用户名: 密码: 验证码:
低温下混凝土力学性能的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土的力学性能一直是学术界和工程界长期关心的问题,而混凝土的强度和变形又是混凝土力学性能中最重要的特性。随着近年来冬季施工在全国的迅速开展,混凝土在低温下的力学性能开始受到人们的重视,特别是南水北调西线工程中高寒强震地区的水工结构问题的研究,都与低温下混凝土的力学性能直接有关,它直接关系到在低温下结构的实际承载力以及安全状况。长期以来,国内外学者对混凝土及其构件在常温条件下的各种力学性能进行了比较系统而详尽的研究,提出了在各种受力情况下的破坏准则和本构模型,取得了大量的研究成果,并应用到工程实际当中。但是,由于混凝土材料组成结构的复杂性以及受外界荷载和其它因素的影响,对混凝土的力学性能还不能说完全准确掌握,特别是低温情况下混凝土的力学性能。混凝土在低温下的抗压强度、抗拉强度如何变化,弹性模量、峰值应变在低温条件下有什么样的发展规律,低温下和常温条件下各个力学指标有什么差异等问题。为此,本文针对混凝土在低温下的力学性能进行了试验,探讨了混凝土在低温条件下强度与变形的变化规律,为工程设计提供参考。
     论文的主要研究工作与成果如下:
     1.分析研究了混凝土的强度与变形以及前人提出的各种本构关系,探讨了混凝土的强度准则以及混凝土在各种受力情况下的破坏形态。
     2.主要研究了低温对混凝土的强度与变形的影响。采用液压试验机和使用低温冷冻室,做了20组60个单轴受压试验和20组60个单轴受拉试验,得出了混凝土的受压和受拉应力—应变曲线、抗压强度与养护龄期以及抗拉强度与养护龄期的关系曲线。
     3.通过对实验数据的分析,得出强度参数随温度的变化规律,以及温度对弹性模量、峰值应变的影响。在低温条件下混凝土拉压应力—应变曲线形状与常温下曲线形状相似。
     4.在常温下一般不需考虑温度对混凝土性能影响。但若混凝土在养护期内没有达到抗冻临界强度受到低温作用,其强度将降低。试验还表明,当混凝土强度达到受冻临界强度后,随着负温值的增大其强度缓慢增长,弹性模量也有缓慢增长。混凝土应力达到峰值时的应变随负温值的增大而变小。应力—应变曲线形状随负温值的增大变得高而窄,曲线的下降段比常温陡直,混凝土的延性变差,脆性增大。
The mechanical property of the concrete has always been a critical problem in the academic fields. However, the strength and deformation are most important property among all the mechanical capabilities of the concrete. With the rapid development of the winter construction, the mechanical performance under low temperature comes to draw people's attentions for it has close relationship with the practical load and safety status of the structure under the low temperature.. During the decades, scholars in China and aboard have carried out comparatively systematic and elaborate study on all the mechanical performance of the concrete and its structure under normal temperature and point out failure Criterion and constitutive models in the different conditions, they have acquired great achievements and applied it in the engineering practice. But people still don't master the mechanical property of the concrete comprehensively for the complex conditions, especially, in the low temperature, the mechanical capability ,
     change of tensile and compression strength, elasticity module, the development law of poison ratio, the differential of all the mechanical indexes. To solve those issues, this article makes a full discussion about the strength and changing law of the concrete in the low temperature after carrying out a strict experiment on the mechanical property of the concrete. It provides a reference to the practical design.
    The following is the major research work and results:
    1. Analyzing the relation between the strength and deformation of concrete and all constitutive relations given by the vanguard specialists. Making a detail discussion on the strength guideline of the concrete and damage mode of the concrete of the in the conditions of different loads.
    2.This article focuses on the influence upon the strength and deformation of the concrete in the low temperature. Making use of the transformed pressure test machine and low-temperature refrigerator, 16 groups, 3 per group, uniaxial tensile experiments are carried out. It educed tensile , compression-strain curves of concrete, tensile strength-caring age curves of concrete and compressive strength-caring age curves of concrete.
    S.Throuth the thorough analysis, we can get the changing laws of the strength parameter with the variety of temperature and the temperature influence upon the elasticity module. The tensile and compression -strain curves, in the low temperature
    
    
    conditions, are similar to the ones in the normal temperature. All kinds of physical and mechanical properties don't change the original constitutive relation.
    4. Generally, we don't have to consider the temperature influence upon the concrete performance. But during the caring age , if the concrete don't experience the low temperature action of frost-resisting critical strength, its strength will decrease. The experiment also shows that after the concrete strength reach the frost-resisting critical strength, its strength and elasticity module will increase slowly with the decrease of the temperature. Only when the concrete strength comes to the peak value, the strain will reduce with the decrease of the temperature. The shape of stress-strain curves will become high and narrow with the decrease of the temperature. The descending part of the curves are much sharper than the ones under the normal temperature. The ductility of the concrete will also get worse and the brittleness will increase.
引文
[1] 李东升,金正浩,苏加林等.混凝土冬季施工.北京:中国水利水电出版社,2001,9.
    [2] 曲烈.低温下纤维增强混凝土的强度与韧性.河南建材,2000,(1):15-19.
    [3] Robinson, G. S. Behavior of concrete in biaxial compression. Proceedings of ASCE, Struc. Div, Feb. 1967: 71-86.
    [4] Kupfer, H., Hilsdorf, H. K. Behavior of concrete under biaxial stresses. Journal of ACI, 1969,66 (8): 656-666.
    [5] Newman, J. B. Apparatus for testing concrete under multiaxial states of stress. Magazine of Concrete Research, 1974, 26 (89): 221-238.
    [6] Van Mier, J. G. M. Strain-softening of concrete under multiaxial Loading Conditions, Doctorial Thesis. Eindhven University of Technology The Netherlands, 1984.
    [7] Bugukozturk, O. Nonlinear analysis of reinforced concrete structure, Computer and Structure, Vol. 7, 1977.
    [8] Mills, L. L., Zimmerman, R. M. Compressive strength of concrete under multiaxial loading conditions Journal of ACI, 1970: 802-807.
    [9] Rosenthal, I., Glucklich, J. Strength of plain concrete under biaxial stress. Journal of ACI, 1970: 903-914.
    [10] Schickert, G, Winkler H. Versuchsergebnisse zur Festigkeit und Verformung von Beton bei mehraxialer Druckbean spruchung. Deutscher Ausschuss fur Stahlbeton Heft 277, 1977.
    [11] Bresler B, Pister K. S. Strength of concrete under combined stresses. Journal of ACI, 1958:321-346.
    [12] 王敬忠.三轴拉压强度试验和混凝土破坏准则的研究.清华大学硕士学位论文,1989.
    [13] 王传志,过镇海,张秀琴等.二轴三轴受压混凝土强度试验研究,重型预应力混凝土水压机研究.北京:清华大学出版社,1988.
    [14] 过镇海,张秀琴等.混凝土应力-应变全曲线的试验研究.建筑结构学报,1982,(1):1-12.
    [15] 过镇海,张秀琴.混凝土受拉应力-应变全曲线的试验研究.建筑结构学报,1988,(4):45-53.
    [16] 袁志芬,王正中,赵斌.混凝土非线性本构模型的构建.西北农林科技大学学报(自然科学版),2001,29(3):111-114.
    [17] 朱伯龙,董振祥.钢筋混凝土非线性分析.上海:同济大学出版社,1985.
    [18] Sargin, M. Stress-strain relationship for concrete analysis of structural concrete section. Study No. 4, Solid Mechanics Division University of Waterloo Ontario, Canada, 1971.
    [19] Saenz L P. Discussion of a paper by Desayi and Krishnan, Equation for the stress-strain curve of concrete. ACI, 1964, 61(9):381-393.
    
    
    [20] Murray D. W., Chitnuyanondh L., and Aghaky et al. Concrete plasticity theory for biaxial stress analysis. [J]. Eng. Mech. Div., ASCE, Vol. 105, No. EM6, Dec. 1979.
    [21] 江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学科技出版社,1994.
    [22] 阮怀宁,殷宗泽.水工混凝土强度和应力应变关系[J].河海科技进展,1993,13(4):28-36.
    [23] Hognestad E. et al. Concrete stress distribution in ultimate strength design. Journal of ACI,1984.
    [24] Peterson, P. E., Crack growth and development of fracture zones in plane concrete and similar materials. Lund Institute of Technology 1981.
    [25] 江见鲸,冯乃谦.混凝土力学.陕西科学科技出版社,1991.
    [26] 过镇海,王传志,张秀琴等.混凝土的多轴强度试验和破坏准则研究.见:清华大学抗震抗爆工程研究室 主编.混凝土力学性能的试验研究.北京:清华大学出版社,1996:111-130.
    [27] Willam, K. J., Warnke, E. P. Constitutive models for triaxial behavior of concrete, ACSE Seminal on Concrete Structures Subjected to Triaxial Stresses. Bergamo Paper (3) 1, Bergamo, Italy, May, 1974.
    [28] Ottosen, N. S., Constitutive model for short-time loading of concrete. Journal of Engng. Mech. Div. ASCE, Vol, 105, No. EM1, Feb. 1979.
    [29] Hsieh, S. S., Ting, E. C., Chen, W. F. An elastic-fracture model for concrete. Proceeding of 3~(rd) Engineering Mechanics Div Special Conference ASCE, 1979:437-440.
    [30] Podgorski, J. General failure criterion for isotropic media. ASCE EM2. Vol. 111, 1985.
    [31] Kotsovos, M. D. A mathematical description of the strength properties of concrete under generalized stress. Magazine of Concrete Research, Vol. 31, No. 108, Sept. 1979.
    [32] 王敬忠.三轴拉压强度试验和混凝土破坏准则的研究.[硕士论文].北京:清华大学,1989.
    [33] Shah S. P. et al. Complete stress—strain curves for Steel Fiber Reinforced Concrete in uniaxial tension and compression testing and test methods fiber concrete composites. RILEM Symposium 1978.
    [34] Ngo, D., Scordelis, A. C. Finite element analysis of reinforced beam ACI Journal, Vol. 64, March, 1967.
    [35] Ottosen, N. S. A failure criterion for concrete journal of the Engng. Mech. ASCE, Vol. No. EM4, August, 1977.
    [36] Zienkiewiez, O. C., Owen, D. R. H., Phillips, D. V., et al. Finite element method in analysis of reactor vessels nuclear engineeringand design, 20, 1972.
    [37] Suidan, M., Schnobrich, W. C. Finite element analysis of reinforced concrete, Journal of Structural Division, ASCE, Vol. 99, ST10, October, 1973.
    [38] Petersson, P. E. Crock growth and development of fracture zones in plane concrete and simihr material. Lund Institute of Technology 1984.
    [39] Bugukozturk, O. Nonlinear analysis of reinforced concrete structure. Computer and structure, vol. 7, 1977.
    
    
    [40] Chen, W. F., Suzuki, H. Constitutive models for concrete. Computer and Structure, vol. 12, 1980.
    [41] 刘西拉.弹塑性力学.清华大学土木工程系讲义,1989.
    [42] Bazant Z. P., Bhat P. D. Endochronic theory of inelasticity and failure of concrete Proceeding of ASCE, EM4, Vol. 102, 1976.
    [43] 范镜泓,高芝晖.非线性连续介质力学基础.重庆大学出版社,1987.
    [44] 黄斗才主编.混凝土冬期施工实用手册.北京:水利水电出版社,1993.
    [45] C.A.米罗诺夫.混凝土冬季施工理论与方法.项玉璞等译.北京:建筑工业出版社,1982.
    [46] 涂逢祥.欧美国家的冷天施工.北京:中国建筑工业出版社,1980.
    [47] 胡鑫凡,尹德文等.南水北调西线第一期工程施工设计.人民黄河,2001,(10):32-33.
    [48] 朱卫中.负温混凝土科学技术研究反思-献给中国寒冷地区冬施技术交流网成立十周年.低温建筑技术,1994.
    [49] 王淑琴,仇宝玉.混凝土早期受冻监界强度浅谈.混凝土,2000,(4):-54.
    [50] Marzouk.,H.M.,张珍秀.高强混凝土在低温时的性能.国外建材科技,1991,12(4):21-26.
    [51] 过镇海,张秀琴.后退受拉应力-应变全曲线的试验研究.建筑结构学报,1988,(4):45-53.
    [52] Reinhardt H. W., Cornelissen H. Post-peak cyclic behavior of concrete in uniaxial tensile and compressive loading Cement and concrete research 1984, 14:263-270.
    [53] Copalaratnam V. S., Surendra P. S. Softening response of plain concrete in direct tension. ACI Journal, 1985, 82(3): 310-323.
    [54] 混凝土结构设计规范 (GBJ10-89).北京:中国建筑工业出版社,1989.
    [55] 张晓东,仲伟群.高强混凝土的力学性能.哈尔滨建筑大学学报.1996,29(3):62-68.
    [56] 林同炎.结构混凝土手册.北京:中国铁道出版社,1991.
    [57] Monfore, G. E., and Lentz, A. E. Physical properties of concrete at very low temperatures. Bull. Res. Dept. Portld. Cem. Ass., No. 145, May, 1962, pp: 33-39.
    [58] Rostasy, F. S., Schneider, U., Wiedemann, G. Behavior of mortar and concrete at extremely low temperatures. Cem, Concr, Res., Vol. 9, March 1979, pp: 365-376.
    [59] Goto, Y., Miura, T. Mechanical properties of concrete at very low temperatures. Proc. 21st Jpn Congr. Mat. Res., Tokyo, Oct. 1977, PP: 157-159.
    [60] Hobbs, D. W. The strength and deformation of concrete under short-term loading. A review, Cement and Concrete Association Technical Report 42. 484, 1973, 27 pp.
    [61] 杨讯.高强混凝土的抗拉应力—应变全曲线.上海铁道学院学报,1995,16(4):1-6.
    [62] 顾培英,陈迅捷,葛洪.高性能混凝土本构关系研究.水利水运科学研究,1999,(3):241-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700