用户名: 密码: 验证码:
海岛棉LRR-TM类抗病基因GbaVd1和GbaVd2的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花黄萎病是土传性真菌病害,其致病菌为大丽轮枝菌,给棉花生产造成巨大的损失。对大丽轮枝菌的研究虽然开展了大量的工作,但尚无成果可应用于生产防治,主要原因是抗病基因资源匮乏和大丽轮枝菌致病机理复杂。一般认为,转基因抗病育种是解决棉花黄萎病的有效途径,因此,克隆对大丽轮枝菌有效的抗病基因并鉴定其功能就成为当前棉花抗黄萎病研究的主要内容之一。
     本研究通过同源克隆、TAIL-PCR和RACE相结合的方法,从抗病棉种海7124中克隆了同番茄抗黄萎病Ve1和Ve2同源的LRR-TM类基因GbaVd1和GbaVd2。GbaVd1基因cDNA全长3262 bp,开放阅读框为3063bp,编码1020 aa,5'UTR为69bp,3'UTR为130bp,GbaVd2基因cDNA全长3466 bp,开放阅读框为3249 bp,编码1082 aa,5'UTR为68bp,3'UTR为149bp,两个基因均不含内含子。通过TAIL-PCR克隆了两个基因的侧翼序列分别为900 bp和1107 bp。尽管GbaVd1基因和GbaVd2基因与Ve1和Ve2的一致性不到60%,编码蛋白的一致性低于50%,但它们与LRR-TM类抗病基因类似,含有信号肽、N端成熟区、LRR重复单元、胞外结构域、跨膜区和胞内结构域。其中,GbaVd1含有32个LRR重复单元,GbaVd2含有33个LRR重复单元,分别含有22个和26个潜在的糖基化位点。Psort预测表明,GbaVd1和GbaVd2可能定位于细胞质膜上。侧翼序列分析表明,它们含有潜在的真菌激发子应答元件Box-W1、茉莉酸甲酯应答元件TGACG基序和CGTCA基序、脱落酸应答元件ABRE、应答防卫反应的顺式作用元件TC-rich repeat等。
     根据GbaVd1和GbaVd2基因,从不同野生棉种中克隆了这两个基因(Vd1和Vd2)及其侧翼序列,并分析这些基因的差异性与棉种抗病性的关系。不同棉种Vd1和Vd2基因的差异主要是以单核苷酸变异为主,引起了编码蛋白多个有义突变,此外也存在着核酸片段的缺失,如纳尔逊棉GneVd1、戴维逊棉GdaVd2、斯托提棉GstVd2等,引起了编码蛋白信号肽缺失、N端成熟区改变、糖基化位点增加或删除、胞内短肽丧失等变化,但这些差异和棉种的抗感性并不存在明显的相关性。
     转基因拟南芥实验表明,GbaVd1和GbaVd2过表达能够增强拟南芥对大丽轮枝菌毒素的耐受性,未发现叶片黄化和根系发育受抑制的病症。在大丽轮枝菌侵染的条件下,GbaVd1和GbaVd2基因明显提高了拟南芥对大丽轮枝菌的抗性,转基因株系分蘖能力恢复正常,生长延缓得到明显改善,株高受影响较小,种子结实正常,只有叶片表现出一定黄化症状。说明GbaVd1和GbaVd2是两个具有抗大丽轮枝菌功能的基因。
     对抗性GbaVd1和GbaVd2转基因株系基因芯片表达分析表明,分别有44个和61个基因共同被上调和下调1.5倍以上,而且应激反应相关的基因被大量诱导表达,包括生物胁迫、非生物胁迫、免疫应答、应激调控系统等。对所有差异表达基因分析发现,GbaVd1和GbaVd2调控了多个抗病信号因子的表达,包括SERK2、SERK4、SGT1A、SGT1B、NDR1、EDS1和激酶类基因;影响了乙烯和茉莉酸信号转导途径相关基因表达,如EBF1、EBF2、EIN3、ABA1、AOS、AOC1、JMT、JAR1、JAZ7等;分别改变了黄酮化合物和萜类化合物的合成,DFR、TT5、LDOX、SQP2、GGPS1、SQE3等基因表达发生了变化;促使了细胞壁相关蛋白基因的表达发生了变化,包括Nodulin、凝聚素、富含脯氨酸蛋白、富含羟脯氨酸蛋白、富含甘氨酸蛋白、阿拉伯半乳糖蛋白等,转基因株系与细胞壁合成/降解相关的葡聚糖酶和木聚糖酶活性提高。
     基于上述研究,提出了GbaVd1和GbaVd2抗病机理模式的假设:即两个基因编码类似于LRR-TM类抗病基因的跨膜受体蛋白,同大丽轮枝菌激发子直接或者间接结合,调控了抗病信号因子的表达,随后激活了乙烯和茉莉酸信号转导途径,进而改变植物抗毒素的合成和细胞壁相关蛋白的表达,形成具有抗真菌活性的植物抗毒素和增强细胞壁的组织障碍,提高寄主对大丽轮枝菌的抗性。
Cotton production was serious destroy with soil-borne fungal Verticillium dahliea and difficult to prevent. Although many research works about the Verticillium dahliea was carried out, there were no effective research achievements for disease control, due to lack of disease resistance gene resources in cotton and complexity pathogenicity of Verticillium dahliae. Therefore, cloning and identification the function of disease resistance genes to Verticillium dahliae is the urgent task to disease resistance transgenic breeding.
     In this research, leucine-rich repeats transmembrane (LRR-TM) genes of GbaVd1 and GbaVd2 were cloned from the disease resistance cultivar Gossypium barbadense cv. Hai7124 by TAIL-CPR and RACE methods, which homologus to anti-Verticillium genes Ve1 and Ve2 in tomato. The full length cDNA of GbaVd1 is 3262 bp in which a 3063 bp ORF encoding a 1020 aa protein, a 3′UTR and 5′UTR of 130 bp and 69 bp, respectively. The full length cDNA of GbaVd2 comprised 3466 bp and included an ORF of 3249 bp, encoding a 1082 aa protein, a 68 bp and 149 bp long 5′UTR and 3′UTR, respectively. The flanking sequences of GbaVd1 and GbaVd2 were cloned by TAIL-PCR method and 900 bp and 1107 bp fragment were obtained, respectively, and there was no intron in GbaVd1 and GbaVd2. Although the identity of the nucleotides between GbaVd1/GbaVd2 and Ve1/Ve2 is less than 60% and code proteins is lower than 50%, their structures was similar to the LRR-TM disease resistance gene, which contains signal peptide, N terminus of the mature protein, leucine-rich repeats (LRRs), extracytoplasmic domain, transmembrane domain and cytoplasmic domain. In GbaVd1 and GbaVd2, there are 32 and 33 LRRs, also include 22 and 26 potential glycosylation sites, respectively. The subcellular localization of GbaVd1 and GbaVd2 was predicted in plasma membrane by Psort. Morever, the flanking sequences were possible contain many cis-elements, such as fungal elicitor responsive element of Box-W1, cis-acting regulatory element involved in the MeJA-responsiveness of TGACG motif and CGTCA motif, cis-acting element involved in the abscisic acid responsiveness of ABRE, cis-acting element involved in defense and stress responsiveness of TC-rich repeats and so on.
     Vd1 and Vd2 genes and theirs flanking sequences were cloned from different wild cottons base on GbaVd1 and GbaVd2 sequences, and the relation between genes difference and cottons sensitivity to Verticillium dahliae was analysis. The difference of Vd1 and Vd2 genes were mainly shown single nucleotide polymorphisms which lead to many sense mutations. The lack of short nucleotide fragment was also exist in Vd1 and Vd2 genes, such as GneVd1 from Gossypium nelsonii, GdaVd2 from Gossypium davidsonii, GstVd2 from Gossypium sturtianum and so on, which result in the deletion of signal peptide, change the N terminus of mature protein, add or delete the glycosylation sites, lose of cytoplasmic domain and so on. However, there are no obvious correlation between the genes difference and the cottons sensitivity to Verticillium dahliae.
     Overexpressin of GbaVd1 and GbaVd2 were shown to enhance the tolerance to Verticilliun dahliae toxin (VD-toxin) in transgenic Arabidopsis, and did not found the symptoms of leaf chlorosis and root depression. Morever, the resistance of GbaVd1 and GbaVd2 transgenic plants to V. dahliae was obvious improved. For example, compared to the infected of wild type Col-0, the tillers of transgenic plants were returned to normal, the growth retardants was improved, the influence of inflorescence height was reduced and the seeded was shown normal, but the leaves of transgenic plant were also shown chlorosis as the wild type. Therefore, the results were shown that GbaVd1 and GbaVd2 genes possess anti-Verticillium function in V. dahliae invade progress.
     Analysis the gene expression profile were shown that 44 genes were co-upregulated and 61 genes co-downregulated more than 1.5 folds in both GbaVd1 and GbaVd2 transgenic plants, and many differential expression genes were related to response to stimulus which contained biotic stress, abiotic stress, immune response, regulation of response to stimulus and so on. The research was found that some signal factors of disease resistance were regulated in transgenic plants, such as SERK2, SERK4, SGT1A, SGT1B, NDR1, EDS1, kinase genes and so on. The ethylene and jasmonic acid signal transduction pathway were also effected in transgenic plants, the expression of EBF1, EBF2, EIN3, ABA1, AOS, AOC1, JMT, JAR1, JAZ7, etc were induced. The biosynthesis pathway of flavonoid and terpenoid were changed too, their related genes of DFR, TT5, LDOX, SQP2, GGPS1 and SQE3 were regulated. Overexpression of GbaVd1 and GbaVd2 were also promoted the expression of cell wall related protein genes, such as nodulin, lectin, proline-rich protein, hydroxyproline-rich glycoprotein, glycine-rich protein, arabinogalactan-protein and so on, and the activity ofβ-1,3-glucanase andβ-D-xylosidase were enhanced, which were related to cell wall synthesis or degradation.
     Base on these results, the mechanism of GbaVd1 and GbaVd2 resistance model was supposed, two genes encode LRR-TM receptor like protein could directly or indirectly combine with the V. dahliae elicitors, this action would regulate the expression of signal factor of disease resistance, then active the ethylene and jasmonic acid signal transduction pathway which lead to change the synthesis of phytoalexin and expression of cell wall related proteins, form the antifungus activity compound and enhance the cell wall structure obstacle, finally increase the host resistance to V. dahliae.
引文
1.陈捷胤. (2007).棉花重要抗黄萎病相关基因的表达特性分析及GhPR10功能初步研究[硕士学位论文].北京:中国农业科学院研究生院.
    2.顾本康,李经仪,顾萍,钱思颖,黄骏麒,周宝良,等. (1993).棉属野生种枯萎病黄萎病抗性鉴定初报.江苏农业科学, 5, 36–37.
    3.季道藩,汪若海,潘家驹. (2001).棉花知识百科.北京:中国农业出版社.
    4.李爱国,赵丽芬,赵国忠. (2006).远缘杂交棉花品种石远321的选育研究.安徽农业科学, 34, 1812–1815.
    5.梁理民,刘有良,王增信,梁正兰,姜茹琴,钟文南. (2002).陆地棉×斯特提棉种间杂交创造抗枯黄萎病新种质.西北农业学报, 11, 16–18.
    6.梁正兰. (1999).棉花远缘杂交的遗传与育种.北京:科学出版社.
    7.刘颖超,邢继红,翁巧云,董金皋. (2006).不同生态型拟南芥对植物病原真菌的抗病性.河北农业大学学报, 29, 67–73.
    8.宋国立,崔荣霞,王坤波,郭立平,黎绍惠,王春英,等. (1998).改良CTAB法快速提取棉DNA.棉花学报, 10, 273–275.
    9. Afifi, F. U., Al Khalil, S., Abdul Haq, B. K., Mahasneh, A., Al Eisawi, D. M., Sharaf, M., et al. (1991). Antifungal flavonoids from Varthemia iphionoides. Phytotherapy Research, 5, 173–175.
    10. Alonso, J. M., & Stepanova, A. N. (2004). The ethylene signaling pathway. Science, 306, 1513–15
    11. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 2148– 2152.
    12. Appel, R. D, Bairoch, A., Hochstrasser, D. F (1994). A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Science, 19, 258–260.
    13. Arima, H., Ashida, H., & Danno, G. (2002). Rutin-enhanced antibacterical activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Bioscience Biotechnology Biochemistry, 66, 1009–1014.
    14. Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bezier, A., Lambert, B., et al. (2003). Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant-Microb Interact, 16, 1118–1128.
    15. Bailey, B. A., Korcak, R. F., & Anderson, J. D. (1993). Sensitivity to an ethylene biosynthesis-inducing endoxylanase in Nicotiana tabacum L. cv Xanthi is controlled by a single dominant gene. Plant Physiol, 101, 1081–1088.
    16. Baker, B., Zambryski, P., Staskawicz, B., & Dinesh-Kumar, S. P. (1997). Signaling in plant-microbe interaction. Science, 276, 726–733.
    17. Baker, S. S., Wilhelm, K. S., & Thomashow, M. F. (1994). The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression.Plant Mol. Biol, 24, 701–713.
    18. Bar, M., & Avni, A. (2009). EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J, 59, 600–611.
    19. Barbara, D. J., & Clewes, E. (2003). Plant pathogenic Verticillium species: how many of them are there? Mol. Plant Pathol, 4, 297–305.
    20. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Mol Biol, 69, 473–488.
    21. Bejarano-Alcazar, J., Blanco-Lopez, M. A, Melero-Vara, J. M., & Jimenez-Diaz, R. M. (1996). Etiology, importance, and distribution of Verticillium wilt of cotton in Southern Spain. Plant Disease, 80, 1233–1238.
    22. Belfanti, E., Silfverberg-Dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., et al. (2004). The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc. Natl. Acad. Sci. USA, 101, 886–890.
    23. Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 340, 783–795.
    24. Benedict, C. R., Alchanati, I., Harvey, P. J., Liu, J., Stipanovic, R. D., & Bell, A. A., (1995). The enzymatic formation ofδ-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry, 39, 327–331.
    25. Bernsel, A., Viklund, H., Falk, J., Lindahl, E., von Heijne, G., & Elofsson, A. (2008). Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A, 105, 7177–7181.
    26. Berrocal-Lobo, M., & Molina, A., (2004). Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol. Plant Microbe Interact, 17, 763–770.
    27. Berrocal-Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression of ETHYLENERESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 29, 23–32.
    28. Bleecker, A. B., Estelle, M. A., Sommerville, C., & Kende, H. (1988). Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 241, 1086–1089.
    29. Bolwell, G. P. (1987). Elicitor induction of the synthesis of a novel lectin like arabinosylated hydroxyproline-rich glycoprotein in suspension cultures of Phaseolus vulgaris L. Planta, 172, 184–191.
    30. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248–254.
    31. Broekaert, W. F., Delauré, S. L., De Bolle, M. F., & Cammue, B. P. (2006). The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol, 44, 393–416.
    32. Broglie, K. E., Biddle, P., Cressman, R., & Broglie, R. (1989). Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell, 1, 599–607.
    33. Brouwer, M., Lievens, B., Van Hemelrijck, W., Van den Ackerveken, G., Cammue, B. P., &Thomma, B. P. (2003). Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence PCR. FEMS Microbiol. Lett, 228, 241–248.
    34. Brown, R. L., Kazan, K., McGrath, K. C., Maclean, D. J., & Manners, J. M. (2003). A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol, 132, 1020–1032.
    35. Browse, J., (2009) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol, 60, 183–205.
    36. Buer, C. S., Sukumar, P., & Muday, G. K. (2006). Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol, 140, 1384–1396.
    37. Chakravarthy, S., Tuori, R. P., D’Ascenzo, M. D., Fobert, P. R., Després, C., & Martin, G. B. (2003). The tomato transcription factor Pti4 regulates defense related gene expression via GCC-box and non-GCC box cis elements. Plant Cell, 15, 3033–3050.
    38. Chang, C., Kwok, S. F., Bleecker, A. B., & Meyerowitz, E. M. (1993). Arabidopsis response gene ETR1: similarity of product to two-component regulators. Science, 262, 39–45.
    39. Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., & Ecker, J. R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE- INSENSITIVE 3 and related proteins. Cell, 89, 1133–1144.
    40. Chen, J. Y., & Dai, X. F. (2010). Cloning and characterization of the Gossypium hirsutum major latex protein gene and functional analysis in Arabidopsis thaliana. Planta, 231, 861–873.
    41. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J. D. G., et al. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 448, 497–500.
    42. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J. M., Lorenzo, O., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448, 666–671.
    43. Chung, I. M., Park, M. R., Rehman, S., & Yun, S. J. (2001). Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Mol Cell, 12, 353–359.
    44. Clark, K. L., Larsen, P. B., Wang, X., & Chang, C. (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS1 ethylene receptors. Proc. Natl. Acad. Sci. USA, 95, 5401–5406.
    45. Davis, G. D., & Essenberg, M. (1995). (+)-δ-cadinene is a product of sesquiterpene cyclase activity in cotton. Phytochemistry, 39, 553–567.
    46. De Jong, C. F., Honee, C., Joosten, M. H. A. J., & De Wit, P. J. G. M. (2000). Early defence responses induced by AVR9 and mutant analogues in tobacco cell suspensions expressing the Cf-9 resistance gene. Physiological and Molecular Plant Pathology, 56, 169–177.
    47. Diaz, J., ten Have, A., & van Kan, J. A. (2002). The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiol, 129, 1341–1351.
    48. Diaz-De-Leon, F., Klotz, K. L., & Lagrimini, M. (1993). Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol, 101, 1117–1118.
    49. Dixon, M. S., Hatzixanthis, K., Jones, D. A., Harrison, K., & Jones, J. D. (1998). The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell, 10, 1915–1925.
    50. Dixon, M. S., Jones, D. A., Keddie, J. S., Thomas, C. M., Harrison, K., & Jones, J. D. (1996). The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 84, 451–459.
    51. Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411, 84–847.
    52. Ecker, J. R., & Davis, R. W. (1987). Plant defense genes are regulated by ethylene. Proc. Natl. Acad. Sci. USA, 84, 5202–5206.
    53. Ekengren, S. K., Liu, Y. L., Schiff, M., Dinesh-Kumar, S. P., & Martin, G. B. (2003). Two MAPK cascades, NPR1and TGA transcription factors play a role in Pto mediated disease resistance in tomato. Plant J, 36, 905–917.
    54. El-Kazzaz, M. K., Chordas, A., & Kader, A. A. (1983). Physiological and compositional changes in orange fruit in relation to modification of their susceptibility to Penicillium italicum by ethylene treatments. J. Am. Soc. Hortic. Sci, 108, 618–622.
    55. El-Kereamy, A., Chervin, C., Roustan, J. P., Cheynier, V., Souquet, J. M., Moutounet, M., et al. (2003). Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plant, 119, 175–182.
    56. Ellis, C., & Turner, J. G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell, 13, 1025–1033.
    57. Ellis, C., Karafyllidis, I., Wasternack, C., & Turner, J. G. (2002). The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell, 14, 1557–1566.
    58. Epple, P., Apel, K., & Bohlmann, H. (1995). An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physio, 109, 813–820.
    59. Epple, P., Apel, K., & Bohlmann, H. (1995). An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol, 109, 813–820.
    60. Esquerré-Tugayé, M. T., Lafitte, C., Mazau, D., Toppan, A., & Touze, A. (1979). Cell surfaces in plant-microorganism interactions: II. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanism. Plant Physiol, 64, 320–326.
    61. Eyal, Y., Meller, Y., Levy, S., & Fluhr, R. (1993). A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J, 4, 225–234.
    62. Flor, H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathol, 9, 275–296.
    63. Gabri?ls, S. H., Vossen, J. H., Ekengren, S. K., van Ooijen, G., Abd-El-Haliem, A. M., van den Berg, G. C., et al. (2007). An NB-LRR protein required for HR signalling mediated by both extra-and intracellular resistance proteins. Plant J, 50, 14–28.
    64. Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S. D., Yanagisawa, S., et al. (2004). Arabidopsis EIN3- binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA, 101, 6803–6808.
    65. Gao, Z., Chen, Y. F., Randlett, M. D., Zhao, X. C., Findell, J. L., Kieber, J. J., et al. (2003). Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signalling complexes. J. Biol. Chem, 278, 34725–34732.
    66. Glazebrook, J., Chen, W., Estes, B., Chang, H. S., Nawrath, C., Métraux, J. P., et al. (2003). Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J, 34, 217–228.
    67. Guo, H., & Ecker, J. R. (2003). Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell, 115, 667–677.
    68. Guo, H., & Ecker, J. R. (2004). The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol, 7, 40–49.
    69. Hall, A. E., Findell, J. L., Schaller, G. E., Sisler, E. C., & Bleecker, A. B. (2000). Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol, 123, 1449–1458.
    70. Hammond-Kosack, K. E., & Jones, D. G. (1997). Plant Disease Resistance Genes. Annu. Rev. Plant Physiol. Plant Mol. Biol, 48, 575–607.
    71. Hammond-Kosack, K. E., & Parker, J. E. (2003). Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, l4, 177–193.
    72. Hanania, U., Furman-Matasaro, N., Ron, M., & Avni A. (1999). Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant Journal, 19, 533–541.
    73. Hart, C. M., Nagy, F., & Meins, F. J. (1993). A 61 bp enhancer element of the tobacco beta-1,3- glucanase b gene interacts with one or more regulated nuclear proteins. Plant Mol. Biol, 21, 121–131.
    74. Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K., Li, J., et al. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA, 104, 12217–12222.
    75. Hefner, J., Ketchum, R. E., & Croteau, R. (1998). Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys, 360, 62–74.
    76. Heinz, R., Lee, S. W., Saparno, A., Nazar, R. N., & Robb, J. (1998). Cyclical systemic colonization in Verticillium-infected tomato. Physiol. Mol. Plant Pathol, 52, 385–396.
    77. Hernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., et al. (2007). Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell, 19, 890–903.
    78. Horn, M. A., Heinstein, P. F., & Low, P. S. (1989). Receptor-mediated endocytosis in plant cells. Plant Cell, 1, 1003–1009.
    79. Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., et al. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res, 35(Web Server issue), W585–587.
    80. Hu, G., de Hart, A. K., Li, Y., Ustach, C., Handley, V., Navarre, R., et al. (2005). EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve. Plant J, 42, 376–391.
    81. Hu, X., Neill, S. J., Cai, W., & Tang, Z. (2003). Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin synthesis in suspension-cultured cells of Panax ginseng. Physiol Plant, 118, 414–421.
    82. Hua, J., Chang, C., Sun, Q., & Meyerowitz, E. M. (1995). Ethylene insensitivity conferred by Arabidopsis ERS gene. Science, 269, 1712–1714.
    83. Hua, J., Sakai, H., Nourizadeh, S., Chen, Q. G., Bleecker, A. B., Ecker, J. R., et al. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell, 10, 1321–1332.
    84. Hudgins, J. W., Ralph, S. G., Franceschi, V. R., & Bohlmann, J. (2006). Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta, 224, 865–877.
    85. Ishigaki, E., Asamizu, T., Arisawa, M., & Kurosaki, F. (2004). Cloning and expression of calmodulin genes regulating phytoalexin production in carrot cells. Biol. Pharm. Bull, 27, 1308–1311.
    86. Ishihara, A., Ogura, Y., Tebayashi, S., & Iwamura, H. (2002). Jasmonate-induced changes in flavonoid metabolism in barley (Hordeum vulgare) leaves. Biosci Biotechnol Biochem, 66, 2176–2182.
    87. Itin, C., Kappeler, F., Linstedt, A. D., & Hauri, H. P. (1995). A novel endocytosis signal related to the KKXX ER-retrieval signal. EMBO J, 14, 2250–2256.
    88. Jiang, J., Fan, L. W., & Wu, W. H. (2005). Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res, 15, 585–592.
    89. Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J., & Jones, J. D. G. (1994). Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 266, 789–793.
    90. Jones, D., & Jones, J. D. G. (1996). The role of leucine-rich repeat proteins in plant defenses. Adv. Bot. Res. Inc. Adv. Plant pathol, 24, 89–167.
    91. Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.
    92. Julenius, K. (2007). NetCGlyc 1.0: Prediction of mammalian C-mannosylation sites. Glycobiology, 17, 868–876.
    93. Kajava, A. V. (1998). Structural diversity of leucine-rich repeat proteins. J Mol Biol, 277, 519–527.
    94. Kamo, T., Hirai, N., Tsuda, M., Fujioka, D., & Ohigashi, H. (2000). Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci. Biotechnol. Biochem, 64, 2089–2098.
    95. Katsir, L., Chung, H. S., Koo, A. J., & Howe, G. A. (2008). Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol, 11, 428–435.
    96. Kawchuk, L. M., Hachey, J., & Lynch, D. R. (1998). Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome, 41, 91–95.
    97. Kawchuk, L. M., Hachey, J., Lynch, D. R., Kulcsar, F., van Rooijen, G., Waterer, D. R., et al. (2001). Tomato Ve disease resistance genes encode cell surface-like receptors. Proc. Natl. Acad. Sci. USA, 98, 6511–6515.
    98. Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Qamar, S. A., et al. (2007). The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr Biol, 17, 1116–1122.
    99. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A., & Ecker, J. R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 72, 427–441.
    100. Kobe, B., & Kajava, A.V. (2001). The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol, 11, 725–732.
    101. Krüger, J., Thomas, C. M., Golstein, C., Dixon, M. S., Smoker, M., Tang, S., et al. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science, 296, 744–747.
    102. Kruijt, M., Brandwagt, B. F., & De Wit, P. J. G. M. (2004). Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness. Genetics, 168, 1655–1663.
    103. Kruijt, M., Kip, D. J., Joosten, M. H., Brandwagt, B. F., de Wit, P. J. (2005). The Cf-4 and Cf-9 resistance genes against Cladosporium fulvum are conserved in wild tomato species. Mol Plant Microbe Interact, 2005, 18: 1011–1021.
    104. Kruijt, M., De Kock Maarten, J. D., & De Wit Pierre, J. G. M. (2005). Receptor-like proteins involved in plant disease resistance. Molecular Plant Pathology, 6, 85–97.
    105. Laugé, R., Dmitriev, A. P., Joosten, M. H. A. J., & De Wit, P. J. G. M. (1998). Additional resistance genes against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol. Plant-Microbe Interact, 11, 301–308.
    106. Laurent, F., Labesse, G., & De Wit, P. (2000). Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem. Biophys. Res. Commun, 270, 286–292.
    107. Lawton, K. A., Potter, S. L., Uknes, S., & Ryals, J. (1994). Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell, 6, 581–588.
    108. Lawton, M. A., & Lamb, C. J. (1987). Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. MOI. Cell. Biol, 7, 335–341.
    109. Lescot, M., Déhais, P., Moreau, Y., De Moor, B., Rouzé, P., & Rombaults, S. (2002). PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 30, 325–327.
    110. Liu, L., White, M. J., & MacRae, T. H. (1999). Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem, 262, 247–257.
    111. Liu, Y. L., Schiff, M., Marathe, R., & Dinesh-Kumar, S. P. (2002). Tobacco Rar1, EDS1 and NPR1/NIM1-like genes are required for N-mediated resistance to Tobacco mosaic virus. Plant J, 30, 415–429
    112. Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J., & Solano, R. (2004). JASMONATE- INSENSITIVE 1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell, 16, 1938–1950.
    113. Lorenzo, O., Piqueras, R., Sanchez-Serrano, J. J., & Solano, R. (2003). ETHYLENE RESPONSE FACTOR 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15, 165–178.
    114. Luderer, R., Takken, F. L. W., De Wit, P. J. G. M. & Joosten, M. H. A. J. (2002). Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor molecules. Mol. Microbiol, 45, 875–884.
    115. Mace, M. E., Stipanovic, R. D., & Bell, A. A. (1985). Toxicity and role of terpenoid phytoalexins in Verticillium wilt resistance in cotton. Physiol. Plant Pathol, 26, 209–218.
    116. Martin, C. B., Bogdanove, A. J., & Sessa, G. (2003). Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 54, 23–61.
    117. Martin, D., Tholl, D., Gershenzon, J., & Bohlmann, J. (2002). Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol, 129, 1003–1018.
    118. Martin, G. B., Brommonschenkel, S. H., Chunwongse, J., Frary, A., Ganal, M. W., Spivey, R., et al. (1993). Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 262, 1432–1436.
    119. McGrath, K. C., Dombrecht, B., Manners, J. M., Schenk, P. M., Edgar, C. I., Maclean, D. J., et al. (2005). Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol, 139, 949–959.
    120. Meller, Y., Sessa, G., Eyal, Y., & Fluhr, R. (1993). DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol. Biol, 23, 453–463.
    121. Mirjalili, N., & Linden, J. C. (1996). Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models. Biotechnol Prog, 12, 110–118.
    122. Mol, L., Scholte, K., & Vos, J. (1995). Effects of crop rotation and removal of crop debris on the soil population of two isolates of Verticillium dahliae. Plant Pathol, 44, 1070–1074.
    123. Nakazato, Y., Tamogami, S., Kawai, H., Hasegawa, M., & Kodama, O. (2000). Methionine-induced phytoalexin production in rice leaves. Biosci. Biotechnol. Biochem, 64, 577–583.
    124. Nekrasov, V., Ludwig, A. A., & Jones, J. D. (2006). CITRX thioredoxin is a putative adaptor protein connecting Cf-9 and the ACIK1 protein kinase during the Cf-9/Avr9- induced defence response. FEBS Lett, 580, 4236–4241.
    125. Ohme-Takagi, M., & Shinshi, H. (1990). Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol. Biol, 15, 941–946.
    126. Ohme-Takagi, M., & Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 7, 173–182.
    127. Padmavati, M., Sakthivel, N., Thara, K. V., & Reddy, A. R. (1997). Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochemistry-Oxford, 46, 499–502.
    128. Pan, Z., Wang, H., & Zhong, J. (2000). Scale-up study on suspension cultures of Taxus chinensis cells for production of taxane diterpene. Enzyme Microb Technol, 27, 714–723.
    129. Parniske, M., Hammond-Kosack, K. E., Golstein, C., Thomas, C. M., Jones, D. A., Harrison, K., Wulff, B. B., & Jones, J. D. (1997). Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 91, 821–832.
    130. Penninckx, I. A., Eggermont, K., Terras, F. R., Thomma, B. P., De Samblanx, G. W., Buchala, A., et al. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell, 8, 2309–2323.
    131. Penninckx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P., & Broekaert, W. F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell, 10, 2103–2113.
    132. Piedras, P., Hammond-Kosack, K. E., Harrison, K., & Jones, J. D. G. (1998). Rapid Cf-9- and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol Plant-Microbe Interact, 11, 1155–1166.
    133. Piedras, P., Rivas, S., Dr?ge, S., Hillmer, S., & Jones, J. D. G. (2000). Functional, c-myc-tagged Cf-9 resistance gene products are plasmamembrane localized and glycosylated. Plant J, 21, 529–536.
    134. Pieterse, C. M.,vanWees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., et al. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10, 1571–1580.
    135. Potter, S., Uknes, S., Lawton, K., Winter, A. M., Chandler, D., DiMaio, J., Novitzky, R., Ward, E., & Ryals, J. (1993). Regulation of a hevein-like gene in Arabidopsis. Mol Plant-Microbe Interact, 6, 680–685.
    136. Potter, S., Uknes, S., Lawton, K., Winter, A. M., Chandler, D., DiMaio, J., et al. (1993). Regulation of a hevein-like gene in Arabidopsis. Mol Plant-Microbe Interact, 6, 680–685.
    137. Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., et al. (2003).EIN3- dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell, 115, 679–689.
    138. Pühringer, H., Moll, D., Hoffmann-Sommergruber, K., Watillon, B., Katinger, H., & Machado, M. L. C. (2000). The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress- and pathogen-inducible. Plant Science, 152, 35–50.
    139. Remy, I, Wilson, I. A., & Michnick, S. W. (1999). Erythropoietin receptor activation by a ligand-induced conformation change. Science, 283, 990-993.
    140. Reymond, P., & Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol, 1, 404-411.
    141. Rivas, S., & Thomas, C. M. (2002). Recent advances in the study of tomato Cf resistance genes. Mol. Plant Pathol, 3, 277–282.
    142. Rivas, S., Rougon-Cardoso, A., Smoker, M., Schauser, L., Yoshioka, H., & Jones, J. D. G. (2004). CITRX thioredoxin interacts with the tomato Cf-9 resistance protein and negatively regulates defence. EMBO J, 23, 2156–2165.
    143. Rodriguez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., & Bleecker, A. B. (1999). A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 283, 996–998.
    144. Rogers, S., Wells, R., & Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 234, 364–368.
    145. Romeis, T., Tang, S., Hammond-Kosack, K., Piedras, P., Blatt, M., & Jones, J. D. G. (2000). Early signalling events in the Avr9/Cf-9-dependent plant defence response. Mol. Plant Pathol, 1, 3–8.
    146. Ron, M., & Avni, A. (2004). The receptor for the fungal elicitor Ethylene-Inducing Xylanase is a member of a resistance-like gene family in tomato. Plant Cell, 16, 1604–1615.
    147. Ron, M., Kantety, R., Martin, G. B., Avidan, N., Eshed, Y., Zamir, D., et al. (2000). High-resolution linkage analysis and physical characterization of the EIX-responding locus in tomato. Theor. Appl. Genet, 100, 184–189.
    148. Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1977). Identification of a methyl jasmonate -responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J, 11, 513–523.
    149. Rudella, D. R., & Mattheis, J. P. (2008). Synergism exists between ethylene and methyl jasmonate in artificial light-induced pigment enhancement of‘Fuji’apple fruit peel. Postharvest Biology and Technology, 47, 136–140.
    150. Rushton, P. J., Torres, J. T., Parniske, M., Wernert, P., Hahlbrock, K., & Somssich, I. E. (1996). Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 15, 5690–5700.
    151. Ruthardt, N., Fischer, R., Emans, N., & Kawchuk, L. M. (2007). Tomato protein of the resistance gene Ve2 to verticillium wilt [Verticillium spp.] is located in the endoplasmic reticulum. Canadian Journal of Plant Pathology, 29, 3–8.
    152. Sakai, H., Hua, J., Chen, Q. G., Chang, C., Medrano, L. J., Bleecker, A. B., et al. (1998). ETR2 isan ETR1-like gene involved in ethylene signalling in Arabidopsis. Proc. Natl. Acad. Sci. USA, 95, 5812–5817.
    153. Samac, D. A., & Shah, D. M. (1991). Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell, 3, 1063–1072.
    154. Samac, D. A., & Shah, D. M. (1994). Effect of chitinase antisense RNA expression on disease susceptibility of Arabidopsis plants. Plant Mol Biol, 25,587–596.
    155. Samac, D. A., Hironaka, C. M., Yallaly, P. E., & Shah, D. M. (1990). Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol, 93, 907–914.
    156. Sambrook, J., & Russell, D.W. (2001). Molecular cloning: A laboratory manual. 3rd ed. by Cold Spring Harbor Laboratory Press.
    157. Saniewski, M., Miyamoto, K., & Ueda, J. (1998). Gum formation by methyl jasmonate in tulip shoots is stimulated by ethylene. J Plant Growth Reg, 17, 179–183.
    158. Schaller, G. E., & Bleecker, A. B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science, 270, 1809–1811.
    159. Schaller, G. E., Ladd, A. N., Lanahan, M. B., Spanbauer, J. M., & Bleecker, A. B. (1995). The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J. Biol. Chem, 270, 12526–12530.
    160. Schenk, P. M., Kazan, K., Wilson, L., Anderson, J. P., Richmond, T., Somerville, S. C., & Manners, J. M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. USA, 97, 11655–11660.
    161. Sheng, J., D’Ovidlo, R., & Mehdy, M. C. (1991). Negative and positive regulation of a nove1 proline-rich protein mRNA by fungal elicitor and wounding. Plant J, 1, 345–354.
    162. Showalter, A. M. (1993). Structure and Function of Plant Cell Wall Proteins. The Plant Cell, 5, 9–23.
    163. Silverstein, K. A., Graham, M. A., Paape, T. D., & Vandenbosch, K. A. (2005). Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol, 138, 600–610.
    164. Slusarenko, A. J., & Schlaich, N. L. (2003). Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol. Plant Pathol, 4, 159–170.
    165. Solano, R., Stepanova, A., Chao, Q., & Ecker, J. R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENERESPONSE FACTOR1. Genes Dev, 12, 3703–3714.
    166. Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C., & Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Sciences, 70, 1804–1806.
    167. Stergiopoulos, I., Pierre, J. G. M., & de Wit, P. J. G. M. (2009). Fungal Effector Proteins. Annu. Rev. Phytopathol, 47, 233–263.
    168. Tagu, D., Walker, N., Ruiz-Avila, L., Burgess, S., Martínez-Izquierdo, J. A., Leguay, J. J., et al.(1992). Regulation of the maize HRGP gene expression by ethylene and wounding mRNA accumulation and qualitative expression analysis of the promoter by microprojectile bombardment. Plant Mol. Biol, 20, 529–538.
    169. Takken, F. L. W., Schipper, D., Nijkamp, H. J. J., & Hille, J. (1998). Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J, 14, 401–411.
    170. Tamari, G., Borochov, A., Atzorn, R., & Weiss, D. (2006). Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: A possible role in wound response. Physiologia Plantarum, 94, 45–50.
    171. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G. H., et al. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature, 448, 661–665.
    172. Thomas, C. M., Jones, D. A., Parniske, M., Harrison, K., Balint-Kurti, P. J., Hatzixanthis, K., et al. (1997). Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell, 9, 2209–2224.
    173. Thomma, B. P., Eggermont, K., Tierens, K. F., & Broekaert, W. F. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol, 121, 1093–1102.
    174. Thompson, J. D, Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 25, 4876–4882.
    175. Tjamos, S. E., Flemetakis, E., Paplomatas, E. J., & Katinakis, P. (2005). Induction of resistance to Vericillium dahliae in Arabidopsis thaliana by biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol. Plant–Microbe. Interact, 18, 555–561.
    176. Ton, J., & Mauch-Mani, B. (2004). Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J, 38, 119– 130.
    177. T?r, M., Brown, D., Cooper, A., Woods-T?r, A., Sj?lander, K., Jones, J. D., & Holub, E. B. (2004). Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol, 135, 1100–1112.
    178. van den Burg, H. A., Tsitsigiannis, D. I., Rowland, O., Lo, J., Rallapalli, G., Maclean, D., Takken, F. L., & Jones, J. D. (2008). The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato. Plant Cell, 20, 697–719.
    179. van der Hoorn, R. A. L., Kruijt, M., Roth, R., Brandwagt, B. F., Joosten, M. H. A. J., & de Wit, P. J. G. M. (2001). Intragenic recombination generated two distinct Cf genes that mediate Avr9 recognition in the natural population of Lycopersicon pimpinellifolium. Proc. Natl Acad. Sci. USA, 98, 10493–10498.
    180. van der Hoorn, R. A. L., Roth, R., & De Wit, P. J. G. (2001). Identification of distinct specificity determinants in resistance protein Cf-4 allows construction of a Cf-9 mutant that confers recognition of avirulence protein AVR4. Plant Cell, 13, 273–285.
    181. van der Hoorn, R. A. L., van der Ploeg, A., de Wit, P. J .G. M., & Joosten, M. H. A. J. (2001). The C-terminal dilysine motif for targeting to the endoplasmic reticulum is not required for Cf-9 function. Mol. Plant-Microbe Interact, 14, 412–415.
    182. van der Hoorn, R. A., Wulff, B. B., Rivas, S., Durrant, M. C., van der Ploeg, A., De Wit, P. J., & Jones, J. D. (2005). Structure-function analysis of Cf-9, a receptor-like protein with extracytoplasmic leucine-rich repeats. Plant Cell, 17, 1000–1015.
    183. van Esse, H. P., Fradin, E. F., de Groot, P. J., de Wit, P. J., & Thomma, B. P. (2009). Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct. Mol Plant Microbe Interact, 22, 245–258.
    184. van Loon, L. C., & Van Strein, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol, 55, 85– 97.
    185. van der Molen, G. E., Labavitch, J. M., Strand, L. L., & DeVay, J. E. (1983). Pathogen-induced vascular gels: ethylene as a host intermediate. Physiol. Plant, 59, 573–580.
    186. van holme, B., Grunewald, W., Bateman, A., Kohchi, T., & Gheysen, G. (2007). The tify family previously known as ZIM. Trends Plant Sci, 12, 239–244.
    187. Veronese, P., Narasimhan, M. L., Stevenson, R. A., Zhu, J. K., Weller, S. C., Subbarao, K. V., & Bressan, R. A. (2003). Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J, 35, 574–587.
    188. Veronese, P., Narasimhan, M. L., Stevenson, R. A., Zhu, J. K., Weller, S. C., Subbarao, K. V., & Bressan, R. A. (2003). Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant J, 35, 574–587.
    189. Viklund, H., & Elofsson, A. (2004). Best alpha-helical transmembrane protein topology predictions are achieved using hidden Markov models and evolutionary information. Protein Sci, 13, 1908–1917.
    190. Viklund, H., & Elofsson, A. (2008). OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics, 24, 1662–1668.
    191. Vinatzer, B. A., Patocchi, A., Gianfranceschi, L., Tartarini, S., Zhang, H. B., Gessler, C., & Sansavini, S. (2001). Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Molecular Plant-Microbe Interactions, 14, 508–515.
    192. Wang, S. Y., Bowman, L., & Ding, M. (2007). Methyl jasmonate enhances antioxidant activity and flavonoid content in blackberries (Rubus spp.) and promotes antiproliferation of human cancer cells. Food Chemistry, 107, 1261–1269.
    193. Westerink, N., Brandwagt, B. F., de Wit, P. J. G. M., & Joosten, M. H. A. J. (2004). Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9–4E) by secretion of a stable AVR4E isoform. Mol. Microbiol, 54, 533–545.
    194. Win, J., Greenwood, D. R., & Plummer, K. M. (2003). Characterisation of a protein from Venturiainaequalis that induces necrosis in Malus carrying the Vm resistance gene. Physiol. Mol. Plant Pathol, 62, 193–202.
    195. Wulff, B. B. H., Thomas, C. M., Smoker, M., Grant, M., & Jones, J. D. G. (2001). Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf-4 and Cf-9 proteins. Plant Cell, 13, 255–272.
    196. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M., & Turner, J. G. (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 280, 1091–1094.
    197. Xu, M., & Korban, S. S. (2002). A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics, 162, 1995–2006.
    198. Xu, M., & Korban, S. S. (2004). Somatic variation plays a key role in the evolution of the Vf gene family in the Vf locus that confers resistance to apple scab disease. Mol. Phylogenet. Evol, 32, 57–65.
    199. Xu, Y., Chang, P. F., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P. M., & Bressan, R. A. (1994). Plant defense genes are synergically induced by ethylene and methyl jasmonate. Plant Cell, 6, 1077–1085.
    200. Xu, Y., Chang, P. F. L., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P. M., et al. (1994). Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 6, 1077–1085.
    201. Yamaguchi-Shinozaki, K., & Shinozaki, K. (1993). Arabidopsis DNA encoding two desiccation -responsive rd29 genes. Plant Physiol, 101, 1119–1120.
    202. Zhang, C., Yan, Q., Cheuk, W., & Wu, J. (2004). Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+ elicitation and nutrient feeding. Planta Med, 70, 147–151.
    203. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 23, 283–333.
    204. Zhao, J., Zheng, S. H., Fujita, K., & Sakai, K. (2004). Jasmonate and ethylene signaling pathways and their interaction are integral parts of the elicitor signal transduction leading to phytoalexin biosynthesis in Cupressus lusitanica cell culture. J Exp Bot, 55, 1003–1012.
    205. Zheng, N., Schulman, B. A., Song, L., Miller, J. J., Jeffrey, P. D., Wang, P., et al. (2002). Structure of the Cul1-Rbx1-Skp1-FboxSkp2 SCF ubiquitin ligase complex. Nature, 416, 703–709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700