用户名: 密码: 验证码:
海底隧道围岩稳定性分析与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通事业的大发展,将有大批量的越江跨海通道投入建设,水下隧道已受到越来越多的关注。与山岭隧道相比,跨海隧道通常具有地质勘探困难、单口连续掘进距离较长、衬砌结构受长期的动静水压力作用、防排水难度大、围岩成拱作用较低、不良地质体段易发生涌水事故等特点,因此在海底隧道衬砌结构的设计和分析计算方面,将具有与一般隧道不尽相同的关键技术问题,亟待在设计中着重反映。论文研究以我国目前蓬勃发展的海底隧道为背景,以富水条件下隧道围岩稳定性及其控制技术为研究重点,综合采用理论解析、数值模拟、室内模型试验和现场监测等多种研究手段,主要开展了以下方面的研究工作:
     (1)基于弹性力学中厚壁圆筒承受均布压力的拉梅解答和Mohr-Coulomb屈服条件,推导了考虑渗流场和围岩超前位移释放的含衬砌海底圆形隧洞的弹塑性解析公式。根据本文推导过程,可推演满足其它屈服条件和流动法则的隧道围岩应力与位移的弹塑性解答。同时结合一座海底隧道的工程实例,本文采用解析公式对围岩塑性区范围、应力场、位移场和渗流场的分布进行了理论分析,得到了各场的分布规律和演化特点,并讨论了海底隧道顶板厚度、海水深度、内水水头、衬砌围岩物理力学参数及其渗透性关系等因素的影响规律。
     (2)基于前人研究成果,针对暗挖海底隧道开挖面围岩稳定性问题,总结了极限分析上限法、楔形体模型、二维对数螺旋线模型,以及条分法模型等4种理论分析模型,并考虑了开挖面滑移体上部地层压力等因素,对理论解析公式进行了修正。结合海底隧道工程实例,采用数值模拟方法,与理论解析方法进行了对比分析,并讨论了围岩粘聚力、摩擦角、海水水位、超前注浆等因素的影响。
     (3)依托厦门翔安海底隧道,对穿越陆域全、强风化花岗岩段的地层变形进行了现场监测,指出了产生地层大变形的力学机制,总结了拱顶沉降、海床沉降、地层水平变形、海床开裂随隧道施工过程的发生、发展规律,并建立了它们之间的关系,提出通过易于监测的隧道拱顶下沉量及收敛值判断海床地层的完整性,实现对海床状态的信息化控制。
     (4)采用FLAC3D有限差分软件模拟分析翔安隧道穿越海域F1风化深槽段的围岩稳定性,指出地下水的渗流作用对海底隧道的围岩变形影响较大,由渗流引起的隧道围岩变形在向上传递过程中折减较小,且超前导洞开挖对围岩渗流场的影响作用最为直接和明显,而相应的超前预支护、预注浆技术则是改善围岩强度、刚度、渗透性的核心技术。
     (5)采用理论分析方法,建立了综合考虑围岩、注浆加固圈、初期支护和二次衬砌的海底隧道渗流场计算模型。依托厦门翔安海底隧道和青岛胶州湾海底隧道,采用理论分析、数值模拟、室内模型试验和现场监测等多种研究手段,分析了隧道衬砌外水压力的分布规律,并指出海底隧道注浆圈设计存在相对经济合理的参数值,给出了海底隧道合理注浆圈参数的确定程序。
     (6)采用荷载—结构模型讨论了海底隧道衬砌结构断面形状设计参数对衬砌结构受力特点的影响,并对青岛胶州湾海底隧道衬砌结构的断面形状进行了优化分析,得到了以衬砌结构断面安全系数为目标函数的最优断面。
With the great development of transport, large quantities of river crossing channels will be invested into construction. And the underwater tunnel has been paid more and more attention. Compared with the mountain tunnel, subsea tunnels often have the characteristics of difficulties in geological exploration, long distance single-port continuous excavation, long-term static and dynamic water pressure acting on the lining structure, difficulties in waterproof and drainage, low arching effect, gushing water likely to happen when passing through unfavorable geologic bodies and so on. Therefore, there are many different key technical issues in design and analysis of the lining structure for the subsea tunnel compared with the mountain tunnel, which are urgent to be solved in design. In this paper, taking booming subsea tunnels in China as project background and stability of surrounding rock and its control technologies in rich water condition as the research focus, the following six aspects are carried out by using theoretical analysis, numerical simulation, indoor model test and field measurement methods.
     (1) Based on the Lame solution to thick cylinder under uniform pressure in elastic mechanic and Mohr-Coulomb yield condition, the subsea circular tunnel with liner is simplified as axially symmetrical and the effect of seepage field is simplified as seepage volume force acting on the stress fields. Elastic-plastic analytical solutions of stress and displacement are obtained respectively with considering the release of the displacement ahead of the cutting face. Other elastic-plastic analytical solutions which satisfy other yield conditions and flow rules can be deduced, according to this derivation. Combined with the results of a practical example, the deformation of host rock around the tunnel, the range of the plastic zone of rock, and the stress field and characteristic of seepage field in the rock around the tunnel have been analysed using the analytical formula, and the distruction law as well as the evolution features of these fields are obtained. Besides, the influence on seepage field and displacement of surrounding rock by some factors such as seawater tables, rock cover thickness, inside water head in tunnel, the mechanical parameters of the lining and the surrounding rock and the penetration relation between them have been discussed.
     (2) Based on previous research results, four models including upper bound solution, wedge analysis, two-dimensional logarithmic spiral model and slice method for estimating the support pressure required for the face stability were derived by utilizing upper bound theorem and limit equilibrium method. With considering of the pressure of overlying strata, theoretical analysis formulas have been modified. The existence of groundwater may seriously affect the face stability. Under the steady-state groundwater flow condition, most part of the total support pressure is owing to the seepage pressure acting on the tunnel face. Also, the coupled numerical analysis has been performed and the proposed estimation methods to obtain the support pressure have been verified. Combined with the results of a practical example, the results of the numerical simulation and the analytical formulas are comparied and analyzed. Meanwhile, influencing factors such as cohesion and friction angle of surrounding rock, advanced Injection, sea water level and depth have been discussed.
     (3) Taking Xiamen Xiang'an subsea tunnel as project background, by using in-situ measured data when passing through the completely weathered granite, the mechanism of integral deformation of upper strata due to tunnel excavation has been then expounded. It is shown by the in-situ deformation monitoring that how the settlement of crown and seabed, horizontal ground deformation and surface crack have distributed and developed with time and space. The relation between surface crack space and strata displacement is presented to offer guidelines to water inflow prediction.
     (4) Based on the coupled fluid-solid theory, numerical analysis is made to study the stability of surrounding rock during Xiamen Xiang'an subsea tunnel passing through the weathered slot under the sea. The distribution principle of displacement field and seepage field of surrounding rock, as well as the mechanical characters of lining structure are studied in various construction stages of subsea tunnel. The seepage of groundwater has great influence on deformation of surrounding rock, causing a large range of sea-bed subsidence. The excavation of pilot heading has the most direct and obvious influence on seepage field of surrounding rock, and the attenuation of surrounding rock deformation induced by seepage is small in its transfer process from surrounding rock to sea-bed. The surrounding rock deformation and sea-bed subsidence mainly concentrate on the excavation of both sides of pilot heading and the upper rock of the central core; And the advanced support and pre-grouting are the key technologies for improving the strength, stifness and the permeability of the surronding rock.
     (5) By using theory of analytical method, calculation model for subsea tunnel seepage field has been established with considering of the surrounding rock, grouting circle, primary liner and second liner. Taking Xiamen Xiang'an subsea tunnel and Qingdao Jiaozhou Bay subsea tunnel as project background, by using in-situ measured data, numerical simulation, indoor model test and theoretical analysis method, the basic regulations of the effects of grouting circle on tunnel gushing water and external water pressure on lining are studied. And it is potined out that there is an appropriate and economical parameter when designing the grouting circle. Based on the above-mentioned research results, the method and program for choosing appropriate parameters of grouting circle are proposed.
     (6) Based on load-structure model, the influence of the structural cross-section shape and design parameters on the stress characteristics of the lining structure are discussed. The lining structure section shape optimization calculation of Qingdao Jiaozhou Bay subsea tunnel water section is made. And taken the safety factor of the lining structural cross-section as the objective function, the optimum section is obtained.
引文
[1]张有天.地下结构的地下水荷载[J].工程力学,1996增刊:038-050.
    [2]王建宇.隧道围岩渗流和衬砌水压力荷载[J].铁道建筑技术,2008,2:1-6.
    [3]张有天.岩石隧道衬砌外水压力问题的讨论[J].现代隧道技术,2003,40(3):1-4.
    [4]王建宇,胡元芳.对岩石隧道衬砌结构防水问题的讨论[J].现代隧道技术,2001,38(1):20-25.
    [5]王建宇.再谈隧道衬砌水压力[J].现代隧道技术,2003,40(3):5-10.
    [6]王建宇.对隧道衬砌水压力荷载的讨论[J].现代隧道技术,2006(增刊):67-73.
    [7]张有天.隧洞及压力管道设计中的外水压力修正系数[J].水力发电,1996,12:30-34.
    [8]张有天.我国水工隧洞建设的理论与实践[J].水力发电,1999,10:48-52.
    [9]张有天.水工隧洞建设的经验和教训(上)[J].贵州水力发电,2001,15(4):76-84.
    [10]张有天.水工隧洞建设的经验和教训(下)[J].贵州水力发电,2002,16(1):75-84.
    [11]张有天.从岩石水力学观点看几个重大工程事故[J].水利学报,2003,5:1-10.
    [12]刘丰军.世界海底隧道工程概况及对我国的启示[J].现代隧道技术,2006增刊:38-43.
    [13]王梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [14]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [15]吕明.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4220-4222.
    [16]李术才,徐帮树,李树忱海底隧道衬砌结构选型及参数优化研究[J]岩石力学与工程学报2005,24(21):3894-3902.
    [17]皇甫明.暗挖海底隧道围岩稳定性及支护结构受力特征的研究[D].北京交通大学博士学位论文,2005.
    [18]李兵.钻爆法海底隧道建设期工程安全风险分析及控制[D].北京交通大学博十学位论文,2010.
    [19]孙锋.海底隧道风化槽复合注浆堵水关键技术研究[D].北京交通大学博十学位论文,2010.
    [20]挪威对海底隧道工程的研究[J].世界隧道,1995,(3):68-76.
    [21]挪威海底隧道的设计与施工[J].世界隧道,1996,(3):25-33.
    [22]GRφV Eivind;NILSEN Bjφrn斯堪的纳维亚硬岩海底隧道工程[J].岩石力学与工程学报,2007,26(11):2176-2192.
    [23]Arild Palmstrom;黄子平.挪威海底隧道经验在厦门海底隧道建设中的应用[J].岩石力学与工程学报,2007,26(11):2236-2246.
    [24]HENNING Jan Eirik,MELBY Karl,φVSTEDAL Erik,et,al挪威海底公路隧道经验——施工、运行、费用和维护[J].岩石力学与工程学报,2007,26(11):2226-2235.
    [25]蒋忠信.隧道工程与水环境的相互作用[J]岩石力学与工程学报,2005(1),0121-0127.
    [26]陶月赞,姚梅.地下水渗流力学的发展进程与动向[J].吉林大学学报,2007,37(2):221-230.
    [27]吴金刚.高水压隧道渗流场的流固耦合研究[D].北京交通大学硕士学位论文,2006.
    [28]徐干成,白洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2003.
    [29]郑颖人,邱陈瑜,张红,等.关于土体隧洞围岩稳定性分析方法的探索[J].岩石力学与工程学报,2008,27(10):1968-1980.
    [30]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310.
    [31]董方庭,宋宏伟,郭志宏.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [32]王明斌,李术才.含衬砌圆形压力隧洞弹塑性新解[J].岩石力学与工程学报,2007,26(Supp.2):3770-3775.
    [33]任青文,邱颖.具有衬砌圆形隧洞的弹塑性解[J].工程力学,2005,22(2):212-217.
    [34]任青文,张宏朝.关于芬纳公式的修正[J].河海大学学报,2001,29(6):109-111.
    [35]刘保国,杜学东.圆形洞室围岩与结构相互作用的黏弹性解析[J].岩石力学与工程学报,2004,23(4):561-564.
    [36]胡夏嵩,赵法锁低地应力区地下洞室围岩变形破坏有限元数值模拟研究[J]岩石力学与工程学报,2005,24(10):1708-1714.
    [37]莫阳春,周晓军侧部岩溶隧道围岩变形特征数值模拟分析[J]水文地质工程地质,2008,2:0030-0034.
    [38]赵瑜,李晓红,顾义磊,等低地应力区地下洞室围岩变形破坏有限元数值模拟研究[J]岩土力学,2007,28(10):0393-0397.
    [39]王其胜,李夕兵,李地元 深井软岩巷道围岩变形特征及支护参数的确定[J]煤炭学报,2008,33(4):0364-0367.
    [40]A. Bobet. Effect of pore water pressure on tunnel support during static and seismic loading[J]. Tunnelling and Underground Space Technology,18 (2003):377-393.
    [41]Antonio Bobet, Member, ASCE. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of engineering mechanics December,2003:1258-1266.
    [42]李宗利,任青文,王亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291-1295.
    [43]刘成学,杨林德,李鹏.考虑应力重分布的深埋圆形透水隧洞弹塑性解[J].工程力学,2009,26(2):16-20.
    [44]吕晓聪,许金余.海底圆形隧道在渗流场影响下的弹塑性解[J].工程力学,2009,26(2):216-221.
    [45]荣传新,程桦.地下水渗流对巷道围岩稳定性影响的理论解[J].岩石力学与工程学报,2004,23(5):741-744.
    [46]李敬元,李子丰.渗流作用下井简周围岩石弹塑性应力分布规律及井壁稳定条件[J].工程力学,1997,14(2):131-137.
    [47]李地元,李夕兵,张伟,等基于流固耦合理论的连拱隧道围岩稳定性分析[J]岩石力学与工程学报,2007,26(5):1056-1064.
    [48]吉小明.隧道工程中流固耦合特性研究[D].北京:中国矿业大学(北京校区),2004.
    [49]Seok-Woo Nam, Antonio Bobet. Liner stresses in deep tunnels below the water table[J]. Tunnelling and Underground Space Technology,21 (2006):626-635.
    [50]黄阜,杨小礼.基于流固耦合理论的浅埋隧道稳定性系数分析[J].湖南理工学院学报(自然科学版),2008,21(3):61-65.
    [51]贾善坡,陈卫忠,于洪丹,等泥岩大变形隧道盾构施工法的围岩稳定性分析[J]岩石力学与工程学报,2007,26(增2):3897-3903.
    [52]Broms, B. B., Benermark, H.. Stability of clay at vertical openings. ASCE Journal of Soil Mechanical and Foundation Engineering Division SMI.1967,93:71-94
    [53]张成平.城市隧道施工引起的地而塌陷机理分析及控制研究[D].北京交通大学博士学位论文,2009.
    [54]Peck R.B. Deep excavations and tunneling in soft ground,State of the Art Report.Proc.7th. Int.Conf.on Soil Mechanics and Foundation Engineering[C].Mexico City,1969.225-290.
    [55]Peck, R. B., Hendron, A. J. et al..State of the art of soft ground tunneling. Proc.1972 RETC.(Chicago).1. pp.259-280.
    [56]Kimura, T, and Mair, J. R.. Centrifugal testing of model tunnels in soft clay. Proc.10th Int. Conf. Soil Mechanical and Foundation Engineering. (Stocklom).1981,2:319-322.
    [57]Cornejo, L.. Instability at the face:its repercussions for tunneling technology. Tunnels and Tunnelling.1989,21:69-74
    [58]Ellstein, A. R.. Heading failure of lined tunnels in soft soils. Tunnels and Tunnelling. 1986,18:51-54
    [59]Egger, P.. Deformation at the face of the heading and determination of the cohesion of the rock mass. Underground Space Technology.1980,4:313-318
    [60]Davis, E. H., Gunn, M. J. et al. The stability of shallow tunnels and underground opening in cohesive material. Geotechnique.1980,30 (4):397-419.
    [61]Leca, E.. Analysis of NATM and shield tunneling in soft ground. PhD Thesis.Vrginia Polytechnic Institute and State University,1990.
    [62]Augarde C E, Lyamin A V, Sloan S W. Stability of an undrained plane strain heading revisited[J]. Computers and Geotechnics,2003,30(5):419-430.
    [63]Sloan, S. W. and Assaddi. A.. Stability of shallow tunnels in soft ground. Predictive Soil Mechanics. Proc. Wroth memorial symposium. Oxford.1992, Thomas Telford:644-663
    [64]Klar A, Osman A S, Bolton M.2D and 3D upper bound solutions for tunnel excavation using elastic flow fields[J], International Journal for Numerical and Analytucal Methods in Geomechanics,2007,31(12):1367-1374.
    [65]姜功良.浅埋软土隧道稳定性极限分析[J].土木工程学报,1998,31(5):65-71.
    [66]Jiro Takemura, Tsutomu Kimura, et al软土中二维未衬砌隧道的不排水稳定性.陆荣用译.隧道译丛,1992(1):1-11.
    [67]徐东,周顺华等.上海粘土的成拱能力探讨[J].上海铁道大学学报.1999.Vol20.(6):49-54.
    [68]Leca, E. and Dormieux, L.. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Geotechnique.1990,40 (4):581-605.
    [69]Soubra A H. Three-dimensional face stability analysis of shallow circular tunnels[C]// International Conference on Geotechnical and Geological Engineering, Melbourne,2000.
    [70]杨峰,阳军生,赵炼恒.浅埋隧道工作面破坏模式与支护反力研究[J].岩土工程学报2010,32(2):0279-0284.
    [71]Atkinson, J. H., Potts, D. M.. Subsidence above shallow tunnels in soft ground.Proc. ASCE Geotechanical Eng. Div.1977,103(4):307-325.
    [72]Atkinson, J. H., Potts, D. M. et al.. Centrifugal model tests on shallow tunnels in sand. Tunnels and Tunnelling. Vol.1977,9(1):59-64.
    [73]Chambon, P. Corte, J. F.. Shallow tunnels in cohesionless soil :stability of tunnel face. Journal of Geotechnical Engineering. ASCE,1994,120.(7):1150-1163.
    [74]Anagnoston. G., Kovari, K. Face stability in slurry and EPB shield tunnelling. Proc. Geotechnical Aspects of Underground Construction in Soft Ground. (eds Mair, R. J.& Taylor, R. N). Balkema,1996:35-42.
    [75]Hong, Sung Wan. Ground movements around model tunnels in sand. PhD Thesis, University of Illinois at urban-champain,1984.
    [76]Domon, T., Kondon, T., et al.. Model tests on face stability of tunnels in granular material. Proc. Tunnels and Metropolises. (eds Negro Jr & Ferreira).1998:201-214.
    [77]王云峰,柴春明,王兵.浅埋隧道荷载破裂角的统计特征[J].兰州铁道学院学报.1998,17.(3):16-20.
    [78]骞大锋,王兵,谢世昌.土砂互层中浅埋隧道的破裂角及破坏试验研究[J].兰州铁道学院学报.1999,18.(3):25-29.
    [79]Mair, R. J.. Developments in geotechnical engineering research application to tunnels and deep excavations. Proc. Int. Civil Engineers. Civil Engineers.1993,93:27-41.
    [80]Mair, R. J.. Settlement effects of bored tunnels. Session Report, Proc. Geotechnical Aspects of Underground Construction in Soft Groud. (eds Mair, R. J.& Taylor, R. N). Balkema.1996: 43-53.
    [81]Komiya, K., Shimizu, E., et al.. Earth pressure exerted on tunnels due to the subsidence of sandy ground. Proc. Geotechnical Aspect of Underground Construction in Soft Ground.(eds Kusakabe, Fujita & Miyazaki). Balkema.2000:397-402
    [82]韦良文,张庆贺,孙统立,等.盾构隧道开挖面稳定研究进展[J].重庆交通大学学报(自然科学版).2007,26(6):67-72.
    [83]魏纲,贺峰.砂性土中顶管开挖面最小支护压力的计算[J].地下空间与工程学报,2007,3(5):903-908.
    [84]秦建设.盾构施工开挖面变形与破坏机理研究[D].河海大学博士学位论文,2005.
    [85]Anagnostou G, Kovari K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnel and Deep Space,1996,11:165-173.
    [86]Broere W. Face stability calculation for a slurry shield in Heterogeneous soft soils[J]. Tunnels and Metropolises,1998,23:215-218.
    [87]In-Mo Lee, Seok-Woo Nam. Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face[J]. Tunnelling and Underground Space Technology,2004,19: 273-281.
    [88]In-Mo Lee, Jae-Sung Lee. Seok-Woo Nam. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J]. Tunnelling and Underground Space Technology, 2004,19:551-565.
    [89]In-Mo Lee, Seok-Woo Nam. Coupled numerical analysis of strain localization induced by shallow tunnels in saturated soils[J]. Tunnelling and Underground Space Technology,2001, 16:31-40.
    [90]黄正荣,朱伟.浅埋砂土中盾构法隧道开挖面极限支护压力及稳定研究[J].岩土工程学报,2006,28(11):2005-2009.
    [91]高健,张义同,乔金丽.渗透力对隧道开挖面稳定性影响分析[J].岩土工程学报,2009,31(10):1547-1553.
    [92]李鹏飞,张顶立,房倩,等.基于连续介质模型的海底隧道支护结构受力特征[J].北京交通大学学报,2009,33(4):7-11.
    [93]李鹏飞,张顶立,王梦恕,等.海底隧道衬砌结构受力特点及断面形状优化[J].中国铁道科学,2009,30(3):51-56.
    [94]房倩,张顶立,黄明琦.基于连续介质模型的海底隧道渗流问题分析[J].岩石力学与工程学报,2007,24(23):4219-4225.
    [95]张成平,张顶立,王梦恕,等.高水压富水区隧道限排衬砌注浆圈合理参数研究[J].岩石力学与工程学报,2007,26(11):2270-2276.
    [96]王秀英.岩溶隧道堵水限排衬砌外水压力及结构设计研究[D].北京交通大学博士学位论文,2005.
    [97]陈卫忠,于洪丹,郭小红,等.厦门海底隧道海域风化槽段围岩稳定性研究[J].岩石力学与工程学报,2008,27(5):873-884.
    [98]高新强,仇文革.隧道衬砌外水压力计算方法研究现状与进展[J].铁道工程学报,2004,4:128-131.
    [99]傅钢,曹延平,张林,等.地下水环境平衡的理念在高水压隧道设计中的应用[J].岩土力学,2007,28(增刊):0474-0478.
    [100]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报2005,27(1):0125-0127.
    [101]王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法[J].北方交通大学学报,2004,28(1):8-10.
    [102]速宝玉,詹美礼,赵坚.光滑裂隙水流模型试验及其机理初探[J]水利学报,1994(5)19-24.
    [103]速宝玉,詹美礼,郭笑娥.交叉裂隙水流的模型试验研究[J]水利学报,1997(5),1-6.
    [104]张顶立.海底隧道不良地质体及结构界面的变形控制技术[J].岩石力学与工程学报,2007,26(11):2161-2169.
    [105]王秀英,谭忠盛,王梦恕,等.厦门海底隧道结构防排水原则研究[J]岩石力学与工程学报,2007,26(增刊):3810-3815.
    [106]高新强,仇文革.深埋单线铁路隧道衬砌高水压分界值研究[J].岩土力学,2005,26(10):1675-1680.
    [107]徐芝纶.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.
    [108]孙钧,侯学渊.地下结构(上册)[M].北京:科学出版社,1991.
    [109]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [110]房倩.高速铁路隧道支护围岩作用关系研究[D].北京:北京交通大学博十学位论文,2010.
    [111]王星华,章敏,王随新.考虑渗流及软化的海底隧道围岩弹塑性分析[J].岩土力学,2009,30(11):3267-3272.
    [112]陈育民,徐鼎平FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [113]李鹏飞,张顶立,房倩,等.海底隧道施工过程中围岩稳定性的流固耦合分析[J].中国铁道科学,2010,34(3):35-41.
    [114]郭小红.厦门翔安海底隧道风化槽衬砌结构稳定性研究[D].北京:北京交通大学博士学位论文,2011.
    [115]Itasca Consulting Group Inc. FLAC3D, Fast Lagrangian Analysis of Continua in 3 Dimensions, version 2.0:User's Manual[R]. USA:Itasca Consulting Group Inc,1997.
    [116]杨新锐.软土地区隧道开挖引起的地层变形研究[D].北京交通大学硕士学位论文,2007.
    [117]易小明,张顶立,陈铁林.厦门海底隧道地层变形监测与机制分析[J].岩石力学与工程学报,2007,26(11):2302-2308.
    [118]原华,张庆贺,胡向东,等.大直径越江盾构隧道各向异性渗流应力耦合分析[J].岩石力学与工程学报,2008,27(10):2130-2137.
    [119]华渊,潘建立,周太全.厦门海底隧道右线穿越F1风化槽施工方案探讨[J].岩石力学与工程学报,2007,26(增2):3743-3750.
    [120]潘世建.厦门翔安海底隧道工程技术丛书[M].北京:人民交通出版社,2011.
    [121]金建伟.厦门翔安海底隧道结构防排水技术研究[D].北京交通大学硕十学位论文,2008.
    [122]于清浩.厦门海底隧道防排水技术及防排水系统堵塞可能性研究[D].北京交通大学硕士学位论文,2009.
    [123]中铁西南科学研究院有限公司.青岛胶州湾隧道工程第三方监控量测成果总结[R].中铁西南科学研究院有限公司,2011.
    [124]李树忱,冯现大,李术才,等.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):0281-0288.
    [125]张杰,侯忠杰.固液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [126]胡耀青,赵阳升,杨栋.三维固流耦合相似模拟理论与方法[J].辽宁工程技术大学学报,2007,26(2):204-206.
    [127]黎良杰,钱鸣高,殷有泉.采场底板突水相似材料模拟研究[J].煤田地质与勘探,1996,25(1):33-36.
    [128]龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院院报,1984,10(1):32-46.
    [129]王戍平.破碎围岩隧道的模拟试验研究[D].浙江大学博士学位论文,2004.
    [130]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报.2006,25(9):1842-1847.
    [131]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [132]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [133]韩伯鲤,陈霞龄,宋一乐,等.岩体相似材料的研究[J].武汉水利电力大学学报.1997(02):7-10.
    [134]马芳平,李仲奎,罗光福NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报.2004(01):48-51.
    [135]夏熙伦.工程岩石力学[M].武汉:武汉工业大学出版社,1998
    [136]乔春生.岩石力学[M].北京:北京交通大学内部讲义,2010.
    [137]高保彬.采动煤岩裂隙演化及其透气性能试验研究[D].北京:北京交通大学博士学位论文,2010.
    [138]黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大学学报(自然科学版),1999,20(4):724-728
    [139]凌建明.压缩载荷条件下岩石细观损伤特征的研究[J].同济大学学报,1993,21(2):219-226.
    [140]Okstuka K, Data H. Fracture process zone in concrete tension specimen[J].Engineering Fracture Mechanics.2000:111-131.
    [141]王抒.京沪高铁浅埋大跨隧道下穿高速公路的安全风险管理[D].北京交通大学硕十学位论文,2010.
    [142]陈林杰,蒋树屏,丁浩.公路隧道外水压力折减规律研究[J].重庆交通大学学报(自然科学版).2008,27(3):383-386.
    [143]丁浩,蒋树屏,陈林杰.公路隧道外水压力的相似模型试验研究[J].公路交通科技.2008,25(10):99-104.
    [144]张鹏.海底隧道衬砌水压力分布规律和结构受力特征模型试验研究[D].北京交通大学硕十学位论文,2007.
    [145]王梦恕.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [146]王梦恕.水下交通隧道发展现状与技术难题-兼论“台湾海峡海底铁路隧道建设方案”岩石力学与工程学报,2008,27(11):2161-2172.
    [147]张成平,张顶立,王梦恕,等.厦门海底隧道防排水系统研究与工程应用[J]中国公路学报,2008,21(3):0069-0075.
    [148]瞿守信.厦门翔安海底隧道防排水技术初步应用经验[J].岩石力学与工程学报,2007,26(11):2247-2252.
    [149]佘成学,张龙.管片衬砌承担高内水压力的可行性分析[J].岩石力学与工程学报,2008,27(7):1442-1447.
    [150]中铁西南科学研究院.圆梁山隧道室内模型试验分项研究报告[R]中铁西南科学研究院,2004.
    [151]高新强.高水压山岭隧道衬砌水压力分布规律研究[D].西南交通大学博土学位论文,2005.
    [152]丁浩,蒋树屏,杨林德外水压下隧道衬砌的力学响应及结构对策研究[J].岩土力学2008,29(10):2799-2805.
    [153]张宇,万晓燕,陈礼伟.圆梁山隧道溶洞地段抗水压衬砌结构试验分析[J]中国铁道科学,2006,27(4):0062-0067.
    [154]谢红强,何川,李围.江底盾构隧道施工期外水压分布规律的现场试验研究[J].岩十力学,2006,27(10):1851-1855.
    [155]崔岩.地下结构外水压试验研究及理论分析[D]中国矿业大学(北京)硕十学位论文,1997.
    [156]重庆交通科研设计院JTG D70-2004公路隧道设计规范[S].北京:人民交通出版社,2004.
    [157]房倩,张顶立,李鹏飞,等.基于施工安全性的海底隧道断面优化研究[J].北京工业大学学报,2010,36(3):321-327.
    [158]薛玺成,杨万斌.地下洞室断面形状的优化计算方法[J].岩土工程学报,1999,21(2):144-147.
    [159]冯紫良.地下洞室形状设计优化的一个方法[J].岩土工程学报,1993,15(3):29-36.
    [160]孙焕纯,张巨勇,严国梅,等.弹性平面孔洞形状优化复变函数方法[J].应用数学和力学,1978,8(2):133-141.
    [161]吕爱钟.地下洞室最优开挖形状的确定方法[J].岩石力学与工程学报,1996,15(3):275-281.
    [162]Bjorkman GS.and Richards R. Harmonic hole-an inverse problem in elasticity. ASME Journal of Applied Mechanics,1976,43:414-418.
    [163]Bjorkman GS.and Richards R. Harmonic hole for nonconstant field. ASME Journal of Applied Mechanics,1979,46:573-576.
    [164]Richards R. and Bjorkman G.S. Optimum shapes for tunnels and cavities.Proceedings of thel7th United States Symposium on Rock Mechanics. University of Utah, Salt Lake City, Utah:1976.
    [165]Richards R. and Bjorkman G.S. Optimum shapes for unlined tunnels and cavities. Engineering Geology,1978; 12:171-179.
    [166]Dhir S.K. Optimization in a class of hole shapes in plate structures. ASME Journal of Applied Mechanics,1981; 48:905-908.
    [167]于学馥,乔端.轴变论和围岩稳定轴比三规律[J].有色金属,1981,33(3):8-15.
    [168]刘小兵.地下洞室的一种优化设计模型[J].地下空间,1995,15(1):34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700