用户名: 密码: 验证码:
纯菌种Ethanologenbacterium sp. nov R3厌氧发酵生物制氢的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在间歇实验和连续流实验研究成果的基础上,分别以农业废弃物植物秸秆和糖蜜废水为产氢原料,以纯菌种Eethanologenbacterium sp.nov R3为产氢菌源,分别在间歇反应器和18.8L规模的连续流搅拌槽式反应器(CSTR)中通过厌氧发酵产生氢气,取得了有意义的研究结果。结果表明:
     利用间歇培养试验研究了发酵产氢菌种Eethanologenbacterium sp.nov R3的产氢能力和调控方法。试验结果可以看出:葡萄糖浓度在12g/L,氢气产量为最大。底物的选择对Eethanologenbacterium sp.nov R3产氢的影响较大。六碳糖和双糖比五碳糖的产氢量要高。有机氮源酵母膏是菌株Eethanologenbacterium sp.nov R3产氢气量最有效的营养物质,但是综合考虑,有机氮源的三种组合(牛肉膏、蛋白胨、酵母膏)是较理想的选择。菌株Eethanologenbacterium sp.nov R3喜中性温度,较适合的温度应该在30~35℃之间。最佳的pH值应该在5.5左右。
     利用植物秸秆作为原材料,捣碎配成浆液,通过高温灭菌后,用乙酸和盐酸进行不同时间、不同温度的降解实验,得到所需的糖化液,并在空气浴振荡器中进行振荡产氢实验。用乙酸降解植物秸秆,其最佳降解温度为40℃;用盐酸降解植物秸秆,其最佳降解温度为20℃;用乙酸和盐酸降解植物秸秆的最佳降解时间均为1 h;用乙酸等弱酸降解所得到的糖化液比用盐酸等强酸降解所得到的糖化液所得到的产氢量要少。
     连续流厌氧发酵生物制氢实验证明,采用纯菌种Eethanologenbacterium sp.nov R3为产氢菌株,通过控制适宜的实验条件,反应器运行到16d达到相对稳定状态,此时产气量约6.6L/d,氢气含量59.4%,可实现CSTR反应器连续产氢;发酵末端产物以乙醇和乙酸为主(占总量的90%以上),符合乙醇型发酵;COD去除率保持在28%左右;出水pH值在4.0~4.5之间变化。通过投加NaOH的方式提高反应器pH值是有效的。可见Eethanologenbacterium sp.nov R3菌株可作为连续流厌氧发酵产氢试验菌种。
The significant research results are achieved through anaerobic and fermentative bio-hydrogen production in batch reactor and CSTR of 18.8L where plant straw from agricultural waste and molasses wastewater are the materials for hydrogen production and pure microbial species EETHANOLOGENBACTERIUM SP.NOV R3 are hydrogen-producing bacterium. The result is as follow:
     Batch culture is used to study the hydrogen-producing bacterium Eethanologenbacterium sp.nov R3 for its hydrogen production capacity and regulation method.The results show that the quantity of hydrogen production of Eethanologenbacterium sp.nov R3 R3 is maximum at glucose concentrations to 12g/L;different substrates have much influence on hydrogen production capacity of the bacterium Eethanologenbacterium sp.nov R3 and that capacity with hexose and disaccharide as substrate is higher than that with pentose;yeast extract as organic nitrogen source is the most effective nutrient for the quantity of hydrogen production of Eethanologenbacterium sp.nov R3,but it is taken into account comprehensively that beef extract,peptone,yeast extract as organic nitrogen source is the best choice;with the bacterium Eethanologenbacterium sp.nov R3 preferring neutral temperature,it is between 30~35℃;the best pH is at about 5.5.
     Plant straw as material mashes up into serofluid and then after high temperature sterilization on it,the degradation experiment of different time and temperature is made by acetate and hydrochloric acid to obtain the saccharification liquid and hydrogen is produced in air bath oscillator.The result tells us that the temperature 40℃is the best one for degrading the straw with acetate while 20℃is the best for that with hydrochloric acid;the optimal time is both 1h for degrading straw by use of acetate and hydrochloric acid;less quantity of hydrogen is in condition of the saccharification liquid degraded into through weak acids like acetate compared with through strong acids like hydrochloric acid.
     The starting and operation of system of fermentative bio-hydrogen is studied by CSTR as reaction equipment of anaerobic and fermentative bio-hydrogen and pure microbial species Eethanologenbacterium sp.nov R3 as strains of hydrogen production.The results showed that hydrogen production capacity can be continuous in the CSTR in conditions of fermentative substrate of molasses wastewater;in the CSTR the temperature is between 35±1℃and HRT is 8h;16 days are spent on the stability of hydrogen production and 6.6L/d of biogas production and 59.4%of hydrogen content are both based on the average removal rate 28%of COD;the situation of ethanol and acetate as main fermentative terminal products,which account for 90% of total amount,belong to that of ethanol-type fermentation;pH of the final effluent changes between 4.0~4.5 and the addition of Sodium Hydroxide into CSTR can make the effective adjustment of pH.From the study,the strains Eethanologenbacterium sp.nov R3 of high efficient hydrogen production can be applied to bio-hydrogen process of continuous flow.
引文
[1]温廷琏.氢能.能源技术.2001,22(3):96-98
    [1]李文华,杨修.环境与发展.科学技术文献出版社。1994:12-13
    [2]鲍德佑.太阳能-氢能系统的发展前景。太阳能学报。1995,16(1):114-120
    [3]S.Dunn.Hydrogen Futures:Toward a Sustainable Energy System.Int.J.Hydrogen Energy.2007,27:235-264
    [4]肖建民.论氢能源与氢能源系统.世界科技研究与进展.1997,19(1):82-86
    [5]K.A.Adamson,P.Pearson,Hydrogen and Methanol:a Comparison of Safety,conomics Efficiencies and Emissions.Journal of power Sources.2007,86:548-555
    [6]席德力.清洁生产.重庆大学出版社,1965:8~24申泮文.21世纪的动力:氢能.天津:南开大学出版社.2000
    [7]T.N.Veziroglu.Quarter Century of Hydrogen Movement 1974~2000.Int.J.Hydrogen Energy.2000,25:1143-1150
    [8]R.A.Hefner Ш.The Age of Energy Gases.Int.J.Hydrogen Energy.2006,27:1-9
    [9]L.Barreto,A.Makihira,K.Riahi.The Hydrogen Economy in the 21st Century:a Sustainable Development Scenario.Int.J.Hydrogen Energy,2003,28:267-284
    [10]陈锦富,陆绍信,朱亚杰.汽车替代燃料及其发展前景.现代化工.1996,(5):13-15
    [11]战凯,李胜学.浅谈电动汽车、代用燃料汽车及发展展望.矿治.1999,8(1):9-14
    [12]李原,邓隐北.氢能汽车的研制与发展.河南交通科技.1996,(1):47-50
    [13]中国工业气体工业协会氢气专业委员会成立大会暨2000年年会议文集.中国工业气体工业协会氢气专业委员会秘书处编印,2000,(4):60-64
    [14]周善元.21世纪的洁净新能源——氢能.江西能源.2000,(3):11-13
    [15]氢氧站设计.第四机械工业部第十设计院,1970:234-241
    [16]王艳辉,吴迪镛,迟建.氢能及制氢的应用技术现状及发展趋势.化工进展.2001,(1):6-8
    [17]J.Benemann.Hydrogen Biotechnology:Progress and Prostects.Nature Biotechnol.1997,(14):1101-1103
    [18]李建政,任南琪.生物制氢技术的研究与发展.能源工程.2001,(2):18-20
    [19]K.Lewis.Symposium on Bioelectrochemistry of Microorganisms.Ⅳ.Biochemical Fuel Cells.Bacteriological reviews.1966,30(1):101-113
    [20]P.Hoffmann.Liquid Hydrogen Powers Third EQHHPP Demonstratin Bus.Hydrogen and Fuel Cell Letter.1996,11(5):4-8
    [21]刘志恒.现代微生物学.科学出版社,2002
    [22]F.A.Lopes PintomO. Troshina,P.Lindblad. A Brief Look at Three Decades of Research on Cyanobacterial Hydrogen Evolution. Int. J. Hydrogen Energy. 2002,27:1209-1215
    [23]P.M.Reddy, H.Spiller,S.l. Albrecht, K.T. Shanmugam. Photodissimilation of Fructose to H2 and CO2 by a dinitrogen-fixing Cyanobacteriun, Anabaena variabilis. Appl. Environ.Microbiol. 1996,62(4): 1220-1226
    [24]R.R. Lichtl,M.J.bazin,D. O. Hall The Biotechnology of Hydrogen Production by Nostoc flagelliforme Grown under Chemostat Conditions. Appl.Microbiol. Biotechnol. 1997,47:701-707
    [25]S. Kumazawa, A. Mitsui. Characterization and Optimization of Hydrogen Photoproduction by a Saltwater Blue-green Alga,OSCILLATORLA SP.MIAMIBG7.I. Enhancement Through Limiting the Supply of Nitrogen Nutrients Int. J. Hydrogen Energy.1981,6(4):339-348
    [26]E. N. Kondratieva, I.N. Gogotov. Production of Molecular Hydrogen in Microorganisms Adv.Biochem.Eng.Biotechnol.2008,28:139-191
    [27]S. Kumazawa, A. Mitsui. Efficient Hydrogen Photoproduction by Synchronously Grown Cells of a Marine cyanobacterium, Sunchococcus sp.Miami Bg 043511,under High Cell Density Conditions. Biotechnology and Bioengineering. 1994, 44:845-858
    [28]G. D. Smith, G. d. Ewart, W.Tucker. Hydrogen Production by Cyanobacteria. Int. J.Hydrogen Energy. 1992,17(9):695-698
    [29]A. A. Tsygankov. V. B Borodin, K. K. Rao, D. O. Hall. H2 Photoproduction by Batch Culture of Anabaena Variablis ATCC29413 and its Mutant PK84 in a Photobioteactor. Biotech.&Bioeng.2007,64(6):709-715
    [30]J. H. Yoon, S. J. Sim, M. S.Kim, T. H. Park. High Cell Density Culture of production of Hydrogen. Int. J Hydrogen Energy. 2006,27:1265-1270
    [31]E. Fascetti, O. Todini. Rhodobacter sphaeroides RV Cultivation and Hydrogen Production in a One- and Two-stage Chemostat. Appl. Microbiol. Biotechnol. 1995,44:300-305
    [32]F. Ftancou, P. M. Vignais. Hydrogen Production Production by Rhodopseudomonas capsulate Cells Entrapped in Carrageenan beads. Biotechnology Letters. 2007,6(10):639-644
    [33]M. Vincenzini, R. Materassi, M. R. Tredici. G. Florenzano. Hydrogen Production by Immobilized Cells- ?. H2 Photoevolution and Waste water treatment by Agar-Entrapped cells of Rhodopseudomonas palustris and Rhodospirillum molischianum. Int. J. Hydrogen Production by the Photosynthetic Bacterium Rhodospirillum. Int.J.Hydrogen Energy.2007,7(9):725-728
    [34]H. Z(?)rrer,R. Bachofen. Hydrogen Energy Production by the Photosynthetic Bacterium Rhodospirillum rubrum. Appl. Environ. Midrobiol. 2006, 37(5):789-793
    [35]A.Yamada,H.Takano,J.G..Burgess,T.Matsunaga.Enhanced Hydrogen Hydrogen Production by a Marine Photosynthetic Baterium,Rhodobacter marimus,Immobilized onto Light-diffusing optical fibers.J.Mar.Biotechnol.2006,4:23-27
    [36]J.Miyake,S.kawamura.Efficiency of Light Energy Conversion to Hydrogen by the Photosynthenic Baterium Rhodobacter sphaeroides.Int.J.Hydrogen Energy.2007,12(3):147-149
    [37]L.J.Chidwick,R.L.Irgens Hydrogen Gas Production By an Ectothiorhodospira vacuolata Strain.Appl Environ.Microbiol.1991,57(2):594-596.
    [38]K.Sasikara,C vV.Ramana,P.Raghuveer,M.Subrahmanyam.Effect of Gas Phase on the Photoproduction of Hydrogen and Substrate Conversion Efficiency in the Photosynthetic Bacterium Rhodobacter sphaeroide O.U.001.Int.J.Hydrogen Energy.1990,15(11):795-797
    [39]张良健,岳丕昌,甜菜废蜜的综合利用[J]。中国甜菜糖业,1996[2]:49-52.
    [40]Lin C Y,Chang R C.Hydrogen production during the anaerobic acidogenic conversion of glucose.J.Chem.Technol.Biotechnol.,1999,74:498-500
    [41]Lin C Y,Jo C H.Hydrogen production from sucrose using an anaerobic sequencing batch reactor process.J.Chem.Technol.Biotechnol.,2003,78:678-684
    [42]Chang J S,Lee K S,Lin P J.Biohydrogen production with fixed-bed bioreactors,Int.J.Hydrogen Energy,2002,27:1167-1174
    [43]Lay J J,Lee Y J,Noike T.Modeling and optimization of anaerobic digested sludge converting starch to hydrogen.Biotechnol.Bioeng.2000,68(3):269-278
    [44]Lin C Y,Chang R C.Fermentative hydrogen production at ambient temperature.Int.J.Hydrogen Energy,2004,29:715-720
    [45]Sung S,Raskin L,Duangmance T,Padmasiri S,Simmons J J.Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments//Proceeding of the 2002.U.S.DOE Hydrogen Program Review.NREL/CP-610-32405.2002
    [46]Ting C H,Lee D J.Production of hydrogen and methance from waste sludge using anaerobic fermentation.Int.J.Hydrogen Energy,2007,32:677-682
    [47]李永峰,任南琪,李建政,等.发酵产氢细菌分离培养技术的改良[A].见:严陆光,崔戎强.21世纪太阳能新技术[C].上海:上海交通大学出版社,2003.814-818.
    [48]Tanisho S,Ishiwata Y.[J].International Journal of Hydrogen Energy,1994,19(10):807-812.
    [49]Tanisho S,Ishiwata Y.Biohydrogen production from waste materials[J].International Journal of Hydrogen Energy,1995,20(7):541-545.
    [50]Yokoi H,Ohkawara T,Hirose J,et al.[J].Journal of Fermentation and Bioengineering,1995,80(6):571-574.
    [51]Yokoi H,Tokushige T,Hirose J,et al.[J].Journal of Fermentation and Bioengineering, 1997,83(5):481-484.
    [52]Taguchi F, Mizukami N et al . Direct conversion of cellulosic materials to hydrogen by Clostrdium sp. Strain no. 2. Enzyme Microb. Technol ., 2006,17 (2):147-150.
    [53]Taguchi F , Yamada K, Hasegawa K, Takisaito T, HaraK. Continuous hydrogen production by Clostridium sp.Strain No. 2 f rom cellulose hydrolysate in aqueous two-phase system. J .Ferment. Bioeng. ,1997,82 (1):80-83.
    [54]Taguchi F, Mizukami N, Saito-Taki T, Hasegawa K. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. Strain No.2. Can J Microbial 2007;41:536-40.
    [55]Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N. Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng 2007;83:358-63.
    [56]Rachman MA, Nakashimada Y, Kakizono T, Nishio N. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl Microbiol Biotechnol 1998;49:450-4.
    [57]Laurie JC, Roar LI. Hydrogen gas production by an Ectothiorhodospira vacuolata strain.Appl Environ Microbiol 2006;57:594-596.
    [58]HUNGATE R E. Methods in Microbiology[M]. New York: Academic press,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700