数学学报,2002,19(1):61-67.
    197.杨建伟,程正兴,郭秀兰.紧支撑二元正交小波滤波器的构造.应用数学学报,2004,27(2):246-253.
    198.蔡超,丁明跃,周成东等.小波域中的双边滤波.电子学报,2004,32(1):128-131.
    199. Donoho D L. De-Noising by Soft-Thresholding. IEEE Trans. on Information Theory, 1995, 41(3): 613-627.
    200.杜浩藩,丛爽.基于MATLAB小波去噪方法的研究.计算机仿真,2003,20(7):120-122.
    201.段晨东,何正嘉.第二代小波降噪及其在故障诊断中的应用.小型微型计算机系统,2004,25(7):1341-1342.
    202.孟军,徐国政,黄瑜珑.基于小波变换的高压开关柜监测信号消噪方法.清华大学学报,2001,41(9):48-50.
    203.王立欣,诸定秋,蔡维铮.局部放电在线监测中基于小波变换的阈值消噪算法研究.电网技术,2003,27(4):46-49.
    204.曲天书,戴逸松,王树勋.基于SURE无偏估计的自适应小波阈值去噪.电子学报,2002,30(2):266-268.
    205. Donoho D L, Jonostone I M. Wavelet Shrinkage: Asymptiotia. Journal of the Royal Statistical Society Series(B), 1995, 57: 301-369.
    206. Sankur B, Guler E C, Kahya Y P. Multiresolution Biological Transient Extraction Applied Respireatory Crackles. Comp. in Biol. and Medicine, 1996, 26(1): 25-39.
    207. Pasti L, Walczak B, Massart D L, et al. Optimization of signal denoising in discrete wavelet transform. Chemometrics and Intelligent Laboratory Systems, 1999, 48: 21-34.
    208.张磊,潘泉,张洪才等.小波域滤波阈值参数c的选取.电子学报,2001,29(3):400-402.
    209.高建波,杨恒,胡鑫尧等.基于最大熵原理的小波去噪方法.光谱学与光谱分析,2001,21(5):620-622.
    210.赵瑞珍,屈汉章,宋国乡.基于小波系数区域相关性的阈值滤波算法.西安电子科技大学学报,2001,28(3):324-327.
    211.柴天佑,张贵军.基于给定的相角裕度和幅值裕度的PID参数自整定新方法.自动化学报,1997,23(2):167-192.
    212. Astrom K J. Toward Intelligent Control[J]. IEEE Control Systems Magazine, 1989, 2: 60-64.
    213.谢元旦,吴胜.PID继电整定几种算法的比较.控制与决策,1993(2):20-24.
    214.张玉磷,陈伟民,杨建春等.小波变换自适应滤波器及在主动噪声控制中的应用.控制与决策,2002,17(1):107-110.
    215. Popov V M. Hyperstability of control systems. Springer Verlag, 1973.
    216.刘有飞.阶梯式模块多变量动态矩阵控制控制器在常压塔加热炉中的应用.信息与控制,2002,31(6):508-512.
    217.冯国楠,于睿.一类微处理机控制最优自适应转台伺服系统.自动化学报,1989,15(3):193-199.
    218.孙明玮,陈增强,袁著祉.基于小波分频设计的自适应PID控制器.南开大学学报(自然科学),2000,33(2):48-52.
    219. Tomizuka M et al. Synchronization of two motion control axes under adaptive feedforward control. Trans.of the ASME, 1992, 114(6): 196-203.
    220.郭维.一类非线性系统广义预测控制研究.南京理工大学博士学位论文,2002.
    221.吕伟杰.小波网络与多模型自适应控制理论的研究.天津大学博士学位论文,2002
    222.魏荣.小波分析在非线性系统控制中应用的若干问题研究.南京理工大学博士学位论文,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700