用户名: 密码: 验证码:
吊杆式拱架渡槽(桥)抗震性能分析与经济性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震时各类建筑物的破坏是导致人民生命财产巨大损失的主要原因,也是抗震工作的主要研究对象。在大工业区和大城市,由于地震间接引起的次生灾害,有时比地震直接造成的损失还大。世界上大多数国家的政府对生命线工程的抗震性能都有明确的要求。各国的工程技术人员在工程设计时积极应用和努力寻找各种有效的抗震措施,其中对各种拱式支承结构的动力性能的研究也是热点之一。吊杆式拱架作为一种新型拱式支承结构在陕西省石头河东干渠汤峪渡槽(桥渡结合工程)设计中首创应用。它与常规的下承式拱架支承结构的最大区别在于它的两道下弦杆设置了四道断缝,从而使下弦杆失去对拱脚水平力的约束作用。由于它是一种新型支承结构,目前国内外在工程上成功运用的实例较少,人们对它的有些特性还有待进一步揭示,例如它的抗震性能及技术经济性问题。本文试图就上述的这两大方面的内容,从以下三个角度进行了初步研究:
     1、纵槽向抗震性能分析
     1)汤峪河吊杆拱支承结构的纵槽向地震效应较小;吊杆式拱架结构动力特性取决于槽墩和主拱圈的刚度,以及结构的整体性,故适当加大构件截面尺寸或提高砼标号,尽量降低结构的建筑高度和重心,在构件连接和变截面处增设梗胁,按照约束混凝土的要求来加强箍筋的配置,增加砼的延性,以克服地震时构件连接和变截面处的应力集中造成的坡坏,并吸收大量的地震能量,从而起到隔震,减震的效果。
     2)设计吊杆式拱架支承结构时,各部分构件应当均匀对称布置。另外,还应注意头道梁拱脚附近截面的尺寸拟定,克服地震内力造成的大偏心受压状态给结构配筋设计增加的困难。
     2、横槽向抗震性能分析
     1)可利用调整构件质量的方法,使得结构的某些构件的地震荷载分布均匀一些。例如,渡槽的非主受力构件尽量采用轻型的材料以减少其吸附的地震荷载。
     2)总的来看,各质点横槽向的地震总名义合外力不大,最大值不到100KN,且发生在支座附近紧临拱脚的节点上。这种动力特性给构件截面的拟定和配筋带许多方便。拱架下弦杆分缝断开的做法对纵、横槽向抗震的最终效果是有利的。
     3、技术经济比较分析
     1)从造价方面看,下弦杆分缝的吊杆式拱架结构相对于下弦杆构造不分缝的竖杆式拱架结构可节约工程造价达到90%以上,吊杆拱的经济效果十分明显。
     2)从施工角度看,吊杆式拱架支承结构对吊车的起吊能力要求低,工艺简单,施工方便,工期短;竖杆式拱架支承结构起顶重量大,对吊车的起吊能力要求高,施工难度大。
The destruction of buildings, which caused by earthquakes is not only the main reason leading to the huge people casualties and heavy losses of properties, but also the main object of anti-seismic study. Sometimes the indirect sub-losses are more serious than the direct losses caused by earthquakes in the big industrial zones and metropolitans. The most governments of countries raise definite requirements to the important lifeline engineering. Engineers and scientists of every country are trying to apply and seek all kinds of anti-seismic measurements, and the study on vibrant characters of sorts of arch-bearing structures is one of the hot points. As a brand new supporting structure, the steeve-arch was firstly used in the design of Tangyu Aqueduct (also used as a bridge) lies on the eastern main ditch of Shitou River, Shaanxi Province. The biggest difference from the usual down bearing arch structure lies in this points that the four tectonic cracks on its two down beans can't constrain the level forces. B
    ecause of new bearing structure and lack of successful engineering examples domestically and abroad, people have to open out its some characters, such as anti-seismic and tech-economic features. On the contents of two sides abovementined ,this paper attempts to do some initial researches from three angles as follows:
    1, The analyses of anti-seismic features on longitudinal direction of the aqueduct
    l)The seismic longitudinal effects are small. The vibrant characters are decided from the structure integration and rigidness of piers and main arch-ring of the aqueduct, so the following measures should be taken in order to weaken and isolate seismic influence: properly broadening the section sizes and adopting the high class concrete, lowering the height and barycenter of building, setting hoop steel bars so as to increase the plasticity of the concrete which can absorb the seismic energy and prevent the damages due to stress centralization on the linkages and changing place.
    2)The structure elements should be laid out symmetrically and uniformly when designing steeve-arch structure, what's more, the reasonable selection of section geometric size near the arch foots of first beams is paid attention to and the arrangement difficulties
    
    
    of steel bar due to the big eccentric pressures
    2 , The analyses of anti-seismic features on transverse direction of the aqueduct
    l)The method of adjusting the elements' mass can be harnessed in order to even the layout of seismic loads. For example, no-supporting elements should be made of light material which attracts less seismic loads.
    2)Generally speaking, seismic combined maximum loads of aqueduct transverse direction is less than 100KN,which present joints near the arch-foot sections. This dynamical features provide conveniences for the selections of section sizes and arranging steel bar. The set of tectonic cracks on down beam is beneficial to anti-seism along the longitudinal and side long of aqueducts.
    3 , The comparing analyses of tech-economic features, anti-seismic features on transverse direction of the aqueduct
    1)From the angle of engineering cost, steeve-arch supporting structure, whose down beam have tectonic cracks, can spend less money up to 90% or more than the usual arch supporting structure, namely steeve-arch supporting structure is very obvious on the side of cost.
    2) From the angle of constructing course, steeve-arch supporting structure requires low-capacity cranes to erect, and simple constructing methods easy to meet. The time spending on construction is short. The usual arch supporting structure requires high-capacity cranes to erect, and complicate constructing methods hard to meet.
引文
[1] 李廉锟.结构力学(上、下册)[M].北京:中国铁道出版社,1990.
    [2] 交通部公路规划设计院主编.公路工程抗震设计规范(JTJ004-89).北京:人民交通出版社,2001.
    [3] 朱林,沙际德.汤峪河渡槽吊杆式拱架支承模式对结构内力的影响[J].西北水资源与水工程,1995(3):40~45.
    [4] 于志秋.有限元静力分析程序 P11D 使用说明(内部资料)[M].1990,6.
    [5] 西北农业大学水利与建筑工程学院主编.吊杆式拱架渡槽设计(内部资料)[M].1997,5.
    [6] 沙际德,余志秋等.石头河东干渠汤峪吊杆式拱架渡槽设计[J].陕西水利专辑.1992增刊:5-10.
    [7] 交通部公路规划设计院主编.公路钢筋砼及预应力桥涵设计规范(JTJ023—85)[M].北京:人民交通出版社,2001,1.
    [8] 徐岳,王亚君等.P.R.C.砼连续梁桥设计[M].北京:人民交通出版社,2001,2.
    [9] 李正农,楼梦麟等.U形渡槽槽体结构风载体形系数的风洞试验研究[J].空气动力学学报,2002,20(2):233-238,245.
    [10] 中华人民共和国冶金部主编,建设部批准.构筑物抗震设计规范及条文说明(GB50191-93)[M].北京:中国计划出版社,1994,6.
    [11] 铁道部第三勘测设计院主编.桥梁设计通用资料[M].北京:中国铁道出版社,1994:131-148.
    [12] 丰定国,王社民.抗震结构设计[M].武汉工业大学出版社,2001,9.
    [13] 徐芝纶.弹性力学简明教程[M].高等教育出版社,1998,4.
    [14] 范立础.桥梁工程,上、下册[M].北京:人民交通出版社,1993,7.
    [15] 姚灵森.桥梁工程,上、下册[M].北京:人民交通出版社,1991,9.
    [16] 王崇礼,徐明枢.铁路桥梁[M].北京:中国铁道出版社,1990,2.
    [17] 袁明武等.SAP84 微机结构分析通用程序说明[M].北京大学出版社,1992,9.
    [18] 李克钏.基础工程[M].北京:中国铁道出版社,1993,9.
    [19] 铁道部专业设计院.铁路桥涵钢筋砼和预应力砼结构设计规范(TBl0002.3-99)[M].北京:中国铁道出版社,2000,1.
    [20] 蒋大骅,马仁爱.钢筋砼构件计算手册[M].上海科学技术出版社,1993,12.
    [21] 顾安邦,孙国柱.公路桥涵设计手册—拱桥,下册[M].北京:人民交通出版社,1994,2.
    [22] 毛瑞祥,程翔云.公路桥梁设计手册—基本资料[M].北京:人民交通出版社,1995,2.
    
    
    [23] 铁道部第三勘测设计院主编.铁路桥涵设计规范(TBJ2—96)[M].北京:中国铁道出版社,1996,5.
    [24] 同济大学数学教研室主编.高等数学,上、下册[M].高等教育出版社,1990,2.
    [25] 同济大学数学教研室主编.线性代数[M].高等教育出版社,1993,9.
    [26] 同济大学数学教研室.数学物理方程[M].高等教育出版社,1979,2.
    [27] 胡肇津.桥梁荷载的横向分布计算[M].人民交通出版社,1993,9.
    [28] 杨文渊,徐牛.桥梁施工工程师手册[M].人民交通出版社,2000,1.
    [29] 铁道部第三工程局.桥涵——铁路工程技术手册,上、下册[M].中国铁道出版社,1992,3.
    [30] 王伯惠,徐风云.柔性墩台梁式桥设计[M].人民交通出版社,1991,2.
    [31] 铁道部第四勘测设计院.世界桥梁最新资料(内部资料)[M].1990,3.
    [32] 交通部第一公路工程总公司主编.桥涵,上、中、下册[M].人民交通出版社,2000,10.
    [33] 中国灾害防御协会,国家地震局震害防御司.中国减灾重大问题研究[M].北京:地震出版社.1992,10.
    [34] 《地震工程概论》编写组编著.地震工程概论[M].北京:科学出版社,1977,3.
    [35] M.M.格里申主编,水利水电科学研究院译.水工建筑物(下卷)[M].北京:水利水电出版社,1986,10.
    [36] 彭利华等.大型渡槽结构振动特性分析[J].河北农业大学学报,2003,26(1):102-105.
    [37] 戴湘和,陈玲等.南水北调中线跨黄河渡槽抗震计算设计[J].长江科学院院报,2002,19(3):52-55.
    [38] 赵瑜,陈长胜等.东深供水工程矩形渡槽优化设计及受力分析[J].长江科学院院报,2002,19(5):31-33,37.
    [39] 郝文秀,徐晓等.大流量斜拉渡槽的合理跨度[J].河北农业大学学报,2002,25(3):106-109.
    [40] 魏建国,李红梅等.氵 名河渡槽隔震结构模态分析[J].河北农业大学学报,2002,25(4):149-151.
    [41] 赵新铭,白新理等.简支预应力 U 型薄壳渡槽槽身整体结构优化[J].港工技术,2002,(3):22-42.
    [42] 王森林,郝文秀等.氵名河渡槽结构静力分析[J].河北农业大学学报,2002,25(4):152-154.
    [43] 郝文秀,徐晓等.氵名河渡槽结构动力分析[J].河北农业大学学报,2002,25(4):155-157.
    [44] 李敏霞,陈厚群等.渡槽结构隔震耗能减振控制的试验研究[J].地震工程与工程振动,2001,22(4):139-143.
    [45] 赵瑜,白新理等.东深供水改造工程渡槽支承结构受力分析[J].灌溉排水 2002,21(3):53-55,74.
    [46] 陈彦文,赵瑜等.大型钢筋混凝土矩形多纵梁渡槽结构设计研究[J].灌溉排
    
    水,2002,21(2):63-66.
    [47] 李宗坤,胡良明等.钢管混凝土拱梁组合结构的动力分析[J].工业建筑,2002,32(8):69-71.
    [48] 杨双应,陈文革等.大型有限元分析程序在桥梁工程中的应用[J].合肥工业大学学报(自然科学版),25(4):583-586.
    [49] 许兆斌.大型管桥钢管制作及安装[J].桥梁建设,2002,(5):63-66.
    [50] 江燕瑜.深圳大坝河跨河输水钢管设计若干问题回顾[J].人民珠江,2002(2):27-28.
    [51] 彭华,高小翠等.大型混凝土渡槽的预应力施加程序优化[J].水电能源科学,2002,20(2):53-55.
    [52] 陈淮,朱文正.大型高架桥横向地震反应分析[J].世界地震工程,2002,18(3):80-84.
    [53] 徐建国,陈淮等.地震作用下大型渡槽结构动态应力计算方法研究[J].水利学报,2002,(7):79-82.
    [54] 李遇春,李大庆等.大型渡槽竖向动力特性及地震动力反应[J].人民珠江,1999(5):45-47.
    [55] 张俊发,刘云贺等.设置叠层橡胶支座梁式渡槽的地震响应分析[J].水利学报,1999,(1):50-54.
    [56] 李遇春,朱暾等.大型高墩渡槽横向地震反应分析[J].武汉水利电力大学学报,1999,32(3):43-46.
    [57] 张俊发,刘云贺等.渡槽-水体系统的地震反应分析[J].西安理工大学学报,1999,15(4):46-51.
    [58] 李遇春,楼梦麟等.大型梁式渡槽竖向地震作用估计[J].土木工程学报,2003,36(2):10-15.
    [59] 王博,李杰等.大型渡槽结构地震响应分析[J].土木工程学报,2001,34(3):29-34.
    [60] 潘旦光,楼梦麟等.多点输入下大跨度结构地震反应分析研究现状[J].同济大学学报,2001,9(10):1213-1219.
    [61] 张俊发,杨迪雄等.空间非对称框架结构偏心扭转地震反应的控制[J].西安建筑科技大学学报(自然科学版),2002,34(4):349-353.
    [62] 潘旦光,楼梦麟等.多点输入下场地非线性地震反应分析计算模型[J].同济大学学报2002,30(12):1411-1416.
    [63] Aabramson H. The Dynamic Behavior of Liquid in Moving Containcrs[R]. NASA, 1966.1~106.
    [64] Abrahamson N A, Schneider J F, Stepp J C. Empirical spatial coherency functions for application to soil-structure interaction analysis [J]. Earthquake Spectra, 1991,7:1-28.
    [65] Atkinson G M, Silva W. Stochastic modeling of California ground motion[J]. Bull Scism Soc A M,2000,90:255-274.
    [66] Bathe K J. Finite clement procedures[M]. New Jersey: Printicc-hall,1996.
    [67] Bogdanoff J L, Goldber J L, Shiff J C. The effect of ground transmission time on the response of
    
    long structures[J]. Bull Seism Soc Am,1965,55:627-640.
    [68] Chopra A.K. Dynamics of Structures[M]. Prentice Hall Inc,1995.
    [69] Chopra A K. Dynamics of structures: Theory and applications to earthquake engineering[M]. New Jersey: Printice-hall,1995.
    [70] Hao H. Response of multiply supported rigid plate to spatially correlated seismic excitation[J]. E E S D, 1991,20:821-838.
    [71] Hao H. Arch response to correlated multiple excitation[J]. . E E S D ,1993,22:389-404.
    [72] Hao H. Effects of spatial variations of ground motion on large multiple-supported structures[R]. Berkeley: Earthquake Engng Research Center, university of California at Berkeley,1989.
    [73] Haroun M A,Tayel M A. Response of tanks to vertical seismic excitation[J].Earthquake Engrg.Stract.Dyn.,1985,13:583-595.
    [74] Harichandran R S, Vamnarcket E H. Stochastic variation of earthquake ground motion space and time[J] J Eng Mech,1986,112:154-174.
    [75] Hindy A, Novak M. Pipeline response to random ground motion[J], J Eng Mech,1980,106:339-360.
    [76] Idriss I M, Lysmer J, Hwang R, et al.QUAN-4, a computer program for evaluation the seismic response of soil structures by variable damping finite element procedures[R]. Berkeley: University of California, 1973.
    [77] Jeo Kwan Kim,Hyum Moo Kohand Im Jong Kwahk. Dynamic response of rectangular flexible fluid containers[J]. Journal of Engineering Mechanics,1996,122(9) :807-817.
    [78] Kareem A,Sun W J. Stochastic response of structures with fluid-containing appendages[J]. Journal of Sound and Vibration,1987,l 19(3) :389-408.
    [79] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support support seismic excitations[J].E E S D, 1992,21:713-740.
    [80] Kiureghian A D, Neuenhofer A. A coherency modei for spatially varying ground motions[J]. E E S D, 1996,25:99-111.
    [81] Lysmer J, Udakat, Tshi C T, et al. Flush, a computer program for approximate 3-D analysis of soil-structure interaction problems[R]. Berkeley: University of California,1975.
    [82] Lysmer J, Kulemeyer R L. Finite dynamic modei for finite media[J]. Journal of Engineering Mechanics(ASCE),1969,95(4) :759-877.
    
    
    [83] Loh C H, Yeh Y T. Spatial variation and stochastic modeling of seismic differential movement[J]. EESD,1988,16:583-596.
    [84] Luco J E, Wong H L. Response of a rigid foundation to a spatially random ground motion[J]. E E S D, 1986,14:891-908.
    [85] Meirovitch L. Elements of Vibration Analysis[M].McCRAW-Hill,1975.
    [86] Meirovitch L. Methods of Analytical Dynamics[M]. Mc Graw HillBook Company,1980.
    [87] M.A. Harounan, M.A. Tayel. Response of tanks to vertical seismic excitations[J]. Earthquake Engineering and Structural Dynamics,1985,13(5) : 583-595.
    [88] Nakayama T, WASHIZU K. Nonlinear analysis of liquid motion in a container subjected to forced pitching oscillation[J].Int J Num Meth Eng,1980,15: 1207-1220.
    [89] Nam S L,Kornkasem W, et al. Analysis of soil-structure interation of major river-crossing bridges[A]. 12th WCEE[M]. Auckland: Elsevier Science Ltd,2000.
    [90] Nazmy A S, Abdel-Ghffor A M. Effect of ground motion spatial variability on the response of cable-stayed bridges[J]. E E S D , 1992,21 :1-20.
    [91] Nazmys,Abdel-Ghaffarma. Three dimentional nonlinear static analysis of cable-stayed bridges[J]. Computer and Structures, 1990(34) :257-271 .
    [92] Pyke R. Nonlinear soil models for irregular cyclic loadings[J]. J Geotech Engng Div,1979,105(6) :715-726.
    [93] Perotti F. Structural response to non-stationary multiple-support random excitation[J]. EES D, 1990, 19:513-527.
    [94] Petrov A A. Seismic Response of extended systems to multiple support excitations[M]. Acapulo: Elsevier Science Ltd,11th W C E E,1996.
    [95] R.A., Ibrahim and A.D.S., Barr. Parametric vibration[J]. Shock and Vibration Digest,1979,10(1) : 15-29.
    [96] Santa-Crusz S, Heredia-Zavoni E, et al. Low-frequency behavior of coherency for strong ground motions in Mexico city and Japan[M]. Auckland: Elsevier Science Ltd,12th W C E E,2000.
    [97] Sir Horace Lamb. Hydrodynamics[M].NewYork:Dover,1945.
    [98] Soyluk K, Dumanoglu A A. Comparison of a synchronous and stochastic dynamic responses of a cable-stayed bridges[J]. Eng Struct,2000,22:435-445.
    [99] Veletsos A S,Tang Y. Dynamics of vertically excited liquid storage tanks[J]. Earthquake
    
    Engrg., 1986,112(6): 1228~1246.
    [100] Zerva A. Response of multi-span beams to spatially incoherent seismic ground motions[J]. E E S D,1990,19:819-832.
    [101] 吕西林,周德源等.建筑结构抗震设计理论与实例[M].上海:同济大学出版社,2002.8
    [102] 吕西林,周德源等.房屋结构抗震设计理论与实例[M].上海:同济大学出版社,1994,8
    [103] 王纪林,向光辉.特殊函数与数学物理方程(第二版)[M].上海交通大学出版社,2000,1.
    [104] 李培林.建筑抗震与结构选型构造[M].北京:中国建筑工业出版社,1990,12.
    [105] 徐进,张博文等.预应力混凝土框架的抗震设计[J].建筑结构,2002,32(1):46-48.
    [106] 周锡元,阎维明等.建筑结构的隔震、减振和振动控制[J].建筑结构学报,2002,23(2):2-12.
    [107] 铁道部第三勘测设计院主编.桥梁设计通用资料(第2版)[M].北京:中国铁道出版社,1994.
    [108] 王亚勇.《建筑抗震设计规范》(GB50011-2001)的主要特点[J].工程抗震,2002,(1):1-7.
    [109] 马胜利.桥墩抗震计算柔度法,世界最新桥梁建技术资料文集(中册)[M].北京:人民交通出版社,1992.
    [110] 楼顺天.MATLAB 程序设计语言[M].西安:西安电子科技大学出版社,1999.
    [111] 中国国家地震局和建设部联合发布.中国地震动参数区划图[M].北京:中国地图出版社,2001,8.
    [112] 景天虎,万斌,冯家涛等.汤峪河渡槽吊杆式拱架支承结构抗震性能分析[J].西北农林科技大学学报(自然科学版),2003,31(2):141-144.
    [113] 林继镛等.普渡河倒虹吸管桥组合结构模态分析[J].水利水电技术,2002,33(4):8-11.
    [114] 张宇峰,舒赣平.预应力索拱结构选型及其受力特性[J].建筑结构,2002,32(2):51-53,50.
    [115] 范立础等.桥梁抗震[M].上海:同济大学出版社,1997.
    [116] 国家标准抗震规范管理组编.国家标准抗震设计规范统一培训教材[M].北京:中国建筑工业出版社,2002,9.
    [117] [墨西哥]E·罗森布卢斯主编,滕家禄等译.结构抗震设计[M].北京:中国建筑工业出版社,1989,12.
    [118] 吴红华,李正农.渡槽结构地震反应的时程分析[J].中国农村水利水电,2002,(5):43-45.-
    [119] 全国监理工程师培训教材编写委员会.工程建设投资控制[M].北京:中国建筑工业出版社,1995,5.
    [120] 中国建设监理协会组织编写.建设投工程资控制[M].北京:知识产权出版社,2003,1.
    
    
    [121] 居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983,3.
    [122] 戴公连,李德建.单拱面预应力混凝土系杆拱梁桥极限承载力分析的截面内力塑性系数法[J].土木工程学报,2002,35(2):40-43,67.
    [123] 袁方.桥梁工程估算及概算编制实例[M].北京:人民交通出版社,2000,2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700