用户名: 密码: 验证码:
基于通用软件的水工钢筋混凝土结构程序开发与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着计算机技术的迅猛发展,非线性分析方法在一些重大水工钢筋混凝土结构分析中得到了日益广泛的应用。针对目前水工钢筋混凝土结构非线性分析中存在的若干问题,在国内外学者研究的基础上,本文主要完成以下研究工作:
     (1)对大直径钢筋粘结滑移特性进行试验研究。通过4批13个大尺寸钢筋混凝土试件的试验研究得到了小湾拱坝抗震钢筋与混凝土在各级荷载作用下的应变曲线,以及粘结应力和相对滑移沿锚固长度的分布曲线。通过改进试验方法有效避免了在钢筋与混凝土的接触面贴应变片对钢筋与混凝土的粘结状态造成的影响。小湾拱坝的抗震钢筋在循环作用下表现出较好的粘结延性。由试验研究获得了大直径钢筋粘结滑移本构模型。对小湾拱坝抗震钢筋的配置提出若干工程建议。
     (2)探索了ANSYS软件的二次开发方法,系统阐述二次开发原理,通过将混合强化模型加入ANSYS模型库,详细介绍了ANSYS二次开发的实现过程。将二次开发成果以及大直径钢筋粘结滑移模型应用于抗震钢筋粘结滑移计算分析中,通过与试验结果比较,验证了开发方法的正确性。
     (3)分析了顶板厚度等设计参数对于龙滩升船机塔柱结构动力特性的影响,探讨了用单个塔柱的动力特性分析代替整体塔柱动力特性分析的方法的局限性。应用ANSYS二次开发成果,采用两个地震波对塔柱结构进行了非线性时程反应分析,分析了不同地震波、双向地震作用以及竖向地震作用对于塔柱结构地震响应的影响。
     (4)采用pushover方法对龙滩升船机塔柱结构进行了非线性分析。对几种地震作用下评估结构性能的方法进行了比较。针对塔柱结构的特点简化塔柱结构质量离散方法,采用能力谱法对塔柱结构的抗震能力进行评估。分析表明,塔柱结构的抗震延性较好,能够满足工程抗震需要。计算结果与时程分析结果吻合较好,从而验证了能力谱法在塔柱结构地震反应分析中的适用性。
     (5)采用空间有限元以及子结构方法对龙滩水电站导流隧洞进水口结构配筋设计方案进行复核与评价。通过空间弹性分析确定了结构设计的控制区域为进水口中墩门槽附近,进而采用空间非线性分析方法考察了中墩门槽附近裂缝开展情况,对原配筋方案作出评价。通过ANSYS二次开发实现了子结构方法中整体模型分析数据向子结构切割边界条件的数据自动传递。
With the rapid development of the computer technology, nonlinear analysis method is widely applied in the analysis of some important hydraulic reinforced concrete structures. This paper is aimed at solving some problems in the non-linear analysis of hydeaulic r.e.s. Based on the studies done at home and abroad, this paper has finished mainly the following work:(1) Experiments have been performed to study the bond-slip behavior between earthquake-resistant bars and the concrete in Xiaowan arch dam. Strain distributions of earthquake-resistant bars and the concrete under different loading levels are obtained. Bond stress and slip distribution along the anchorage length are also obtained. Earthquake-resistant bars show good ductility under cyclic loading. The experimental method is improved to prevent the damage caused by strain gauges between bars and the concrete. The earthquake-resistant bar should be made of steel with the distinct yield. Because this kind of bars not only can limit the opening width of the transverse joints but also can alleviate the cracking of the concrete. The suggested anchorage length of the earthquake-resistant bars is 1200mm. Non-bonding-range is imperative not only for the control of the opening width of transverse joints, but also for the improvement of bond-slip behavior.(2) Based on the ANSYS software, the secondary development of ANSYS is carried out. The method about the secondary development of ANSYS is expatiated systematically. By adding the mixed hardening model and bond-slip model into the model library of ANSYS, the development process is introduced in detail. Finally, by comparing the calculation results with the experimental data of the earthquake-resistant bars, the validity of the secondary development is verified.(3) The influence of the thickness of the upper plate on the dynamic behavior of the tower structure of the ship elevator of Longtan Project is analyzed. The limitation of representing the dynamic behavior of the tower structure as a whole by the dynamic behavior of a single tower structure is discussed in detail. With the application of the program of the secondary development, two sets of earthquake records are used to perform the nonlinear dynamic analysis. The influences of different earthquake records, two-direction dynamic action and vertical dynamic action on the responses of the tower structure are analyzed.(4) Pushover method is used to do the nonlinear static analysis on the tower structure of the ship elevator. The Pushover method is simplified to enhance the efficiency of the analysis. Then, Capacity Spectrum method is used to evaluate the earthquake-resistant capacity of the tower structure of the ship elevator.(5) The three dimensional FEM(Finite Element Method) and the submodeling technique are used to analyze the water intake of the Longtan hydropower station. The influences of the uplift pressure on the foundation base and the slot of the intake are analyzed with the spatial elastic analysis method. The cracking detail in the key zone, near the gate slot, is analyzed with the spatial nonlinear analysis method. Finally, the original reinforcement scheme is evaluated.
引文
[1]胡荣辉,张五禄,水工建筑物,北京:水利电力出版社,1993,6
    [2]陈德亮,水工建筑物,武昌;武汉大学出版社 1995,10
    [3]李传才,水工混凝土结构,武昌:武汉大学出版社,2001,10
    [4]河海大学,大连理工大学,西安理工大学,清华大学合编,水工钢筋混凝土结构学,北京:中国水利水电出版社,1996,12
    [5]江见鲸,钢筋混凝土结构非线性有限元分析,陕西科学技术出版社,1993
    [6]Z.P.Bazant etc编,周氐,李咏偕,许庆尧等合译,钢筋混凝土有限元分析,河海大学出版社,1988
    [7]Ngo, Scordelis, Finite element analysis of reinforced concrete beams, ACI, 1967, 64 (3)
    [8]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用,同济大学出版社,1997
    [9]董哲仁,钢筋混凝土非线性有限元原理与应用,北京:中国水利水电出版社,2002.
    [10]杜成斌,苏擎柱,混凝土材料动力本构模型研究进展,世界地震工程,2002,6,18(2):94-98
    [11]Nilson.L.A, Nonlinear analysis of reinforced concrete by the finite element method, ACI1, 1968, 65 (9)
    [12]Houde, M.S.Mirza, Finite element analysis of shear strength of reinforced concrete beams, Shear in Reinforced Concrete
    [13]王传志,藤智明,钢筋混凝土结构理论,中国建筑工业出版社,1985
    [14]宋玉普,赵国藩,钢筋与混凝土间的粘结滑移性能研究,大连工学院学报,1987,6,26(2):
    [15]徐有邻,各类钢筋粘结锚固性能的分析比较,福州大学学报(自然科学版,增刊),1996,24(9):69-75
    [16]刘龙强,抗震钢筋粘结滑移特性试验研究及非线性分析,河海大学硕士论文,2002,2
    
    [17]赵宇习,金伟良,钢筋与混凝土粘结本构关系的试验研究,建筑结构学报,2002,2,23(1):32-37
    [18]徐有邻,变形钢筋-混凝土粘结锚固性能的试验研究,清华大学博士论文,1990
    [19]朱伯芳,强地震区高拱坝抗震配筋问题,水力发电,2000,7:18-23
    [20]陈观福,张楚汉,金峰等,反复循环加载下拱坝横缝钢筋简化分析,长江科学院院报,2001,12,18(6):19-22
    [21]杜成斌,赵光恒,带横缝拱坝的非线性地震响应,水利学报,1996,5:22-28
    [22]王瑁成、邵敏,有限单元法基本原理与数值方法,清华大学出版社,1988
    [23]沈聚敏,王传志,江见鲸,钢筋混凝土有限元与板壳极限分析,清华大学出版社,1993.11
    [24]P.Fanning, Nonlinear models of reinforced and post-tensioned concrete beams, Electronic Journal of Structural Engineering, 2001, 2
    [25]中华人民共和国国家标准,水工建筑物抗震设计规范(SL203-97).中国水利水电出版社,1997.
    [26]Rossi P. A physical phenomenon which can explain the mechanical behavior of concrete under high strain rates[J]. Materials and Structures, 1991, 24 (144) :422-424.
    [27]Bischoff P H, Perry S H. Impact behavior of plain concrete loaded in uniaxial compression[J]. Journal of engineering mechanics, 1995, 121 (6):685-693.
    [28]Eibl J, Schmidt-hurtienne B, Strain rate sensitive constitutive law for concrete[J]. Journal of engineering mechanics, 1999, 125( 12): 1411-1420.
    [29]Zheng S, Haussier-Combe U, Eibl J. New approach to strain rate sensitivity of concrete in compression[J]. Journal of engineering mechanics, ASCE, 1999, 125(12):1403-1410.
    [30]陈肇元,阚永魁.高标号混凝土用于抗爆结构的若干问题.钢筋混凝土结构构件在冲击荷载下的性能[M].北京:清华大学出版社,1986.
    [31]吕培印,宋玉普.混凝土动态压缩试验及其本构模型.海洋工程,2002(5):43-49.
    
    [32]林皋,陈健云.混凝土大坝的抗震安全评价.水利学报,2001(2):9-15.
    [33]肖诗云,林皋,逯静洲,王哲.应变率对混凝土抗压特性的影响.哈尔滨建筑大学学报.2002(10):35-39.
    [34]肖诗云,林皋,王哲,逯静洲.应变率对混凝土抗拉特性的影响.大连理工大学学报.2001(11):721-724.
    [35]黄承逵,尚仁杰,赵国藩.混凝土动态拉伸试验方法的研究.大连理工大学学报(增刊).1997(8):111-114.
    [36]曹增延,祁建华.混凝土动力特性的初步研究.水电站设计.1994(12):81-85.
    [37]侯顺载,李金玉,曹建国,王济,郭永刚.高拱坝全级配混凝土动态试验研究.水力发电.2002(1):51-53.
    [38]李国豪,工程结构抗爆动力学,上海科学技术出版社,1989
    [39]清华大学抗震抗爆工程研究室,清华大学抗震抗爆工程研究室科学研究报告集,清华大学出版社,1990
    [40]美国ANSYS公司北京办事处,ANSYS非线性分析指南
    [41]美国ANSYS公司北京办事处,ANSYS理论手册
    [42]车轶,混凝土高拱坝孔口配筋与抗裂问题研究,大连:大连理工大学博士论文,2002,7
    [43]赵国藩、李树瑶等,钢筋混凝土结构的裂缝控制,海洋出版社,1991
    [44]Ordelis, A. C.. Past, Present and Future Development, Finite Element analysis of Reinforced Concrete Structures, ASCE, 1986
    [45]Inoue, N. and Noguchi, H.. Finite Element Analysis of Reinforced Concrete in Japan,Finite Element Analysis of Reinforced Concrete Structures, ASCE, 1986
    [46]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001),中国建筑工业出版社,2001
    [47][新西兰]T.鲍雷,[美国]M.J.N普里斯特利,戴瑞同等译,钢筋混凝土和砌体结构的抗震设计,中国建筑工业出版社,1999
    [48]丰定国,王清敏,钱国芳,苏三庆.工程结构抗震.北京:地震出版社,1995.
    [49]汪梦甫.钢筋混凝土高层结构抗震分析与设计.湖南:湖南大学出版社,1999
    
    [50]王松涛,曹资.现代抗震设计方法.北京:建筑工业出版社,1997
    [51][美]M.帕兹,李裕澈,刘勇生等译.结构动力学—理论与计算.北京:地震出版社,1993
    [52]高振世,朱继澄,唐九如,何达.建筑结构抗震设计.北京:建筑工业出版社,1997
    [53]赵光恒,结构动力学,中国水利水电出版社,1996
    [54]程耿东,李刚,基于功能的结果抗震设计中一些问题的探讨,建筑结构学报,2000,2,21(1):5-11
    [55]Vojko Kilar and Peter Fajfar, Simple push-over analysis of asymmetric buildings, Earthquake Engineering and Structural Dynamics, 1997, 26:233-249
    [56]Helmnt Krawinkler, G..D.P.K.Seneviratna, Pros and cons of a pushover analysis of seismic performance evaluation, Engineering Structures, 1997, 20(4-6):452-464
    [57]Peter Fajfar, Peter Gaperi, The N2 method for the seismic damage analysis of RC buildings, 1996, 25:31-46
    [58]钱稼茹,罗文斌,建筑结构基于位移的抗震设计,建筑结构,2001,4,31(4):3-6
    [59]A.A.Nassar & J.D.Osteraas, H.Krawinkler, Seismic design based on strength and ductility demands, Earthquake Engineering, Tenth World Conference, 1992, Balkema, Potterdam:5861-5866
    [60]M.S.Medhekar, D.J.L Kennedy, Displacement-based seismic design of buildings-theory Engineering Structures, 2000, 22:201-209
    [61]M.S.Medhekar, D.J.L Kennedy, Displacement-based seismic design of buildings-application, Engineering Structures, 2000, 22:210-221
    [62]A.M.Chandler, P.A.Mendis, Performance of reinforced frames using force and displacement based seismic assessment methods, Engineering Structures, 2000, 22:352-363
    
    [63]Anil K.Chopra and Rakesh K.Goel, Evaluation of NSP to estimate seismic deformation: SDF systems, Journal of Structural Engineering, 2000, 126 (4) : 482-490
    [64]Mehdi Saiidi, Mete A.Sozen, Simple nonlinear seismic analysis of R/C structures, ASCE, 1981, 107 (ST5) :937-952
    [65]Lai, Shih-Sheng P. Biggs, John M, Inelastic response spectra for seismic building design, ASCE, 1980, 106 (ST6) :1295-1310
    [66]叶献国,多层建筑结构抗震性能的近似评估.改进的能力谱方法,工程抗震,1998,4:10-14
    [67]李康宁,洪亮,叶献国,结构三维弹塑性分析方法及其在建筑物震害研究中的应用,建筑结构,2001,31(3):53-61
    [68]曲卓杰,吴胜兴,关于结构静力弹塑性分析(push-over)的探讨,现代地震工程进展,东南大学出版社,2002:289-293
    [69]邹积麟,三维钢筋混凝土框架结构全过程Pushvoer分析,清华大学博士论文,2001
    [70]叶献国,种迅,李康宁,周锡元,Pushover方法与循环往复加载分析的研究,合肥工业大学学报,200l,24(6):1019-1024
    [71]钱稼茹,罗文斌,静力弹塑性分析-基于性能/位移抗震设计的分析工具,建筑结构,2000,30(6):23-26
    [72]江见鲸,混凝土结构工程学,中国建筑工业出版社,1998
    [73]地震工程学,沈聚敏,周锡元,高小旺等,中国建筑工业出版社,2000
    [74]Ghobarah A.Abou.Elfath.H.Biddah..A. Response-based damage assessment of structures.[J]Earthquake Engineering Structure Dynamics, 1999, 28:79-104
    [75]Shibata A.Sozen J.M. The substitute structures method for seismic design in reinforced structural division, 1976, 102:1-18
    [76]欧进萍等,北京饭店消能减振抗震加固分析与设计,地震工程与工程振动,2001,21(4):82-87
    [77]邱法维,潘鹏,结构拟静力加载实验方法及控制,土木工程学报,2002,35(1):1-10
    
    [78]王理,结构时程分析汁算中采用数字地震纪录与模拟地震纪录的对比分析,建筑结构,2001,31(11):63-65
    [79]T.Paulay, Displacement-based design approach to earthquake-induced torsion in ductile buildings, Engineering Structures, 1997, 19 (9) :699-707
    [80]王亚勇,关于设计反应谱、时程分析法和能量方法的探讨,建筑结构学报,2000,21(1):21-28
    [81]叶燎原,潘文,结构静力弹塑性分析(push-over)的原理和计算实例,建筑结构学报,2000,21(1):37-51
    [82]杨溥,李英民,王亚勇,赖明,结构静力弹塑性分析(push-over)方法的改进,建筑结构学报,2000,21(1):44-51
    [83]程绍革,王理,张允顺,弹塑性时程分析方法及其应用,建筑结构学报,2000,21(1):52-56
    [84]李康宁,Teetsuo Kubo,Tatsuya Yzuhata,建筑物三维分析模型及其用于结构地震反应分析的可靠性,建筑结构,2000,30(6):14-18
    [85]宋哤,李丽娟,张贵文,建筑结构试验,重庆大学出版社,2001
    [86]高小旺,龚思礼,苏经宇,易方民,建筑抗震设计规范理解与应用,中国建筑工业出版社,2002
    [87]大型复杂结构体系的关键科学问题及设计理论研究论文集编委会,大型复杂结构体系的关键科学问题及设计理论研究论文集,同济大学出版社,2001
    [88]王亚勇,我国2000年工程抗震设计模式规范基本问题研究综述,建筑结构学报,2000,21(1):2-4
    [89]王光远,程耿东,邵卓民,陈厚群等,抗震结构最优设防烈度与可靠度,科学出版社,1999
    [90]中华人民共和国国家标准,建筑抗震试验方法规程(JGJ101-96),中国建筑工业出版社,1997
    [91]赵国藩,高等钢筋混凝土结构学,中国电力出版社,1999
    [92]徐勋倩,龙滩垂直升船机土建结构初步设计研究,河海大学硕士论文,2002,2
    
    [93]Ghobarah A.Abou Elfath H.Biddah A. Response-based damage assessment of structures. Earthquake Engineering and Structural Dynamics, 1999, 28:79-104
    [94]中华人民共和国国家标准,构筑物抗震设计规范(GB50191-93),1993
    [95]任晓崧,三峡升船机的风在可靠性分析,同济大学学报,1998,26(2):221-225
    [96]瞿伟廉,吕明云,三峡大坝升船机地震鞭梢效应的智能控制,华中科技大学学报,2002,19(1):27-32
    [97]顾再仁,赖耀琪,姚志坚,高政毅,白色水利枢纽第二级垂直升船机结构抗震动力分析,人民珠江,1999,1:30-33
    [98]夏逸鸣,垂直升船机塔柱结构的弹塑性地震反应分析,河海大学博士后研究工作报告,2003,12
    [99]戴湘和,隔河岩工程垂直升船机抗震模型试验研究,长江科学院院报,1994,11(1):75-80
    [100]胡晓,陈厚群,王济,清江隔河岩水利枢纽垂直升船机塔柱结构抗震试验研究,水利学报,1998,12:38-41
    [101]吴杰芳,陈敏中,戴湘和,钮新强,三峡工程垂直升船机建筑结构整体抗震计算,长江科学院院报,1997,14(3):43-46
    [102]汪基伟,钮新强,杨本新,三峡升船机上闸首结构配筋方案研究,人民长江,2001,32(11):8-10
    [103]阎诗武,严根华,樊宝康,蒋梁,三峡升船机塔柱结构的抗震优化设计,水利水运科学研究,1994,12:307-318
    [104]陈厚群,胡晓,王济,李德玉,禹莹,三峡升船机塔柱结构抗震试验研究,地震工程与工程振动,1999,19(1):47-56
    [105]郑守仁,三峡水利枢纽技术设计中一些重大技术问题的论述,水力发电,1996,3:20-24
    [106]张步斌,郭明,我国升船机的发展前景分析,矿山机械,1996,8:18-20
    [107]谢德浚,黄云生,陆辛,岩滩升船机塔柱结构设计与分析,红水河,1999,18 (4):101-104
    [108]孙志恒,刘致斌,岩滩水电站升船机塔柱结构模型试验研究,水利水电技术,1995,5:58-62
    
    [109] 王汉东,陈清军,升船机建筑结构随机地震反应分析,现代地震工程进展,东南大学出版社,2002,11
    [110] 刘锋,三峡工程升船机比较方案结构有限元计算,水运工程,1996,2:46-53
    [111] J.M.W.Brownjohn, T.C.Pan, X.Y.Deng, Correlating dynamic characteristics from field measurements and numerical analysis of a high-rise building, Earthquake Engineering and Structural Dynamics, 2000, 29:523-543
    [112] Alberto Gomez-Masso, John Lysmer, and etc, Soil-structure interaction with rayleigh waves, Earthquake Engineering and Structural Dynamics, 1983, 11:567-583
    [113] Arthur A.Huckelbridge, Robert M.Ferencz, Overturning effects in stiffened building frames, Earthquake Engineering and Structural Dynamics, 1981, 9:69-83
    [114] Worsak Kanok-Nukulchai, Sek-Yean Lee, Prsidhi Karasudhi, A versatile finite strip model for three dimensional tall building analysis, Earthquake Engineering and Structural Dynamics, 983, 11:149-166
    [115] X.N.Duan, A.M.Chandler, Seismic torsional response and design procedures for a class of setback frame buliding, Earthquake Engineering and Structural Dynamics, 1995, 24:761-777
    [116] Juan C.De La Llera, Anil K.Chopra, A Simplified for analysis and design of asymmetric-plan buildings, Earthquake Engineering and Structural Dynamics, 1995, 24:573-594
    [117] A.Ghobarah, H.Abou-Elfath, Ashraf Biddah, Response-based damage assessment of structures, Earthquake Engineering and Structural Dynamics, 1999, 28:79-104
    [118] T.B.Panagiotakos, M.N.Fardis, Estimation of inelastic deformation demands in multistory RC frame buildings, Earthquake Engineering and Structural Dynamics, 1999, 28:501-528
    
    [119] J.De-La-Colina, Effects of torsion factors on simple non-linear systems using fully-bidirectional analyses, Earthquake Engineering and Structural Dynamics, 1999, 28:691-706
    [120] Sabris, G.M, etc, Structural Modeling and Experimental Techniques, Printice hall Inc., Englewood Cliffs, N.J.07632, 1983
    [121] 高小旺,魏琏,韦承基,现行抗震规范可靠度水平的校准,土木工程学报,1987,5,20(2)
    [122] 贾乃文,混凝土特种结构力学分析与设计计算.北京:中国建筑工业出版社,1993
    [123] 中华人民共和国国家标准,高耸结构设计规范(GBJ135-90),1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700