用户名: 密码: 验证码:
川中须家河组低渗砂岩气藏渗流机理及储层评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以川中须家河组低渗砂岩含水气藏为研究对象,针对该气藏产水严重的问题,通过常规压汞、恒速压汞、核磁共振测试技术、微观模型实验和高压岩心驱替实验等,系统地研究了储层微观孔隙结构特征、产水机理和储层压力条件下的渗流规律,结合储层静、动态特征,形成了一套储层综合分类评价方法。取得以下主要研究成果:
     (1)须家河组低渗砂岩气藏储层小于0.1微米的孔喉占孔隙体积30%-70%,喉道既是气体重要的渗流通道,也是气体重要的储集空间,这种孔隙结构特征决定了储层致密高含水。
     (2)提出可动水饱和度的概念,将原始含水分成束缚水和可动水,建立了可动水饱和度的核磁共振测试方法和测井解释方法。
     (3)建立了可动水饱和度预测气井产水特征的关系:可动水饱和度小于6%,对应的气井基本不产水;介于6%-8%之间,少量产水;介于8%~11%之间,产水量较大;大于11%,严重产水;该成果与川中须家河组气井产水特征吻合,可用于预测气井开发过程中的产水特征,指导制定合理的气井开发方案和工艺措施,达到有效防水和控水的目的。
     (4)低渗砂岩气藏地层条件下气体滑脱效应弱,应力敏感性弱;含水饱和度大于60%时,气体渗流表现出低渗透液相非线性渗流特征;含水饱和度在40%左右时,气体渗流特征发生明显转变;小于30%时,出现显著的气体渗流特征,高流速时会产生紊流现象。
     (5)气、水相对渗透率不仅是含水饱和度的函数,还是压力梯度的函数。气相相对渗透率随压力梯度的增大而减小,水相相对渗透率随压力梯度的增大而增大,在此基础上建立了低渗砂岩气藏气水两相渗流模型,该模型真实反映储层渗流特征,应用该模型预测了气井未来生产动态。
     (6)根据低渗砂岩含水气藏储层的静、动态特征,建立了包括渗透率、孔隙度、含气饱和度、主流喉道半径、阈压梯度和可动水饱和度六个特征参数的储层评价参数体系,形成了新型的低渗砂岩气藏储层多参数综合分类评价方法,制定了须家河组低渗砂岩气藏储层评价图版,方便现场应用,为川中须家河组低渗砂岩含水气藏储层优选打下坚实基础,对于指导气田高效开发具有重要意义。
Xujiahe low permeability sandstone gas reservoirs in central Sichuan basin produced a lot of water in the development process. Aiming at this issue, the microscopic pore structures of reservoir and percolation mechanism in reservoir pressure are studied, and a new reservoir evaluation method is formed combined with static and dynamic reservoir characteristics. The following key findings are achieved:
     (1) Pores less than 0.1 micrometer diameter are accounted for 30%-70% of pore volume in Xujiahe low permeability sandstone gas reservoirs; Throat is not only gas flow channel, but also an important gas storage space. This pore structure determines the tight and high water saturation reservoirs.
     (2) The concept of movable water is proposed, which divides raw water into bound water and movable water; Movable water saturation NMR test and well logging interpretation method are proposed.
     (3) Method of using reservoir movable water saturation to predict water production feature of gas well is established:gas well where movable water saturation is below 6% does not produce water; For movable water saturation between 6% to 8%, gas well yields a few water; For movable water saturation between 8% to 11%, gas well yields a lot of water; When movable water saturation is greater than 11%, gas well produces water severely. The results can be used to predict gas wells water production features during the development, guiding to a reasonable development plan, and to achieve effective water control purposes.
     (4) The gas slippage effect under the reservoir conditions can be neglected in low permeability sandstone gas reservoir and stress sensitivity is weak. More than 60% water saturation, the gas phase flow showed liquid nonlinear seepage characteristics; At about 40% water saturation, gas flow characteristic is gradually showed; less than 30% water saturation, gas flow characteristics is significantly appeared, and high velocity will produce turbulent flow phenomenon.
     (5) Gas and water relative permeability is not only a function of water saturation, but also the function of pressure gradient. Gas relative permeability decreases with pressure gradient, while the water relative permeability increases with the pressure gradient. A gas-water two-phase flow model of low permeability sandstone gas reservoir is established. Future gas production dynamics of gas well is predicted based on this new model.
     (6) According to the static and dynamic features of low permeability sandstone gas reservoirs, a reservoir evaluation parameter system including six parameters is established:permeability, porosity, gas saturation, mainstream throat radius, threshold pressure gradient and mobile water saturation. A new type of multi-parameter comprehensive reservoirs evaluation method for low permeability sandstone gas reservoirs is formed. This result lays a solid foundation for reservoir evaluation and selection for Xujiahe low permeability sandstone gas reservoirs in Sichuan basin.
引文
[1]张宁生.低渗气藏开发的关键性技术与发展趋势[J].天然气工业,2006,26(12):38-41.
    [2]李士伦,孙雷,杜建芬等.低渗致密气藏、凝析气藏开发难点与对策[J].新疆石油地质,2004,25(2):156-159.
    [3]国家能源局.气藏分类[M]. SY/T 6168,2009.
    [4]袁士义,胡永乐,罗凯.天然气开发技术现状、战略及对策[J].石油勘探与开发,2005,32(6):125.
    [5]徐冰青,刘强,陈明等.低渗透和特低渗透气藏提高采收率综述[J].天然气勘探与开发,2007,30(2):47-49.
    [6]朱光有,张水昌,梁英波等.四川盆地天然气特征及气源[J].地学前缘,2006,13(2):234-245.
    [7]杨磊,张健飞,江喻.川东北地区须家河组砂岩储层特征[J].石油地质与工程,2010,24(5):9-12.
    [8]徐樟有,吴胜和,张小青等.川西坳陷新场气田上三叠统须家河组须四段和须二段储集层成岩-储集相及其成岩演化序列[J].古地理报,2008,10(5):447-457.
    [9]庞宏磊,李德敏.川西坳陷鸭子河构造上三叠统须家河组沉积微相研究[J].内蒙古石油化工,2006(8):132-133.
    [10]李知维.川中充西地区上三叠统须家河组须四段储层特征及储层预测[D].成都:西南石油大学,2006.
    [11]张胜斌,王琪,李小燕等.川中南河包场须家河组砂岩沉积—成岩作用[J].石油学报,2009,30(2):225-231.
    [12]陈波,张帆,王兴志.广安地区须家河组须六段储层控制因素研究[J].重庆科技学院学报(自然科学版),2009,11(4):13-15.
    [13]付斌,王兴志,蒋志斌等.广安构造须家河组须六段储层成岩作用与孔隙演化[J].重庆科技学院学报(自然科学版),2009,11(2):5-7.
    [14]徐兆辉,汪泽成,徐安娜等.四川盆地须家河组致密砂岩储集层特征与分级评价[J].新疆石油地质,2011,32(1):26-28.
    [15]张光荣,卢晓敏,钟子川等.潼南地区须家河组须二段储层预测[J].西南石油大学学报(自然科学版),2008,30(5):77-80.
    [16]秦华,沈敏.元坝地区须家河组须二段大型三角洲砂体特征[J].天然气技术,2010,4(6):13-16.
    [17]A.E.薛定谔 著,王鸿勋等译.多孔介质中的渗流物理[M].北京:石油工业出版社,1982:43-44.
    [18]klinkenberg L. J.. The Permeability of Porous Media to Liquid and Gas[J]. API Drilling and Production Practice,1941:200-213.
    [19]Jones F.O., and W. W. Owens. A Laboratory Study of Low-Permeability Gas Sands[J]. Petroleum Techology,1980:1631-1640.
    [20]Rose W. D.. Permeability and Gas-Slippage Phenomena[C]. Drilling And Production Practice, API(1948):209.
    [21]Fulton P.F.. The Effect of Gas Slippage on Relative Permeability Measurements[J]. Producers Monthly,1951,15(12):14-19.
    [22]Keighin C.W., and Sampath K.. Evaluation of Pore Geometry of some Low-Permeability Sandstones-Uinta Basin[J]. Journal of Petroleum Technique,1982(7):65-70.
    [23]J. A. Rushing, and K. E. Newsham. Measurement of the Two-Phase Gas Slippage Phenomenon and Its Effect on Gas Relative Permeability in Tight Gas Sands[C]. SPE Annual Technical Conference and Exhibition,2003, SPE 84297-MS.
    [24]Kewen Li, and Roland N. Home. Gas Slippage in Two-Phase Flow and the Effect of Temperature[C]. SPE Western Regional Meeting,2001, SPE 68778.
    [25]Turgay Ertekin, Gregory A. King, Fred C. Schwerer.. Dynamic Gas Slippage:A Unique Dual-Mechanism Approach to the Flow of Gas in Tight Formations[J]. SPE Formation Evaluation,1986:43-52.
    [26]朱维耀,宋洪庆,何东博等.含水低渗气藏低速非达西渗流数学模型及产能方程研究[J].天然气地球科学,2008,19(5):685-689.
    [27]王茜,张烈辉,钱治家等.考虑科林贝尔效应的低渗、特低渗气藏数学模型[J].天然气工业,2003,23(6):100-102.
    [28]林光荣,卢燕,刘学刚等.影响特低渗气藏气体渗流能力因素分析[J].辽宁工程技术大学学报(自然科学版),2009,28(增刊):79-81.
    [29]方全堂,陈伟,段永刚.致密低渗气藏气井动态分析方法[J].天然气勘探与开发,2009,32(4):40-43.
    [30]罗瑞兰,程林松,朱华银等.研究低渗气藏气体滑脱效应需注意的问题[J].天然气工业,2007,27(4):92-94.
    [31]赵继涛,梁冰.低渗气藏中气体非线性渗流的特征分析[J].辽宁工程技术大学学报(自然科学版),2010,29(6):1036-1038.
    [32]姚约东,李相方,葛家理等.低渗气层中气体渗流克林贝尔效应的实验研究[J].天然气工业,2004,24(11):100-102.
    [33]闫健,张宁生,刘晓娟等.低渗气藏单相气体渗流特征分析[J].西安石油大学学报(自然科学版),2010,25(1):41-44.
    [34]万军凤,卢渊,赵仕俊.低渗气藏滑脱效应研究现状及认识[J].新疆石油地质,2008,29(2):229-231.
    [35]付大其.低渗气藏储层渗流机理研究[D].大庆:大庆石油学院,2009.
    [36]吴英,程林松,宁正福.低渗气藏克林肯贝尔常数和非达西系数确定新方法[J].天然气工业,2005,25(5):78-80.
    [37]朱光亚,刘先贵,李树铁等.低渗气藏气体渗流滑脱效应影响研究[J].天然气工业,2007,27(5):44-47.
    [38]郭平,徐永高,陈召佑等.对低渗气藏渗流机理实验研究的新认识[J].天然气工业,2007,27(7):86-88.
    [39]朱华银.克拉2气田异常高压气藏衰竭开采物理模拟[D].北京:中国地质大学,2002.
    [40]Geertsma J.. The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks[J]. Pet Trans AIME.2010:331-340.
    [41]Hall H. N.. Compressibility of Reservoir rocks[J]. Trans, AIME,1953,198:309-316.
    [42]Fatt I., and Davis D. H.. Reduction in Permeability with Overburden Pressure[J]. JPT,1952, 4(12):34-41.
    [43]M. Latchie A. S., Hemstick R. A., and Joung L. W.. The Effective Compressiblity of Reservoir Rock and Its Effects on Permeability[J]. JPT,1958,10(6):49-51.
    [44]刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度渗透率的影响[J].地质力学学报,2001,7(1):41-44.
    [45]杨满平,李允,李治平.气藏含束缚水储层岩石应力敏感性实验[J].天然气地球科学,2004,15(3):228-229.
    [46]Biot M. A.. General Theory of Three Dimensional Consolidation[J]. J. Appl. Phys.,1941,12: 155-164.
    [47]Biot M. A.. General Solution of the Equation of Elasticity and Consolidation for a Porous Mterial[J]. J. Appl. Mech.,1956,78:91-96.
    [48]Finol A, Farouq Ali S M.. Numerical Simulation of Oil Production with Simultaneous Ground Subsidence[J]. SPEJ,1975:411-424.
    [49]Vaziri H. H.. Coupled Fluid-Flow and Stress Analysis of Oil Sand Subject to Heating[J]. JCPT,1988,5:84-91.
    [50]宋付权,刘慈群.变形介质油藏试井分析方法[J].油气井测试,1998,7(2):1-6.
    [51]范学平,李秀生,张十成.低渗透变形介质油气藏渗流-流同耦合研究[J].新疆石油地质,2001,22(1):75-78.
    [52]苏玉亮,栾志安,张永高.变形介质油藏开发特征[J].石油学报,2000.21(2):68-72.
    [53]姜汉桥,刘奋斗,刘伟.不完全可逆变形介质油藏流体渗流模型及其数值解[J].水动力学研究与进展A辑,2003,18(3):343-348.
    [54]宋传真,郑荣臣.致密低渗气藏储层应力敏感性及其对单井产能影响研究[J].西南石油学院学报,2006,25(6):47-49.
    [55]周克明,杨霞,曲林等.包界地区须家河组低渗砂岩气藏储层应力敏感性[J].石油钻采 艺,2010,32(增):32-35.
    [56]张李,张茂林,梅海燕.不同开采方式下应力敏感对低渗气藏的影响[J].断块油气田,2007,14(2):53-55.
    [57]戴强,段永刚,焦成.低渗气藏储层应力敏感性实验研究[J].海洋石油,2007,27(2):79-82.
    [58]宋传真,郑荣臣.致密低渗气藏储层应力敏感性及其对单井产能的影响[J].大庆石油地质与开发,2006,25(6):47-49.
    [59]郑荣臣,王昔彬,刘传喜.致密低渗气藏储集层应力敏感性试验[J].新疆石油地质,2006,27(3):345-347.
    [60]胥洪俊,范明国,康征等.考虑渗透率应力敏感的低渗气藏产能预测公式[J].天然气地球科学,2008,19(1):145-147.
    [61]李传亮.低渗透储层不存在强应力敏感[J].石油钻采工艺,2005,27(4):61-63.
    [62]李传亮.有效应力概念的误用[J].天然气工业,2008,28(10):130-132.
    [63]B.A.弗洛林.同济大学译.土力学原理[M].北京:中国工业出版社.1964.
    [64]贺伟,冯曦,钟孚勋.低渗储层特殊渗流机理和低渗透气井动态特征探讨[J].天然气工业,2002,22(增):91-94.
    [65]谭雷军,贾永禄,冯曦等.低速非达西流启动压力梯度的确定[J].油气井测试,2000,9(4):5-7.
    [66]依呷,唐海,吕栋梁.低渗气藏启动压力梯度研究与分析[J].海洋石油,2006,26(3):51-54.
    [67]任晓娟,张国辉,缪飞飞.低渗多孔介质非达西渗流启动压力梯度存在判识[J].辽宁工程技术大学学报(自然科学版),2009,28(增):273-276.
    [68]熊钰,邓波,杨志国.低渗致密气藏气井产能方程及启动压力联解新方法[J].天然气勘探与开发,2007,30(2):41-49.
    [69]朱华银,付大其,卓兴家,贲月梅.低渗气藏特殊渗流机理实验研究[J].天然气勘探与开发,2009,32(3):39-41.
    [70]熊昕东,王世泽,龙刚等.低渗砂岩气藏难动用储量渗流机理研究[J].钻采工艺,2007,30(5):70-73.
    [71]刘晓旭,胡勇,李宁等.低渗砂岩气藏气体特殊渗流机理实验研究与分析[J].特种油气藏,2007,14(1):80-83.
    [72]姚广聚,熊钰,朱琴等.特低渗砂岩气藏不同原生水下渗流特征研究[J].石油地质与工程,2008,22(4):84-87.
    [73]时宇.海拉尔-塔木察格盆地不同类型油藏储层特征及渗流规律研究[D].廊坊:中国科学院渗流流体力学研究所,2008.
    [74]Forchhemer P.. Wasserbewegung durch Boden[J] Z. Vereines Deutscher Ingenieure,1901(45): 1736-1741.
    [75]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社,1997.
    [76]杨正明,姜汉桥,朱光亚 等.低渗透含水气藏储层评价参数研究[J].石油学报,2008,29(2):252-255.
    [77]智慧文.塔河油田奥陶系碳酸盐岩测井储层评价研究[D].成都理工大学,2006.
    [78]吕晓光,赵永胜,史晓波.储层分类方法的应用及评价[J].大庆石油地质与开发,1995,14(3):10-15.
    [79]毛宁波,信荃麟.灰色聚类分析方法在储层含油性预测中的应用[J].江汉石油学院学报,1996,18(02):52-54.
    [80]宋子齐,谭成仟,曹嘉猷.灰色系统理论处理方法在储层物性、含油性评价中的应用[J].石油勘探与开发,1994,21(02):87-94.
    [81]谭成仟,宋子齐,吴少波.灰色关联分析在辽河小洼油田储层油气产能评价中的应用[J].测井技术,2001,25(02):119-122.
    [82]强平,曾伟,陈景山.利用主成分分析对储层进行分类和评价[J].西南石油学院学报,1997,19(1):27-31.
    [83]姚萌,徐樟有,熊琦华等.数理统计分析方法在储层分类中的应用[J].石油学报,1994,15(增刊):105-108.
    [84]马立文,窦齐丰,彭仕宓等.用Q型聚类分析与判别函数法进行储层评价—以冀东老爷庙油田庙28X1区块东一段为例[J].西北大学学报(自然科学版),2003,33(1):83-86.
    [85]时宇,杨正明,黄延章.储层流动孔喉下限研究[J].西南石油大学学报(自然科学版),2009,31(6):41-44.
    [86]杨正明,姜汉桥,李树铁等.低渗气藏微观孔隙结构特征参数研究—以苏里格和迪那低渗气藏为例[J].石油天然气学报,2007,29(6):108-110.
    [87]刘晓旭,胡勇,朱斌等.低渗砂岩气藏储层物性与孔喉结构分析[J].中外能源,2006,11(6):33-36.
    [88]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质,2005,26(3):280-284.
    [89]舒勇,鄢捷年,熊春明等.低渗致密砂岩凝析气藏液锁损害机理及防治—以吐哈油田丘东气藏为例[J].石油勘探与开发,2009,36(5):628-634.
    [90]张曙光,石京平,刘庆菊等.低渗致密砂岩气藏岩石的孔隙结构与物性特征[J].新疆地质,2004,22(4):438-441.
    [91]唐海,吕渐江,吕栋梁等.致密低渗气藏水锁影响因素研究[J].西南石油大学学报(自然科学版),2009,31(4):91-94.
    [92]林光荣,邵创国,徐振锋等.低渗气藏水锁伤害及解除方法研究[J].石油勘探与开发,2003,30(6):117-118.
    [93]张宁生,王志伟,任晓娟等.低渗天然气气层损害机理探究[J].西安石油学院学报(自然科学版),2002,17(3):15-18.
    [94]任晓娟,张宁生,张喜凤等.水相滞留对低渗气层渗透率的损害分析[J].天然气工业,2004,24(11):106-108.
    [95]吕渐江,唐海,吕栋梁等.利用相渗曲线研究低渗气藏水锁效应的新方法[J].天然气勘探与开发,2008,31(3):49-52.
    [96]杨正明,姜汉桥,周荣学等.用核磁共振技术测量低渗含水气藏中的束缚水饱和度[J].石油钻采工艺,2008,30(3):56-59.
    [97]毛志强,张冲,肖亮.一种基于核磁共振测井计算低孔低渗气层孔隙度的新方法[J].石油地球物理勘探,2010,45(1):105-109.
    [98]宋洪庆,朱维耀,张玉广等.不同平面非均质条件下含水低渗气藏开采理论研究[J].特种油气藏,2008,15(6):45-51
    [99]雷霆,王新海,李治平.不同增产方式对低渗气藏开发效果的影响分析[J].石油天然气学报,2006,28(4):354-356.
    [100]朱斌,熊燕莉,王浩等.川东石炭系气藏低渗区合理井距确定方法[J].天然气勘探与开发,2009,32(3):27-28.
    [101]陈伟,段永刚,严小勇等.低渗气藏单井非稳态产能分析及控制储量评价[J].西南石油大学学报,2007,29(2):34-36.
    [102]江陵,廖华伟,苟嘉忆等.低渗气藏单井合理井距确定方法[J].内蒙古石油化工,2008(16):142-144.
    [103]王都伟,王楚峰,孟尚志等.低渗气藏多层合采可行性分析及产量预测研究[J].石油钻采工艺,2009,31(增刊1):79-87.
    [104]汪周华,钟兵,伊向艺等.低渗气藏考虑非线性渗流特征的稳态产能方程[J].天然气工业,2008,28(8):81-83.
    [105]解维国.低渗气藏气井生产动态分析研究[D].大庆:大庆石油学院,2009.
    [106]时宇,杨正明,黄延章.低渗透储层非线性渗流模型研究[J].石油学报,2009,30(5):731-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700