用户名: 密码: 验证码:
神府煤生物转化高效菌株的优选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以神府煤为研究对象,从神府洗煤废水中提取菌株,采用以神府风化煤和光氧化煤为惟一碳源的筛选方式进行菌株优选,以获得高效溶煤菌株;研究光氧化神府煤的生物转化特性及其生物转化产物的结构,为阐明煤的光氧化与生物转化之间的耦合关系提供实验依据。
     首先,对煤样进行紫外光催化氧化预处理,光氧化时间6h时,腐殖酸含量达到最大值,约为10.19%。元素分析及FTIR分析表明,光氧化预处理使煤中O/C原子比与H/C原子比增加,醚键、羧基和酚羟基官能团含量增加。
     用3种鉴别培养基(鉴别真菌、放线菌和细菌)从神府煤洗煤废水中分离、纯化出了47株菌株。以神府风化煤为惟一碳源,经无机盐固体平板培养初筛、再以光氧化煤为惟一碳源液体动态培养复筛后,优选出3种菌株,分别为b菌(真菌)、g菌(放线菌)和h菌(细菌)。考察了培养方式对微生物转化的影响,结果表明:无机盐培养的菌株溶煤效果优于有机培养基培养的菌株;动态方法与静置培养相比,前者菌株的溶煤效果较好。动态无机盐培养条件下,最佳溶煤周期为14天,煤生物转化过程中有弱酸性物质产生。光氧化预处理煤样有较高的生物转化率,其中g菌对光氧化预处理煤样的转化率可达22.3%。煤经b菌、g菌和h菌转化后的液体均呈浅黄色,除原煤经b菌转化产物外,所有液体转化产物加碱处理后,均有棕黄色沉淀产生,其中光氧化煤经g菌转化后的液体产物的加碱沉淀生成率可达17.5%。FTIR分析表明,沉淀产物含有羟基、醚键、芳香环等官能团。生物转化残煤的O/C比、H/C比明显增加。g菌转化残煤中醚键官能团含量减少,说明g菌易于转化含醚键物质。上述结果表明,光氧化处理可促进煤的生物转化。
     采用梯级溶剂抽提法在索氏抽提器中以丙酮和四氢呋喃(THF)为溶剂,研究了光氧化和生物转化对残煤组成结构的影响。结果表明,光氧化使煤的丙酮抽提率下降,但使其丙酮抽提残煤的THF抽提率提高2倍以上;经生物转化后,残煤的丙酮抽提率均有较大幅度增加,丙酮抽提残煤的THF抽提率增加幅度则与菌株种类有较大关系。原煤经g菌转化后,丙酮抽提率提高程度最大,可达14.96%,而光氧化煤经g菌转化后,丙酮抽提率增加幅度较原煤小;与原煤相比,光氧化煤经b菌和g菌转化后其丙酮抽提残煤的THF抽提率提高了近1倍,光氧化煤经b菌转化后丙酮抽提率增加幅度最大,而且其丙酮和THF的抽提率总和最高,达到21.47%,原煤粉的总抽提率仅有2.92%,此外,煤的光氧化处理对h菌的生物转化影响较小。因此,神府煤在b菌和g菌的生物过程中与光氧化预处理具有一定的耦合作用。FTIR分析表明,经生物转化后,残煤丙酮抽提物中羰基和醚键官能团相对减少。
Taking Shenfu coal as participarts, strains were extracted from Shenfu coal-washing waste water. In order to obtain highly efficient strains for bioconversion Shenfu coal, weathered coal and photo-oxidazed coal were respectively used as sole carbon source to screen strains. The bioconversional characteristics of photo-oxidazed coal and the structure of bioconversion products were analyzed for clarifying the coupling between photo-oxidation and bioconversion.
     Firstly, Shenfu coal was pretreated by UV-photocatalytic oxidation. The humic acid content of the coal photo-oxidazed for 6h was maxmum, reached to 10.19%. Photo-oxidazed coal was characterized by FTIR and ultimate analysis. The results showed that the content of oxygen containing groups (ether, carboxyl, phenolic hydroxyl) were increased by UV-photocatalytic oxidation. Meanwhile, the ratio of O/C and H/C were increased.
     47 strains were isolated and purificated from Shenfu coal-washing water with differential mediums (fungi,actinomycete,bacteria).Weathered coal was used as sole carbon source to primarily screen strains with solid inorganic salt plate culture. And photo-oxidazed coal was used as sole carbon source to further screen strains with liquid culture medium, finally 3 strains with higher performance to shenfu coal bioconversion , which are b strain (fungi), g strain (actinomycete), and h strain (bacteria), were obtained. The effect of different cultivation systems on bioconversion were investigated in detail. The results incidented that inorganic medium was better than organic medium, dynamic culture was better than static culture for coal bioconversion. the best bioconversional cycle was 14 days for coal bioconversion with inorganic medium dynamic culture. The bioconverted solution products was weak acidic.
     The bioconverial yield of photo-oxidazed Shenfu coals with strains were higher than that of Shenfu raw coal. The bioconversion yield of photo-oxidazed Shenfu coal using g strain was up to 22.3% .The bioconversional solution products were yellow for 3 strains (b, g, h). Their water-soluble products were precipitated by NaOH. The bioconverted precipitate yield of photo-oxidazed coal for g was up to 17.5%. FTIR analysis showed that the precipitate contained hydroxyl, ether, aromatic ring groups. After bioconversion, the ratio of O/C and H/C in remains of Shenfu coal were greatly increased. The ether groups in the bioconverted residual for g strain were decreased. It meaned that g strain was easy to break ether group. The results showed that photo-oxidation can improve bioconversion of Shenfu coal.
     Graded extraction was used to characterize the effect of photo-oxidation and bioconversion on the structure of bioconversional residuals by Soxhlet extraction apparatus. The solvents were acetone and THF.The results showed that photo-oxidation made the yield of acetone extraction decreased. After acetone extraction, the residuals were further extracted by THF. The yield of THF extraction for photo-oxidized coal was increased by more than 2 times. After bioconversion of the coals with 3 screened strains, the acetone extraction yield were rapidly increased. The THF extraction yield of bioconverted coals was related with the type of strains. The acetone extraction yield of bioconverted Shenfu coal with g strain was highest ,and it was up to 14.96% as compared with Shenfu coal, the acetone extraction yield of bioconverted photo-oxidazed coal with g strain was increased in an small extent. The THF extraction yield of remain of acetone extraction of bioconverted photo-oxidazed coal by b and g strains were increased by 1 times as compared with Shenfu raw coal. Acetone extraction yield of bioconverted photo-oxidazed coal by b strain were increased in a large extent, the total extraction yield was highest. The total extraction yield of Shenfu raw coal was only 2.92%.The effect of photo-oxidation on h strain conversion of Shenfu coal was less than others. So there was some coupling relationship between the photo-oxidation and b or g strain for coal bioconversion. FTIR analysis indicated that after coal bioconversion with 3 strains, the carbonyl group and ether bond in the acetone solule extract were decreased.
引文
[1] 舒歌平等.煤炭液化技术[M].北京:煤炭工业出版社,2003
    [2] 魏贤勇,宗志敏等.煤液化化学[M].北京:科学出版社,2002
    [3] 郭树才.煤化工工艺学[M].北京:化学工业出版社,2007
    [4] Fakoussa R M, Kohle als Substratfür. Mikroorganis Men: Untersuchungen zur mikrobiellen Umsetzung nativer Stein-kohle[D]. Germany: Universitat Bonn, 1981
    [5] Fakoussa R M, Hofrichter. M. Biotechnology and microbiology of coal degradation [J].Appl Microbiol Biotechnol, 1999, 52:25~40
    [6] Cohen MS, Gabriele PD (1982) Degradation of coal by the fungi Polyporus versicolor and Poria monticolar. Appl Environ Microbiol 44: 23~27
    [7] Scott CD, Strandberg GW, Lewis SN (1986) Microbial solubilization of coal. Biotechnol Prog 2: 131~139
    [8] Quigley D R, Wey JE, Breckenridge C R, Hatcher H J (1987) Comparison of alkali and microbial solubilization of oxidized, low-rank coals. In: Proceedings of the Biological Treatment of Coals Workshop U.S. Department of Energy, Germantown, Md., p 151
    [9] Quigley D R, Breckenridge C R, Dugan P R, etal. Effect of multivalent cations found in coal on alkali- and biosolubilities [J]. Am Chem Soc, Div Fuel Chem, 1988, 33:580~589
    [10] Wondrack L, Szanto M,Wood W A. Appl Biochem Biotechnol, 1989, 20/21: 765~780
    [11] Fakoussa RM, Willmann G (1991) Investigations into the mechanism of coal solubilisation liquefaction: Chelators. In: EPRI &US-Dept of Energy (eds) Proceedings of the Second International Symposium on the Biological Processing of Coal, San Diego, Calif., vol 4. EPRI, Palo Alto Calif. pp 23~29
    [12] Hofrichter M, Fritsche W Depolymerization of low-rank coal by extracellular funga enzyme systems.III. In vitro depolymerization of coal humic acids by a crude preparation of manganese peroxidase from the white-rot fungus [J]. Nematoloma frowardii 1997, 47(19):566~571
    [13] Steinbüchel A, Füchtenbusch B (1997) PHA from coal? In: Ziegler A, van Heek KH, Klein J, Wanzl W (eds) Proceedings of the 9th International Conference on Coal Science, 7~12 September 1997, Essen, vol. III P&W, Essen, pp 1673~1676
    [14] Füchtenbusch, Steinbüchel Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus rubber[J].Appl Microbiol Biotechnol,1990,4:73~81
    [15] 钟慧芳,李雅芹,刘国振,等,微生物脱除煤炭中有机硫的研究,微生物学报,1995,35(2):130~135
    [16] 杨卉艳,李文英.煤的微生物改性研究进展[J].煤化工,2005,2:12~15
    [17] 李明宅,张洪年,张辉等. 煤的厌氧微生物降解研究. 石油实验地质, 1997(3):274~277
    [18] Faison B D. Biological Coal Conversions[J]. Critical Reviews in Biotechnology, 1991, 11(4): 347~366.
    [19] Noble A.D.; Randall P.J.; James T.R. Evaluation of two coal-derived organic products in ameliorating surface and subsurface soil acidity[J]. European Journal of Soil Science 1995, 46: 65~75
    [20] Van der Watt H V, Barnard R O, Cronje I J et al. Amelioration of subsoil acidity by application of a coal-derived calcium fulvate to the soil surface[J]. Nature, 1991, 350: 146~148
    [21] Glaser B.; Lehmann J.; Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review[J]. Biol Fertil Soils, 2002, 35: 219~230
    [22] Faison B D. Biological Coal Conversions[J]. Critical Reviews in Biotechnology, 1991, 11(4): 347~366
    [23] Klein J, Catcheside D E A, Fokoussa R, et al. Biological Processing of Fossil Fuels, Resume of the Bioconversion Session of ICCS’97 Appl Microbiol Biotechnol, 1999, 52(1): 2~15
    [24] Füchtenbusch B, Steinbüchel A. Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovorans and Rhodococcus rubber [J]. Appl Microbiol Biotechnol, 1999, 52: 91~95
    [25] 樊晓萍.煤纳米孔结构及官能团对煤/PAN复合材料导电性能的影响[D].西安:西安科 技大学,2004.5
    [26] 程 君 , 周 安 宁 , 葛 岭 梅 . 煤大分子酸掺杂聚苯胺的机理研究 [J]. 煤炭 学报 . 2003,28(2):188~192.
    [27] Shinn J H. From coal to single-stage and two-stage products: a reactive model of coal structure [J]. Fuel, 1984, 63:1187
    [28] R.M.Fakoussa, M.Hofrichter. Biotechnology and microbiology of coal degradation [J]. Appl Microbiol Biotechnol.1999, 52:25~40
    [29] Grethlein H E. Pretreatment of lignite. In: Wise DL (ed) Bioprocessing and biotreatment of coal [J].New York, 1990, 73~81
    [30] Quigley D R, et al. Proceedings of the Biological Treatmint of Coal Work shop, 1987, 151~164
    [31] 张昕,林启美,赵小蓉.风化煤的微生物转化:I 菌种的筛选及转化能力测定(待续).2002(7),18~23
    [32] 柳丽芬,杨卫军,成莹等.鹤岗风化煤的微生物降解研究.大连理工大学学报,1996,36(4):443~448
    [33] 陈文敏,张自劭.煤化学基础[M].北京:煤炭工业出版社,1993.192~196
    [34] 杨志远,周安宁.神府煤光催化氧化降解过程的 FTIR 研究.煤炭学报,2005,30(6):759~763
    [35] 姜玉凤.神府煤不同组分的光氧化特性[T].煤炭科学技术,2006,34(6):54~60
    [36] 李慧,张亚婷,汪广恒等.光氧化预处理对神府煤生物转化的影响[J].应用化工,2007,36(4):325~333
    [37] Strandberg G W, Lewis S L. The Solubilization of Coal by an Extracellular Product from streptomyces setonii 75V12.J Ind Microbid,1987,1:371~375
    [38] 韩威,佟威,杨海波等.煤的微生物溶(降)解及其产物研究[J].大连理工大学学报,1994(6):653~661
    [39] 王龙贵.煤炭的微生物转化与利用[M].北京:化学工业出版社,2006
    [40] 袁红莉,蔡亚岐,周希贵等.微生物降解褐煤产生的腐殖酸化学特性研究[J].环境化学,2000,3:240~243
    [41] Anning Zhou, Hui Li, Zhang Yating,et al. Impact of Photo-oxidation Pretreatment of Coal on Coal Bioconversion Reactivity. 2007 International Conference on Coal Science and Technology, 2007, Nottingham, UK
    [42] 武丽敏.微生物降解褐煤的研究[J].煤炭综合利用,1995(1):26~28
    [43] Strandberg G W, Lewis S, N. Factors affecting coal solubilization by the bacteriral Streptomyces setonii 75vi2 and by alkaline buffers[J].Appl biochem biotechnol, 1988, 8:355~361
    [44] Glenn J K, et al. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white-rot basid-iomycete Phanerochaete chrysosporium[J].Arch Biochem Biophys,1983,242:329~341
    [45] Tien M, Krik T K,Lignin-degrading enzyme from the hymenocete Phanerochaete chrysosporium Burds[J].Science,1983,221:661~663
    [46] O’Malley D M, Whrtten R, Bao W, et al. The role of laccase in lignification[J]. Plant J, 1993:751~757
    [47] Thurston C F. The structure and function of fungal laccase[J]. Microbiology 1994, 140: 19~26
    [48] Wunderwald U, Kreisel G,Braun M,et at. Formation and degradation of a synthetic humic acid derived from 3-fluorocatecho[J].Appl Microbiol Biotechnol, 2003, 53:441~446
    [49] Ahmed M,Smith J.W.,George S C.Effects of biodegradation on Australian Permian coals [J].Organic Geochemistry, 1999, 30:1311~1322
    [50] Wariishi H,Valli K,Gold M H.Manganese(Ⅱ) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chaysosporium[J].J Biol Chem,1992,267:23688-23695
    [51] Martinez M J, et al.Purification and catalytic properties of two manganece peroxidize ieoenzymes from Pleuroyus erygii[J]. Eur J Biochem, 1996, 237:424~432
    [52] 王风芹,袁红莉,陈文新.微生物降解褐煤的酶学机理[J].生物技术,2002,4,12(2):45~47
    [53] Campbell J A,Stewart D L,McCullouch M,et al.Biodegradation of coal-related model compounds [J].Am Chem Soc,Div Fuel Chem Prepr,1988,33: 514~523
    [54] Crawford D L,Gupta R K.Characterization of extracellular bacterial enzymes which depolymerize a soluble lignite coal polymer[J].Fuel,1991,70:577~580
    [55] Laborda F, Fernandez M, Luna N, et al. Study of the mechanisms by which microorganisms solubilize and/or liquefy Spanish coals [J]. Fuel Processing Technology, 1997, 52(1):95~107
    [56] Cohen M S. Bioprocessing and biotreatment of coal[J]. Applied and environmental microbiology, 1987,53(12):2840~2843
    [57] 袁红莉,陈文新,木村真人.褐煤风化过程中微生物群落的演替[J].微生物学报,1998,38(6):1114~1116
    [58] Catcheside.Priprent of papers presented the 196th ACS National Meeting Divition [J].Fuel Chemistry,1988,33:63
    [59] 周群英,高廷耀等.环境工程微生物学[M].北京:高等教育出版社,2001
    [60] 王英,王力,王学民.微生物液化褐煤的溶煤方式和工艺条件的研究[J].煤炭转化,2006,1:29~32
    [61] 杜连祥,路福平.微生物学试验技术[M].中国工业出版社,2006
    [62] 冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362~366
    [63] 朱学栋,朱子彬,韩崇家等.煤中含氧官能团的红外光谱定量分析[J].燃料化学学报,1999,27(4):335~339
    [64] 陈茺,许学敏,高晋生等.煤中氢键类型的研究[J].燃料化学学报,1998,26(2):140~144
    [65] Painter P, Starsinic M, Coleman M. Determination of Functional Groups in Coal by Fourier Transform Interferometry,in Fourier Transform Infrared Spectroscopy[M].Academic Press Inc., London,1985:169
    [66] 张沫.高效微生物絮凝菌的筛选及其特性研究[学位论文].哈尔滨工业大学:2006
    [67] 钟冬梅.固氮菌絮凝菌剂的研究[学位论文].广西大学:2006
    [68] 王海.蒽高效降解菌的选育及其增强型绿色荧光蛋白标记[学位论文].武汉大学:2004
    [69] 刘燕群,周宜开,谭佑铭.氯霉素废水优势菌的筛选.环境氯霉素废水优势菌的筛选,2003,4(4):43~45
    [70] 王龙贵,张明旭,欧泽深等.菌种的选育及用于煤炭降解转化试验研究.中国矿业大学学报,2006,35(4):504~509
    [71] 杨海波,利用高等真菌降解褐煤及其产物的初步分析[D].大连:大连理工大学,1993
    [72] 国家环保总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [73] 孔垂华,徐效华.有机物的分离和结构鉴定[M].化学工业出版社,2003
    [74] 刘晨光.活性炭吸附性在废水处理中的应用.辽宁师专学报,2002,4(1):89~90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700