用户名: 密码: 验证码:
大直径灌注筒桩承载性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用解析算法,就考虑土芯作用下的筒桩竖向承载力计算、筒桩在竖向与水平向力同时作用下的性状分析、双排桩海堤筒桩结构内力与位移计算等三个方面展开了较为深入细致的研究。主要工作和研究成果如下:
     1.考虑筒桩土芯分担荷载以及筒桩与土芯内摩阻力发挥情况,采用弹塑性荷载传递函数推导出了筒桩的竖向荷载—沉降关系的解析表达式,并计算得到任意截面桩身轴力及内外侧摩阻力的表达式。计算表明:土芯顶端分担的荷载以及筒桩内侧摩阻力随着桩顶荷载、桩土模量比、筒桩内外径比的变化而变化;在单桩荷载—沉降曲线中,l、C_(sa)和k_a越大,桩顶极限承载力越大,对应桩顶沉降量也越大。
     2.在现行m法假设的基础上导出了筒桩单桩在竖向集中荷载、水平向荷载、桩身自重以及桩内外侧摩阻力耦合作用下的计算公式,首次把自由段荷载的作用耦合进来。计算表明:桩身弯矩值和桩身变位随着桩顶轴力P的增大而提高,当基桩自由长度和竖向荷载较大时,P—△效应不可忽略;桩身自重以及桩周内外摩阻力对桩身弯矩和桩身变形的影响很小,数量级在10~(-4),计算时可忽略他们其对桩身内力的影响;随着埋入深度的增大,桩身最大弯矩和桩顶水平变位都增大,但是埋入深度增大一定值,桩身弯矩和桩身变位趋于稳定;桩顶水平变位和桩身最大弯矩随着各参数——桩顶弯矩或桩顶水平力、自由长度、桩身弹性模量和水平地基抗力系数、自由段荷载等的增大而增大,其中,桩顶水平力对桩身最大弯矩和桩顶水平变位的影响最大。
     3.介绍了几种筒桩海堤的结构型式,并应用结构位移法求解了双排桩海堤各桩的等效桩顶荷载。对桩顶挠度系数、桩顶刚度系数、顶板的位移和转角进行了求解,最后将作用于筒桩海堤的荷载等效至各桩头。
     4.计算了施工期荷载作用下单桩受力、海堤施工期短暂作用效应组合以及正常使用下作用效应的持久组合3种工况下的桩身弯矩和桩身水平变位。计算表明:正常使用下作用效应的持久组合工况下靠陆侧桩身有最大值弯矩;施工作用效应的短暂组合工况下靠陆侧桩身弯矩是从桩顶至桩头逐渐衰减的。分析了桩间距B_1、排间距B_2的变化对筒桩海堤荷载传递性状的影响。
Construction technics and structure characteristic of large diameter cast-in-situ tubular piles is different from that of ordinary cast-in-place piles or steel pipe piles, which bring on the particularity of tubular pile's bearing characteristic. Using analytical arithmetic, three aspects have been studied that are tubular pile's vertical bearing force considering soil core's function, tubular pile's bearing characteristic under vertical and transverse load, and stress and displacement of double-row-pile sea wall's piles. The main original work and results are as follows:1. With elastic-plastic load transfer function, a set of analytical equations for the axial load-settlement curve of cast-in-situ tubular pile have been deduced to determine the vertical bearing capacity of pile according to the settlement of the pile top. The distribution equations of axial force and friction along pile can be gotten. It shows that force soil core beared and friction will change following the pile top load, pile and soil elasticity modulus ratio and pile's inner and outer diameter ratio. In single pile's load-settlement curve, the longer pile length is or the bigger C_sa and k_a is, the bigger the ultimate resistance of the pile is, then the bigger the settlement is.2. On the basis of 'm' method, coupling formulas have been gotten when single pile is loaded under the load combination of vertical focus load, transverse load, pile's self-weight and its inner and outer friction, and free load is concluded in for the first time. It shows that P-Δ effect can't be ignored when the free length and vertical load are big, and pile's deadweight and its friction have little influence on distortion and bending force along pile. The top transverse distortion and the most bending force have the same current with the top bending force, the top transverse force, free length, pile's diameter, etc, in which the top transverse force has the biggest influence on pile's most bending force and the top transverse distortion.3. Several kinds of sea wall structures are introduce in this paper, equivalent pile top load of each pile of double-row-pile sea wall was gotten by the method of structure displacement.
    First pile top distortion coefficient, top rigid coefficient, tip board' s displacement and its corner are calculated, then the loads acting on the tip of the sea wall are equivalent to each pile top.4. Bending force and transverse distortion along pile are calculated in three kinds of working conditions, which are single pile under load in construction period, fugacious load domino effect combination in sea wall construction period and permanent load domino effect combination in common using period. It shows that pile has the biggest bending force value under the third working condition, bending force decrease along the pile from the pile top under the second working condition. Influence of changes of pile space between and row space between to load transfer characteristic of sea wall is analyzed.
引文
BANERJEE, E K., and DAVIES, T. G. The behaviour of axially and laterally loaded single piles embedded in nonbomogeneous soils. Geotechnique, 1978.28: 309-326.
    Briaud J L, Tucker L M. Measured and predicted axial response of 98 piles. Journal of Geotechnical Engineering, ASCE, 1988, 114(9): 984~1001.
    CHARI, T. R., and MEYERHOF, G. G. Ultimate capacity of rigid single piles under inclined loads in sand. Canadian Geotechnical Journal, 1983.20: 849-854.
    Chow Y K, Axial and lateral response of pile groups embedded in nonhomogeneous soils. International Journal for Numerical and Analytical Methods in Geomechanics, 1987a, 11: 621~638.
    Chow Y K, Discrete element analysis of settlement of pile groups. Computers and Structures, 1986a, 24(1): 157~166.
    Chow Y K, Iterative analysis of pile-soil-pile interaction. Geotechnique, 1987b, 37(3): 321~333.
    Clancy P, Randolph M F. Simple design tools for piled raft foundations. Geotechnique, 1996, 46(2): 313~328.
    Clough R W, Woodward R J. Analysis of embankment stress and deformations. Journal of the Soil Mechanics and Foundation Division, ASCE, 1967, 93(4): 529~549.
    Cooke R W, Price G, Tarr K. Jacked piles in London clay: a study of load transfer and settlement under working conditions. Geotechnique, 1979, 29(2):113~147.
    Coyle H M, Reese L C. Load transfer for axially loaded piles in clay. Journal of the Soil Mechanics and Foundation Division, ASCE, 1966, 92(2): 1~26.
    D'Appolonia E, Romualdi J P. Load transfer in end-bearing steel h-piles. Journal of the Soil Mechanics and Foundation Division, ASCE, 1963, 89(2): 1~25.
    Davis E H, Poulos H G The use of elastic theory for settlement prediction under three-dimensional conditions. Geotechnique, 1968, 18(1): 67~91.
    Ellison R D, D'Appolonia E, Thiers G R. Load-deformation mechanism of for bored piles, Journal of the Soil Mechanics and Foundation Division, ASCE, 1971, 97(4): 661~677.
    Etnesto Motta. Approximate elastic-plastic solution for axially loaded piles. Journal of the Geotechnical Engineering, ASCE, 1994, 120(9): 1616~1624.
    Guo W D, Randolph M F. An efficient approach for settlement prediction of pile groups. Geotechnique, 1999, 49(2): 161~179.
    Guo W D, Randolph M F. Rationality of load transfer approach for pile analysis. Computers and Geotechnics, 1998, 23: 85~112.
    Guo W D. Vertically loaded single piles in Gibson soil. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 189~193.
    Kraft L M, Ray R P, Kagawa T. Theoretical τ~z curves. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107(3): 1465~1488.
    Kyle M. Rollins, J. Dusty Lane, Travis M. Gerber. Measured and Computed Lateral Response of a Pile Group in Sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(1): 103~114.
    Lianyang Zhang, Francisco Silva, Ralph Grismala. Ultimate Lateral Resistance to Piles in Cohesionless Soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131(1): 78~83.
    Lee C Y, Poulos H G. Axial response analysis of piles in vertically and horizontally non-homogenous soils. Computer and Geotechnics, 1990, 9:133~148.
    MEYERHOF, G. G, and RANJAN, G. The bearing capacity of rigid piles under inclined loads in sand. Ⅰ: vertical piles. Canadian Geotechnical Journal, 1972. 9: 430-446.
    MEYERHOF, G. G, MATHUR, S. K., and VALSANGKAR, A. J. Lateral resistance and deflection of rigid walls and piles in layered soils. Canadian Geotechnical Journal, 1981. 18: 159-170.
    MEYERHOF, G. G., and SASTRY, V. V. R. N. Bearing capacity of rigid piles under eccentric and inclined loads. Canadian Geotechnical Journal, 1985.22: 267-276.
    MEYERHOF, G. G., and SASTRY, V. V. R. N. Full-displacement pressuremeter method rigid piles under lateral loads and moments. Canadian Geotechnical Journal, 1987.24:471-478.
    MEYERHOF, G. G., SASTRY, V. V. R. N., and YALCIN, A. S. Lateral resistance and deflection of flexible piles. Canadian Geotechnical Journal, 1988. 25: 511-522.
    MEYERHOF, G. G., and GHOSH, D. P. Ultimate capacity of flexible piles under eccentric and inclined loads. Canadian Geotechnical Journal, 1989. 26: 34-42.
    MEYERHOF, G. G. Behaviour of pile foundations under special conditions. Canadian Geotechnical Journal, 1995.32: 204-222.
    Molonakis, G, Gaztas G. Settlement and additional internal forces of grouped piles in layered soil. Geotechnique, 1998, 48(1): 55~72.
    O'Neill M W, Hawkins R S, Mahar L J. Load transfer mechanisms in pile and pile groups. Journal of the Geotechnical Engineering Division, ASCE, 1982, 108(12): 1605~1623.
    Poulos H G, Davis E H. The settlement behaviour of single axially loaded incompressible piles and piers. Geotechnique, 1968a, 18(1): 351~371.
    Poulos H G, Mattes N S. The behaviour of axially loaded end-bearing pile. Geotechnique, 1969, 19(2): 385~300.
    Poulos H G. Analysis of the settlement of pile groups. Geotechnique, 1968b, 18(3): 449~471.
    Rajapakse R K N D. Response of an axially loaded elastec pile in a Gibson soil. Geotechnique, 1990, 40(2): 237~249.
    Randolph M F, Wroth C P. Analysis of deformation of vertically loaded piles. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(12): 1465~1488.
    Randolph M F, Wroth C P. Driven piles in clay—the effects of installation and subsequent consolidation. Geotechnique, 1979, 29(4): 423~439.
    SASTRY, V. V. R. N., and MEYERHOF, G. G. Lateral soil pressures and displacements of rigid piles in homogeneous soils under eccentric and inclined loads. Canadian Geotechnical Journal, 1986. 23: 281-286.
    SASTRY, V. V. R. N., MEYERHOF, G. G., and KOUMOTO, T. Behaviour of rigid piles in layered soils under eccentric and inclined loads. Canadian Geotechnical Journal, 1986. 23: 451-457.
    SASTRY, V. V. R. N. and MEYERHOF, G. G. Behaviour of flexible piles under inclined loads. Canadian Geotechnical Journal, 1990. 27: 19-28.
    SASTRY, V. V. R. N. and MEYERHOF, G. G. Behaviour of flexible piles in layered sands under eccentric and inclined loads. Canadian Geotechnical Journal, 1994. 31: 513-520.
    SASTRY, V. V. R. N. and MEYERHOF, G. G. Behaviour of flexible piles in layered clays under eccentric and inclined loads. Canadian Geotechnical Journal, 1995.32: 387-396.
    Seed H B, Reese L C. The action of soft clay along friction piles. Transactions, ASCE, 1957, 122:731~754.
    Skempton A W. Cast-in-situ bored piles in London clay. Geotechnique, 1959, 9(4): 153~173.
    T. KOUMOTO, MEYERHOF, G. G., and SASTRY, V. V. R. N. Analysis of bearing capacity of rigid piles under eccentric and inclined loads. Canadian Geotechnical Journal, 1986.23: 127-131.
    Trochanis A M, Bielak J, Christiano P. Simplified model for analysis of one or two piles. Journal of the Geotechnical Engineering, ASCE, 1991a, 117(3): 448~466.
    Trochanis A M, Bielak J, Christiano P. Three-dimensional nonlinear study of piles. Journal of the Geotechnical Engineering, ASCE, 1991b, 117(3): 429~447.
    Vesic A S.桩与土体系中的荷载传递,地基与基础译文集,No.5,《桩基础》,中国建筑工业出版社,1982,60~79.
    W. G. K. FLEMING, Piling Engineering, New York City: Blackie Glasgow and London Halsted Press, 1992.
    YALCIN, A. S., and MEYERHOF, G. G. Bearing capacity of flexible piles under eccentric and inclined loads in layered soil. Canadian Geotechnical Journal, 1991.28: 909-917.
    Yun-mei Hsiung, Theoretical Elastic-Plastic Solution for laterally Loaded Piles, JOURNAL OF GEOTECHNIACAL AND GEOENVIRONMENTAL ENGINEERING, 2003, 5: 475~480.
    Zhanhai Yang, Boris Jeremic. Study of Soil Layering Effect on Lateral Loading Behavior of Piles. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 131 (6): 762~770.
    白国良主编,荷载与结构设计方法.北京:高等教育出版社,2003.
    饱和士中水平受荷桩的变形研究,晋义泉,上海交大硕士学位论文,2003.
    蔡蓓蓓,许履瑚等编,高等数学,北京:科学出版社,2003.
    层状土中横向受荷桩的内力与变形分析,李红军,浙江大学硕士学位论文,2000.
    曹汉志,桩的轴向荷载传递及荷载—沉降曲线的数值计算方法,岩士工程学报,1986.8(6):37~49.
    陈龙珠.梁国钱,朱金颖,桩的轴向荷载—沉降曲线的一种解析算法,岩土工程学报.1994,16(6):30~38.
    蔡金荣.应齐明,谢庆道,现浇混凝土薄壁筒桩加固桥头软基试验研究,公路,2003,(5):71~74.
    陈斌.宝钢地区钢管桩土芯闭塞性状研究,岩土力学,2004,25(增刊):541~544.
    蔡袁强,阮连法,吴世明,陈云敏,软粘土地基基坑开挖中双排桩式围护结构的数值分析及应用,建筑结构学报,1999,20(4):65~71.
    蔡袁强,赵永倩,吴世明,陈云敏,汤翔宇,软土地基深基坑中双排桩式围护结构有限元分析,浙江大学学报(工学版),1997,31(4):442~448.
    何颐华,杨斌,等,双排桩护坡试验与计算的研究,建筑结构学报,1996,17(2):29,58~66.
    蔡袁强,王立忠,陈云敏,吴世明,夏元芳,软土地基深基坑开挖中双排桩式围护结构应用实录,建筑结构学报,1997,18(4):70~76.
    陈云敏,程泽海,凌道盛,考虑固结过程的桩-土-筏三维相互作用分析,岩土工程学报,2004,26(5):584~588.
    陈兴坤,基桩中负摩阻力的影响及其对策,岩土工程界,7(5):52~54.
    《地基处理手册》(第二版)编写委员会,地基处理手册,北京:中国建筑工业出版社,2000.
    杜运兴,赵明华,尚守平,多层地基横向受荷桩当量m值确定的新方法,中南公路工程,1999,24 (3):28~30.
    丁小秦,薄壁管桩在高填土路堤软基处理中的应用,城市道桥与防洪,2003(4):98~102.
    戴自航,彭振斌,抗滑桩全桩内力计算“m—k”法的有限差分法,岩土力学,2002,23(3):321~328.
    戴自航,彭振斌,基于抗滑桩内力计算“m”法的有限差分法,中南工业大学学报,2001,32(5):461~464.
    范文田,轴向与横向力同时作用下柔性桩的分析,西安交通大学学报,1986,1:39~44.
    费康,刘汉龙,高玉峰,丰土根,现浇混凝土薄壁管桩的荷载传递机理.岩土力学,2004,25(2):764~768.
    龚晓南 主编,深基坑工程设计施工手册,北京:中国建筑工业出版社,1998.
    龚晓南,潘秋元,张季容主编,土力学与基础工程实用名次词典,杭州:浙江大学出版社,1993.
    韩理安.水平承载桩的计算,长沙:中南大学出版社,2005.
    横向承载群桩的有限元计算分析,冯世挺,浙江大学硕士学位论文,2003.
    大直径现浇混凝土薄壁筒桩竖向承载性状数值分析,郭平,浙江大学硕士学位论文,2005,2.
    胡人礼,桥梁桩基基础分析和设计,北京:中国铁道出版社,1987.
    胡人礼,桥梁墩台深埋弹性基础的计算,铁路标准设计通讯,1965,1,3.
    胡中雄,土力学与环境土工学,上海:同济大学出版社,1997.
    水平循环荷载作用下桩.土相互工作机理的研究现状,黄小明,赵利平,湖南交通科技,2003,29 (1)
    黄甫明,王幼青,王梦恕,水平力对竖直桩沉降和承载力影响的研究,岩士工程学报,2003,25(4):511~513.
    黄强,桩基工程若干热点技术问题,北京:中国建材工业出版社,1998.
    华南理工大学,浙江大学,湖南大学编,基础工程,北京:中国建筑工业出版社,2003.
    洪学福,顾心怿,韩益民,高兴坤,用有限差分法计算变截面横向受载的桩身位移与内力,中国海洋平台,1997,12(3):112~115.
    胡立万,陈鹭缨,NL法的一个有限元解,港工技术,2002,9:19~21.
    何元才.王江军,软土地基混凝土管桩竖向承载力时间效应分析,建筑技术开发,2004,31(6):29~30.
    韩雪峰,现浇混凝土薄壁管桩单桩竖向承载力分析,建筑技术开发,2004,31(7):39~40.
    胡立万,周建国,单桩水平承载力计算方法的比较分析,辽宁交通科技,2003,8:19~22.
    建设部标准,建筑桩基技术规范(JGJ94-94),北京:中国建筑工业出版社,1995.
    交通部标准,港口工程桩基规范(JTJ254-98),北京:人民交通出版社,2001.
    吉林交通科学研究所,交通部规划研究院,公路桥梁钻孔桩计算手册,北京:人民交通出版社,1983.
    金兴平,汪剑儿,预应力管桩的单桩荷载传递法分析,杭州市勘测设计研究院第二届学术研讨会论文集,杭州,2003.11.
    贾德庆,探讨钢管桩桩端土的闭塞效应,水运工程,2000,319(8):73~74.
    蒋天涛,浅谈刚架桩与双排桩的区别:31~35.
    现浇钢渣混凝土薄壁管桩材料试验与单桩承载特性研究,蒋陈钊,河海大学硕士学位论文,2004.
    李师正编,多项式代数,济南:山东人民出版社,1981.
    卢世深,林亚超,桩基础的计算和分析,北京:人民交通出版社,1987.
    考虑固结和流变的层状地基中的水平单桩的理论分析,陆建飞,王建华,沈为平,岩石力学与工程学报,2001,20(03).
    罗惟德,单桩承载机理分析与载荷—沉降曲线的理论推导,岩土工程学报,1990,12(11:35~44.
    刘杰,张可能.层状地基中单桩轴向荷载传递全过程分析,土木工程学报,2004,37(2):38~42.
    刘汉龙,费康,马晓辉,振动沉模大直径现浇薄壁管桩技术及其应用(Ⅰ):开发研制与设计,岩土力学,2003,24(2):164~168.
    刘汉龙,郝小员,费康,振动沉模大直径现浇薄壁管桩技术及其应用(Ⅱ):工程应用与试验,岩土力学,2003,24(3):372~375.
    陆海源,刘汉龙,谢庆道,新型PCC桩结构直立式海堤技术开发,岩土工程界,2003,7(4):75~78.
    李国强,黄宏伟,郑步全编著,工程结构荷载与可靠度设计原理,北京:中国建筑工业出版社,1999.
    卢继明,锚碇式双排桩治理滑坡的设计与应用,铁道建筑技术,2004,3:42~44.
    李玉成,孙路,滕斌,波浪与外壁开孔筒桩群的相互作用,力学学报,2005,37(2):141~147.
    卢成原,孟繁丽,承受水平荷载群桩研究进展,浙江工业大学学报,2001,29(4):405~409.
    刘汉龙,费康,周云东,高玉峰,现浇混凝土薄壁管桩内摩阻力的数值分析,岩土力学,2004,25supp(2):211~216.
    赖伟,雄峰,群桩—土—承台结构共同作用的数值分析,四川大学学报,2001,33(4):17~20.
    李作勤,摩擦桩的荷载传递及承载力的一些问题,岩土力学,1990,11(4):2~11.
    卢成原,胡瑞华,考虑群桩效应的海洋平台桩—土—结构共同工作研究,海洋工程,1996,2:9~16.
    马远刚,吴兴龙,有限差分法分析横向运动土中的桩,陕西建筑,1999,3:62~64.
    马远刚,邢仲星,软土中被动桩有限差分的改进与应用,陕西建筑,1999,4:23~26.
    马远刚,茜平一,横向土运动作用下群桩的性状研究,岩土力学,2000,21(4):377~380.
    倾斜荷载作用下斜桩基础工作性状研究,吕凡任,浙江大学博士论文,2004.
    欧立新,双排桩加预应力锚杆支护结构在基坑加固中的应用,中外建筑,2005,03:119~120.
    [日]横山幸满,桩结构物的计算方法和计算实例,唐业清、吴庆荪译,北京:中国铁道出版社,1984.
    实用桩基工程手册,史佩栋 主编,中国建筑工业出版社,2003.
    单煜辉,段勇,顾华忠,现浇砼薄壁筒桩处理公路软基,山东交通科技,2002,(3):1~2,5.
    宋雄伟,大直径桩的负摩阻力及性状的探讨,山西建筑,2004,30(21):62~63.
    铁道第四勘察设计院大亚湾分院,大亚湾石化工业区筒桩结构海堤及相关工程优化设计,2003.
    粘土中横向荷载桩的P—Y曲线法评述,田平,王惠初,河海大学学报,1994,22 (2).
    王哲,龚晓南,大直径薄壁灌注筒桩在堤防工程中的应用,岩土工程学报,2005.
    王绵森,马知恩主编,工科数学分析基础,北京:高等教育出版社,1998.
    王用中,张河水,弹性地基梁的压弯计算及其应用,桥梁建设,1985,4:30~52.
    吴勃英主编,数值分析原理,北京:科学出版社,2003.
    吴恒立,计算推力桩的综合刚度原理和双参数法,北京:人民交通出版社,1990.
    水平荷载桩桩土共同作用全过程分析,王成,邓福安,岩土工程学报,2001,23 (4).
    魏纲,袁斌,现浇混凝土薄壁筒桩竖向承载特性分析,水利水电技术,2004,(9):84~87.
    温淑莲,高山,闫守坤,用于软基处理的现浇薄壁筒桩设计计算方法.山东交通学院学报,2002.10(3):58~61.
    吴颖峰,刘军山,钱树波,现浇混凝土薄壁筒桩施工异常现象分析与处理,交通科技,2004(5):40~42.
    汪鹏程,朱向荣,筒桩与普通沉管灌注桩施工挤土效应比较,岩土工程技术,2004,18(1):30~34.
    王成华主编,土力学原理,天津:天津大学出版社,2002.
    文松霖,铅直、水平荷载作用下扩底桩的承载机理,长江科学院院报,2004,21(5):24~27,31.
    王建华,高邵武,陆建飞,表面堆载作用下群桩负摩摩擦研究,计算力学学报,2003,20(2):169~174.
    王立忠,冯永正,柯瀚,陈云敏,瑞利波作用下成层地基中单桩横向振动分析,振动工程学报,2001,14(2):204~210.
    新型双排桩结构桩—土共同作用理论与应用,周国然,同济大学博士学位论文,2003.
    谢耀峰,横向承载群桩性状及承载力研究,岩土工程学报,1996,18(6):39~45.
    港口工程桩基水平承载力和负摩擦力的研究,谢耀风,河海大学博士学位论文,2002.
    茜平一,周洪波,水平荷载群桩三维有限元分析研究,岩土工程技术,1999,4:44~48.
    [英]M.J.汤姆林森,桩的设计和施工,朱世杰译,北京:人民交通出版社,1984.
    叶俊能,沉管灌注筒桩工作性状研究,博士学位论文,杭州:浙江大学,2003.
    叶亦盛,刘万伟,现浇混凝土薄壁筒桩在软基处理中的应用,公路交通技术,2003(5):12~14.
    叶万灵,时蓓玲,桩的水平承载力实用非线性计算方法—NL法.岩土力学,2000,21(2):97~101.
    曾定帮,彭文祥,双排桩与止水帷幕复合支护在基坑围护中的应用,岩土工程界,2005,8(6):47~48.
    朱彦鹏,张安疆,王秀丽,m法求解桩身内力与变形的幂级数解,甘肃工业大学学报,1997,23 (3):77~82.
    张耀年,横向受荷桩的通解,岩士工程学报,1998,20 (1):84~86.
    赵明华,吴鸣,桥梁桩基计算与检测,北京:人民交通出版社,2000.
    赵明华,吴鸣,郭玉荣,轴、横向荷载下桥梁基桩的受力分析与试验研究,中国公路学报,2002,15 (1):50~54.
    赵明华,轴向和横向荷载同时作用下的桩基计算,湖南大学学报,1987,14 (2):68~81
    赵明华,吴鸣,邹新军,倾斜荷载下基桩的研究现状及发展动态,湖南大学学报(自然科学版),2003,30 (4):73~77.
    赵明华,倾斜荷载下基桩受力研究[博士学位论文,长沙:湖南大学,2001.
    桩基水平振动理论与性状研究,胡安峰,浙江大学博士学位论文,2002.
    水平荷载下群桩的受力变形特性分析,周常春,重庆交通学院硕士学位论文,2002.
    横向承载桩的富氏级数分析,钟岱辉,李明,山东建筑工程学院院报,1996,11 (4).
    朱金颖,陈龙珠,葛炜,层状地基中桩静载试验数据的拟和分析,岩土工程学报,1998,20(3):34~39.
    朱向荣,叶俊能,姜贤放,沉管灌注筒桩的承载特性浅析,岩土工程学报,2003,25(5):538~542.
    周平,叶楠,现浇砼薄壁筒桩加固桥头软基在杭宁高速公路的应用,浙江交通职业技术学院学报,2003,4(3):19~22.
    张耀年,横向受荷桩的通解,岩土工程学报,1998,20(1):84~86.
    中华人民共和国国家标准,海港水文规范(JGJ94-94),北京:中国建筑工业出版社,1995.
    中华人民共和国建设部,中华人民共和国国家标准,混凝土结构设计规范(GB 50010—2002),北京:中国建筑工业出版社,2002.
    张弘,深基坑开挖中双排桩支护结构的应用与探讨,地基处理,1993,4(3):42~47.
    赵晖,蔡袁强,等,双排桩丁坝在涌潮作用下的内力测试和分析,人民长江,2005,36(2):37~39.
    郑刚,李欣,刘畅,高喜峰,考虑桩土相互作用的双排桩分析,建筑结构学报,2004,25(1):99~106.
    朱彦鹏,张安疆,王秀丽,m法求解桩身内力与变形的幂级数解,甘肃工业大学学报,1997,23(3):77~82.
    新型双排桩结构桩—土共同作用理论与应用,周国然,同济大学博士学位论文,2003.
    周建国,胡立万,NL法在高桩梁板式码头横向排架计算中的应用,水运工程,2003,350(3):23~27,35.
    赵明华,易伟建,圆形和环形截面挡土桩的配筋计算,湖南大学学报,1998,25(2):78~82.
    赵明华,何俊翘,曹文贵,吴鸣,基桩竖向荷载传递模型及承载力研究,2005,32(1):37~42.
    周翠英,刘祚秋,等,门架式双排抗滑桩设计计算新模式,岩土力学,2005,26(3):441~445.
    张海燕,王新申,桩基础施工中的筒桩技术及施工设备,工程机械与维修,2005,09:89~91.
    周云东,刘汉龙,等,现浇薄壁管桩在威—乌高速公路软基加固中的应用,岩石力学,2005,26(10):1671~1674.
    《桩基工程手册》编写委员会,桩基工程手册,北京:中国建筑工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700