用户名: 密码: 验证码:
重型铸钢万向铰支座性能分析与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
万向铰支座是具有万向承载和万向转动能力的一种支座型式,由于其能够多向受力并能发生微小转动,而具有广阔的应用前景。但目前已有的万向铰支座通常抗拉和抗剪承载能力较低,尚不能满足工程需求。另一方面,目前关于铸钢节点的设计规程《铸钢节点应用技术规程》(CECS 235:2008)刚刚颁布,重型万向铰支座的设计和应用经验较少。基于此,本文首次实现了一种6000kN级重型铸钢万向铰支座,完成了6000kN级重型铸钢万向铰支座的设计、足尺试验和工程应用,并通过理论分析和设计实践,对新颁布的《铸钢节点应用技术规程》(CECS 235:2008)中的部分条文进行了讨论分析,提出了补充建议。主要进行了以下几方面工作:
     (1)利用实体建模软件SolidWorks、前处理软件HyperMesh和有限元分析软件ANSYS建立了能够考虑材料非线性、几何非线性和接触非线性影响的万向铰支座的有限元分析模型,并利用已有的试验结果验证了有限元模型的正确性。探讨了四面体网格划分、六面体网格划分和混合网格划分的实现方式,比较了三种网格划分方式的优缺点。
     (2)设计并研究了一种目前国内承载能力最大的新型6000kN级重型铸钢万向铰支座,并将其成功应用于实际工程中。分析了支座在三种典型荷载工况下的力学性能以及加载角度和初始变形对支座受力性能的影响,并按照规程对支座进行了校核。分析校核表明所设计支座能够满足规程要求,且支座受力明确、传力直接、性能可靠。
     (3)研究制作了自相平衡重型多向受力加载装置,实现了6000kN级重型铸钢万向铰支座的足尺静力性能试验。试验研究表明所设计支座受力明确、传力直接、性能可靠,所设计的加载系统适合复杂节点重型受力试验。进行了有限元分析结果和试验结果的对比验证,验证表明本文的有限元模型能够较好地模拟铸钢万向铰支座的力学性能。
     (4)对支座进行了受拉、受剪和受压力学性能参数分析和经济性比较,找出了主要影响因素、影响规律和影响大小。分析了上支座球饼厚度、下支座顶板厚度、材料屈服强度等参数对支座受压、受剪和受拉时力学性能、经济性以及等强设计的影响。分析表明:在所研究的参数范围内,下支座顶板厚度、下支座加劲肋厚度和材料屈服强度对支座的受压力学性能影响较大;上支座球饼厚度和材料屈服强度对支座的受剪力学性能和受拉力学性能影响较大。
     (5)对影响支座纯弹性设计的接触问题和应力集中问题进行了分析,研究了影响接触应力大小的主要因素,提出了减小应力集中的构造措施,并对规程中部分条文进行了探讨,提出了补充建议。研究表明:减小两接触体半径之差对减小接触应力最为有效;对应力集中区域进行局部加强、改变传力模式和改变局部刚度分布均能有效地降低应力集中,三种方法中局部加强法最为有效。在依据规程计算节点极限承载力时,不能仅依据规程条文说明取荷载-变形曲线中刚度首次减小为初始刚度10%时的荷载为极限承载力,而要同时校核节点在极限承载力作用下的最大应力点的折算应力不应超过材料的抗拉强度。弹塑性双折线模型的强化模量在规程给定范围内取值时对支座的极限承载力影响较大,建议结合实测的铸钢材性数据确定。对由若干部件串联而成的铸钢节点,在极限承载力计算时建议分别计算各组成部件的极限承载力,并取其中的最小值作为节点的极限承载力。
Heavy-duty universal hinged supports are being more and more widely used in modern large-span structures. They offer extremely huge individual load carrying capacity and universal rotation ability which are preferable to release temperature effects and to improve boundary conditions of lower structures. Yet the bearing capacities of the currently available universal hinged supports under tension and shear are relative low, which is hard to satisfy the increasing engineering requirements. On the other hand, the Chinese code about cast steel node design has just been released, and there are issues needed to be further investigated. So, this dissertation presents the design, full-scale experiment and analysis on a kind of heavy duty cast steel universal hinged supports with the bearing capacity up to 6000kN. The main research contents are as follows:
     (1) A three-dimensional finite element model is developed by using the 3D entity modeling software SolidWorks, the preprocessing software HyperMesh, and the commercial software ANSYS with consideration on material, geometrical and contact nonlinearities. The model is validated against the experimental results reported in a reference and the verification suggests that the model can well predict mechanical behaviors of the supports.
     (2) With reference to the available universal hinged supports and based on a patented design, an innovative heavy duty cast steel universal hinged support with the bearing capacity up to 6000kN is designed. The supports designed in this dessertation are of the largest bearing capacity in China. The performance of the supports under three typical load combinations is analyzed and evaluated against the Chinese national code‘Technical specification for application of connections of structural casting steel (CECS 235:2008)’. The effects of loading angle and initial deformation are also discussed. It is concluded that the designed supports can satisfy the requirements of the Chinese code under the design load combinations.
     (3) An innovative self-balanced loading system is designed and realized by updating the available loading ring in the Lab. Full-scale experiments in three load cases are carried out successfully. Tests results show the support has reasonable design and manufacture details, direct force path, and reliable performance. The three tests also verify the numerical model, and the verification further confirms the applicability of the model.
     (4) The effects on the mechanical performance and economical efficiency are duscussed for supports under compression, tension and shear; the parameters include depth of the cake of the upper component, depth of the top plate of the bottom component, yield strength of the material etc. The analysis shows that, in the range of the parameters analyzed, when the support is in compression, the parameters such as depth of the top plate, depth of the ribs of the bottom component and yield strength of the material have great effects on the mechanical performance of the support. When the support is under shear, the parameters such as depth of the cake of the upper component and yield strength of the material have a great effects on the mechanical performance of the support. When the support is in tention, the parameters such as depth of the cake of the upper component and yield strength of the material have a great effect on the mechanical performance of the support.
     (5) Methods for reducing stress in contact regions and stress concentration regions are investigated, and the research is also carried out for the ultimate bearing capacity calculation considering the effects of the material strengthening modulus in the model. It is shown that the difference between the radiuses of the two contact objects has the largest effect on the contact stress. The proper design of local refinement, force path change, and local stiffness distribution modification can effectively reduce stress concentration. And among the above three methods, the local refinement method is the most effective. When the Code is used to determine the bearing capacity of cast steel nodes, it is suggested to check stress state of the nodes. The material strengthening modulus in the calculation model has great effect on the bearing capacity of the supports, therefore the material strengthening modulus from coupon tests is highly recommended in the calcultion. When cast steel nodes are made up of several cascade connected components, it is suggested to determine bearing capacity of each components separately, and select the minimum one as the bearing capacity of the cast steel nodes.
引文
[1]林彦,刘锡良.铸钢节点的工程应用与研究[J].建筑钢结构进展, 2004(01):12-19.
    [2]刘锡良,林彦.铸钢节点的设计以及在工程中的应用[J].工业建筑, 2005(11):27-30.
    [3]吴治国,刘坚,王永梅.铸钢节点的研究及在大跨度空间结构中的应用[J].钢结构, 2008(08):31-35.
    [4]林彦,刘锡良.铸钢球节点的特点及在工程中的应用:第十二届全国结构工程学术会议,重庆, 2003[C].清华大学出版社, 20031001.
    [5]林彦,刘锡良.铸钢节点在大跨度空间结构中的应用:第三届全国现代结构工程学术研讨会,天津, 2003[C].工业建筑杂志社, 20030701.
    [6]Marston G. J. Better cast than fabricated [J]. Foundryman, 1990, 83(3):108-113.
    [7] Kanno Takao, Hisamitsu Nobuyoshi, Sakamoto Suguru, et al. CAST STEEL SPHERICAL SHELL JOINTS OF OFF-SHORE SPACE STRUCTURES.[J]. Sumitomo Search, 1974(11):39-51.
    [8] Hori Kazuo, Tanaka Tohachiro, Mukai Tetsuya, et al. DEVELOPMENT OF HIGH TENSILE CASTING STEEL LEG NODES FOR JACK-UP TYPE RIGS.[J]. Sumitomo Search, 1977(17):122-128.
    [9] Anon. LARGE DIAMETER CAST NODES - A BREAKTHROUGH IN PLATFORM DESIGN?[J]. 1978, 82(11): 11-14.
    [10] Webster S. E., Walker F., Wood A. M. CAST STEEL NODES - THEIR MANUFACTURE AND ADVANTAGES TO OFFSHORE STRUCTURES [J]. JPT, Journal of Petroleum Technology, 1981, 33(10): 99-105.
    [11] Lomax K. B. FORGINGS AND CASTINGS: Materials for the Process Industries. Conference cancelled, Engl for Inst of Mechanical Engineers, London, Engl, 1982[C]. Mechanical Engineering Publ Ltd, Bury St. Edmunds.
    [12] Gantke Franz, Haneke Max, Hoff Hans-Hubert, et al. HERSTELLUNG UND BERECHNUNG VON STAHLGUSSKNOTEN FUER OFFSHORE-KONSTRUKTIONEN.Manufacture and Evaluation of Cast Steel Nodes for Offshore Structures.[J]. Stahl und Eisen, 1982, 102(14):21-26.
    [13] Ellis Norman, Salama M. M., Beggs D. V. EVALUATION OF STRUCTURAL STEEL CASTINGS FOR THE HUTTON TENSION LEG PLATFORM.: 1983Proceedings - Fifteenth Annual Offshore Technology Conference., Houston, TX, USA, 1983[C]. Offshore Technology Conference, USA OTC 4450.
    [14] Veselcic M. Cast steel in tubular bridges-New applications and technologies[J]. Tubular structures X, 2003.
    [15] PBroughton. Cast steel nodes for the Ekofisk 2/4J jacket[J]. Broughton EtAI, 2003.
    [16] Schober Hans. STEEL CASTINGS IN ARCHITECTURE AND ENGINEERING: NASCC Proceedings, Baltimore, MD, 2003[C].
    [17] Schober H. Cast steel joints for tubular structures [J]. Tubular structures, 2003.
    [18] Glijnis Piter C. To cast or not to cast [J]. Tubular structures X, 2003.
    [19]秦惠纪,张红缨,胡玉银,等.上海新国际博览中心钢结构设计[J].建筑钢结构进展, 2003(01):11-20.
    [20]刘子样.上海新国际博览中心钢结构安装技术:第二届全国现代结构工程学术研讨会, 2002[C].第二届全国现代结构工程学术研讨会论文集,工业建筑(增刊).
    [21]吴欣之.广州国际会展中心大跨度复杂形体钢结构安装技术研究[J].建筑钢结构进展, 2004(01):24-30.
    [22]吴欣之,薛备芬,钱震海,等.广州国际会展中心大跨度复杂形体的钢结构安装技术研究[J].建筑施工, 2002(05):33-37.
    [23]杨叔庸,孙文波,舒宣武. 126.6m跨张弦桁架结构的设计与研究[J].空间结构, 2005(01):24-29.
    [24]杨叔庸,孙文波,诸福华.广州国际会议展览中心张弦桁架结构节点设计[J].建筑结构, 2004(11):28-29.
    [25]林彦.铸钢节点的理论分析与试验研究[D].天津大学, 2004.
    [26]李巧,邓开国.重庆袁家岗体育中心体育场网壳铸钢节点设计[J].建筑结构, 2005(08):52-56.
    [27]邓开国,李巧,贾志涛.重庆袁家岗体育场网壳罩棚结构设计[J].建筑结构, 2005(08):46-51.
    [28]强士中,卫星,李俊.网壳结构铸钢球节点弹塑性分析及试验研究[J].建筑结构学报, 2005(01):45-50.
    [29]李俊,卫星,李小珍,等.大型钢网壳结构铸钢节点复杂受力的试验研究[J].土木工程学报, 2005(06):8-12.
    [30]陈桥生.南京奥体主体育场钢屋盖工程难点与技术措施[J].施工技术, 2004(11):35-38.
    [31]李振军李国强.建筑钢结构设计方法及其研究发展:第一届现代钢结构学术会议论文, 1998[C].
    [32]谭德远.黄金树节点的两种可选方案的比较[J].建筑技术开发, 2002(04):6-39.
    [33]谭德远.黄金树结构两种节点可选方案的性能比较[J].钢结构, 2002(03):19-20.
    [34]周忠明,鲍广鑑.深圳文化中心黄金树铸钢节点焊接技术[J].施工技术, 2002(11):18-20.
    [35]鲍广,谭仲毅.深圳文化中心黄金树安装技术[J].施工技术, 2002(05):6-8.
    [36]徐重良,周发榜.好大一棵树——深圳文化中心成功采用黄金树施工技术[J].建设科技, 2003(04):36-37.
    [37]马耀庭,张汝彬.深圳游泳跳水馆钢屋盖结构设计[J].建筑结构, 2004(11):9-13.
    [38]李英灏,童丽萍.郑州国际会展中心铸钢节点S211-1的受力特性分析[J].郑州大学学报(理学版), 2005(01):82-86.
    [39]戴国欣,李万伟,邢世建,等.重庆江北国际机场新航站楼大跨钢桁架铸钢节点性能研究[J].建筑结构学报, 2005(04):70-75.
    [40]戴国欣,冯维琦.重庆江北国际机场新建航站楼铸钢节点有限元分析[J].重庆建筑, 2005(08):61-64.
    [41]冯维琦.大型复杂铸钢节点的使用性能分析[J].山西建筑, 2005(16):69-70.
    [42]蔡建国,冯健,顾洪波,等.大型铸钢节点的工程应用和分析[J].钢结构, 2008(04):13-17.
    [43]周鉴,李霆,许敏.铸钢节点在无锡博物院工程中的应用研究[J].江苏建筑, 2009(06):38-41.
    [44]吴治国,刘坚,王永梅,等.广州歌剧院复杂铸钢节点的动力性能分析:广州歌剧院复杂铸钢节点的动力性能分析,中国天津, 2008[C].
    [45]陈军明,吴旭旺,任志刚,等.广州歌剧院铸钢节点刚性区的处理[J].武汉理工大学学报, 2009(17):102-105.
    [46]冯远,杨曦,何建波.成都高新科技商务广场C座钢结构设计[J].建筑结构, 2004(11):3-8.
    [47]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. GB 50017-2003钢结构设计规范[S].北京: 2003.
    [48]中华人民共和国行业标准. JGJ 7-91网架结构设计与施工规程[S].北京:中国标准出版社, 1991.
    [49]中华人民共和国交通运输部. JT/T 391-2009公路桥梁盆式支座[S].北京:中国标准出版社, 2009.
    [50]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 17955-2009桥梁球型支座[S].北京:中国标准出版社, 2009.
    [51] Sakamoto Suguru, Ohtake Fumio, Minoshima Tsugio, et al. STATIC AND FATIGUE STRENGTH OF HIGH TENSILE STRENGTH STEEL TUBULAR JOINTS FOR OFFSHORE STRUCTURES [J]. Sumitomo Metals, 1978, 30(1):62-72.
    [52] Ohba H., Susei S., Sakai Y., et al. DEVELOPMENT OF CASTING LEG NODES FOR A JACKUP RIG [J]. JPT, Journal of Petroleum Technology, 1980, 32(7):71-80.
    [53] Armitage R. DEVELOPMENT OF CAST NODE JOINTS FOR OFFSHORE PRODUCTION PLATFORMS.[J]. Metals Technology, 1981, 8(pt 8):13-18.
    [54] Webster S. E., Walker F., Wood A. M. CAST STEEL NODES - THEIR MANUFACTURE AND ADVANTAGES TO OFFSHORE STRUCTURES [J]. JPT, Journal of Petroleum Technology, 1981, 33(10): 99-105.
    [55] Gantke Franz. DESIGN CONCEPT OF CAST STEEL NODES.: Conference Internationale - L'Acier dans les Structures Marines. Session Technique 1-5., Paris, Fr, 1981[C]. Comm of the Eur Communities.
    [56] Lomax K. B. FORGINGS AND CASTINGS.: Materials for the Process Industries. Conference cancelled., Engl for Inst of Mechanical Engineers, London, Engl, 1982[C]. Mechanical Engineering Publ Ltd, Bury St. Edmunds.
    [57] Armitage R. DEVELOPMENT OF CAST NODE JOINTS FOR OFFSHORE PRODUCTION PLATFORMS.: Solidification Technology in the Foundry and Cast House, Proceedings of an International Conference., Coventry, Engl, 1983[C]. Metals Soc (Book 273).
    [58] Gantke F., Haneke M. DESIGN PHILOSOPHY, RULES, AND PROCEDURES FOR CAST STEEL NODES.: 2nd International Conference on Offshore Welded Structures., London, Engl, 1983[C]. Welding InstEngl.
    [59] Fessler Henry, Edwards C. D. COMPARISON OF STRESS DISTRIBUTIONS IN A SIMPLE TUBULAR JOINT USING 3-D FINITE ELEMENT, PHOTOELASTIC AND STRAIN GAUGE TECHNIQUES.: 1983 Proceedings - Fifteenth Annual Offshore Technology Conference., Houston, TX, USA, 1983[C]. Offshore Technology Conference, USA OTC 4646.
    [60] Walker E. F., Richardson R. C. APPRAISAL OF THE ROLE FOR STEEL FORGINGS AND CASTINGS IN MAJOR STRUCTURAL APPLICATIONS.[J]. Proceedings of the Institution of Civil Engineers (London), 1983, 74(1):71-96.
    [61] Marston G. J. DESIGN AND DEVELOPMENT OF STEEL CASTINGS FOR OFFSHORE APPLICATIONS.: Perspectives in Metallurgical Development, Proceedings of the Centenary Conference., Sheffield, Engl, 1984[C]. Metals Soc (Book 318).
    [62] Ellis N., Salama M. M., Beggs D. V. EVALUATION OF STRUCTURAL STEEL CASTINGS FOR THE HUTTON TENSION LEG PLATFORM.[J]. Journal of Energy Resources Technology, Transactions of the ASME, 1984, 106(2):34-39.
    [63] de Koning A. C. DEVELOPMENTS IN MATERIALS AND WELDING TECHNOLOGY FOR OFFSHORE STRUCTURES.[J]. Metal construction, 1985, 17(11):27-34.
    [64] Guy Ray. NEW PLATFORM DESIGN CONCEPTS EMERGING [J]. Petroleum Engineer International, 1986, 58(2):45-46.
    [65] An Bunzai, Nakamura Ken-ichi, Kayama Kazuo, et al. CAST-STEEL NODE FOR OFFSHORE OIL-PRODUCTION STRUCTURE.[J]. R and D: Research and Development Kobe Steel Engineering Reports, 1987, 37(3):83-86.
    [66] Anon. STRUCTURAL ANALYSIS SYSTEM FOR CAST STEEL NODES USED IN OFFSHORE STRUCTURES [J]. KOBELCO Technology Review, 1987(2):65-69.
    [67] Armitage R. DEVELOPMENT OF CAST NODE JOINTS FOR OFFSHORE PRODUCTION PLATFORMS.[J]. Metals Technology, 1981, 8(8):13-18.
    [68] Armitage R. DEVELOPMENT OF CAST NODE JOINTS FOR OFFSHORE PRODUCTION PLATFORMS.: Solidification Technology in the Foundry and Cast House, Proceedings of an International Conference., Coventry, Engl, 1983[C]. Metals Soc (Book 273).
    [69] Fessler H., Edwards C. D. COMPARISON OF STRESS DISTRIBUTIONS IN A SIMPLE CAST TUBULAR JOINT USING 3-D FINITE ELEMENT, PHOTOELASTIC AND STRAIN GAGE TECHNIQUES.[J]. Journal of Energy Resources Technology, Transactions of the ASME, 1984, 106(4):80-88.
    [70] Marston G. J. STEEL CASTINGS SOLVE OFFSHORE STRUCTURALPROBLEMS.[J]. Casting engineering & foundry world, 1985, 16(4):7-10.
    [71] Marston G. J. STEEL CASTINGS SOLVE OFFSHORE STRUCTURAL PROBLEMS.[J]. Molybdenum mosaic, 1984, 7(2):5-9.
    [72] Edwards C. D., Fessler H. STRESS CONCENTRATIONS IN CAST CORNER JOINTS OF TUBULAR STRUCTURES.: Behaviour of Offshore Structures, Proceedings of the 4th International Conference., Delft, Neth, 1985[C]. Elsevier Science Publishers BV (Developments in Marine Technology, v 2).
    [73] De Oliveira J. C., Willibald S., Packer J. A., et al. Cast steel nodes in tubular construction - Canadian experience[J]. Welding in the World, 2006, 50(SPEC. ISS.):71-77.
    [74] Nussbaumer A., Haldimann-Sturm S. C., Schumacher A. Fatigue of bridge joints using welded tubes or cast steel node solutions[J]. Welding in the World, 2006, 50(SPEC. ISS.):56-63.
    [75] de Oliveira Juan-. Cast steel connector for tubular braces in seismic building applications[D]. Canada: University of Toronto (Canada), 2006.
    [76] De Oliveira Juan-Carlos, Packer Jeffrey A., Christopoulos Constantin. Cast steel connectors for circular hollow section braces under inelastic cyclic loading[J]. Journal of Structural Engineering, 2008, 134(3):74-83.
    [77]韩娟.铸钢节点铸钢轴和铸钢塔结构的研究[D].天津大学, 2004.
    [78]王开强,韩庆华.铸钢节点破坏机理及其承载能力理论分析[D].天津大学, 2005.
    [79]张向荣.静力荷载作用下铸钢节点承载力的有限元分析与试验研究[D].天津大学, 2007.
    [80]张向荣,杨明杰,杨怡.轴力和弯矩共同作用下铸钢空心球节点承载力的有限元分析[J].工业建筑, 2008(S1):43-45.
    [81]王志远.反复荷载作用下铸钢节点受力性能的有限元分析与试验研究[D].天津大学, 2007.
    [82]丁阳,张向荣,王志远,等.天津奥林匹克中心体育场铸钢节点试验研究[J].建筑结构学报, 2008(05):8-12.
    [83]卫星,任伟平.空间钢网壳大型铸钢节点结构实体试验研究[J].四川建筑, 2004(03):72-73.
    [84] Jun LI, Xing WEI, Xiaozhen LI, et al. Research on Bearing Safety of Cast-steel Joint of Large Steel Reticulated Shells, Shanghai, China, 2004[C].
    [85]李明,高兑现.空间铸钢球节点与钢框架节点的弹塑性研究[D].西安理工大学, 2008.
    [86]王宏.树枝结构铸钢节点性能研究及应用[D].清华大学, 2002.
    [87]谭德远.复杂空间钢结构巨型焊接空心球节点的研究[D].湖南大学, 2003.
    [88]陈瑞麟.多角度钢结构铸钢节点的研制[J].钢结构, 2003(04):16-18.
    [89]顾文涛. K型铸钢节点研究[D].东南大学, 2005.
    [90]孙鹏.考虑倒角系数铸钢节点及法兰连接的承载性能研究[D].清华大学, 2007.
    [91]罗旭斌.管桁架复杂铸钢节点非线性有限元分析及相关问题研究[D].东南大学, 2007.
    [92]张达明.复杂钢结构局部壳体屈曲及铸钢节点受力分析[D].浙江大学, 2007.
    [93]张其林,季俊,王洪军,等.某观光塔铸钢节点试验研究与数值分析[J].工业建筑, 2009(S1):58-61.
    [94]陈海洲,王洪军,张其林.杭州湾观光塔铸钢节点试验研究[J].建筑结构, 2009(08):88-90.
    [95]陈海洲,张其林,靳慧.杭州湾观光塔铸钢节点疲劳性能试验研究[J].建筑结构学报, 2009(05):49-54.
    [96]王永泉,郭正兴,罗斌,等.复杂铸钢节点受力性能试验研究[J].东南大学学报(自然科学版), 2009(01):47-52.
    [97] Wang Zhaobo, Zhao Xianzhong, Chen Yiyi, et al. Experimental study on cast steel joint of South Railway Station in Shanghai[M]. Elsevier Science Ltd, 2005.
    [98] Ci Su, Yongfeng Luo, Zuyan Shen. Study of cast steel joints in Pudong Cadre Institute[M]. Elsevier Science Ltd, 2005.
    [99]冯维琦.重庆江北国际机场新建航站楼大型钢多肢节点使用性能分析与评价[D].重庆大学, 2005.
    [100]李万伟.重庆江北国际机场新航站楼铸钢节点安全性研究[D].重庆大学, 2005.
    [101]马越.上海浦东机场二期工程航站楼钢屋盖铸钢节点性能研究[D].同济大学, 2006.
    [102]赵宪忠,马越,陈以一,等.浦东国际机场T2航站楼张弦梁弦-杆连接节点试验研究[J].建筑结构, 2009(05):59-62.
    [103]聂诗东.重庆江北机场铸钢节点可靠性分析与响应面法实现[D].重庆大学, 2006.
    [104]居虎,姚刚.巨型铸钢节点超高空安装技术研究及应用[D].重庆大学, 2008.
    [105]刘志磊,戴国欣.重庆空港体育馆弦支穹顶铸钢节点使用性能分析[D].重庆大学, 2009.
    [106]舒赣平,杨奔征,左江,等.南京金奥大厦巨型斜支撑异形铸钢节点试验研究[J].建筑结构, 2009(08):84-87.
    [107]朱邵宁,刘中华,李阳.异型高层钢结构超大型复杂铸钢节点设计及试验研究[J].建筑结构, 2009(09):84-86.
    [108]戴立先,郐国雄,陈龙章,等.广州歌剧院铸钢节点试验研究[J].中国建筑金属结构, 2009(12):39-43.
    [109]房帅.铸钢节点研究现状和展望[J].广州建筑, 2009(06):8-12.
    [110]顾磊,杨想兵,傅学怡.销支座的机动分析与设计建议[J].空间结构, 2001(04):41-50.
    [111]卞若宁,陈以一,赵宪忠,等.空间结构大型铸钢节点试验研究[J].建筑结构, 2002(12):45-47.
    [112]米旭峰.铸钢柱脚的性能研究[D].西安建筑科技大学, 2003.
    [113]秦蓬军.铸钢柱脚的性能研究[D].西安建筑科技大学, 2005.
    [114]韩西,钟厉,邵毅明,等.轻轨PC梁铸钢支座有限元分析及实验[J].重庆大学学报(自然科学版), 2002(05):112-115.
    [115]韩西,钟厉,邵毅明,等.城市轻轨PC梁铸钢支座强度分析和实验研究[J].土木工程学报, 2003(02):63-66.
    [116]刘魁,陈誉,童乐为,等.大跨度结构“铰接”支座转动性能的试验研究:第十三届全国结构工程学术会议论文集(第Ⅲ册), 2004[C].清华大学出版社、《工程力学》杂志社, 2004.
    [117]张阿鹏,徐国彬,赵冬.铸钢支座的受力性能研究:第十一届空间结构学术会议论文集, 2005[C].
    [118]徐剑锋.南通市体育会展中心分叉柱底铸钢节点应力集中及承载力问题的分析研究[D].东南大学, 2007.
    [119]马洪涛.南通体育会展中心铸钢节点的试验研究[D].东南大学, 2007.
    [120]赵才其,马军,马洪涛.铸钢支座节点的试验研究[J].工业建筑, 2009(05):115-117.
    [121]彭桂平,罗旭斌,马军.南通市体育会展中心分叉柱底铸钢支座节点有限元分析[J].钢结构, 2006(04):46-49.
    [122]李旻,李瑞锋.大跨度屋面结构球铰支座的安装[J].钢结构, 2007(09):83-85.
    [123]张杰,吕西林,骆文超.某机场航站楼铸钢支座Y型混合柱数值模拟及细观分析,中国黑龙江哈尔滨, 2007[C].
    [124]张其林,陈海洲,张慎伟. 45°轴承组合支座铸钢节点试验和有限元分析[J].钢结构, 2008(04):8-12.
    [125]谢龙宝,潘毅刚,冷冬梅,等.沧州体育馆铸钢支座节点有限元分析[J].钢结构, 2009(10):6-9.
    [126]韩庆华,尹越,杨志,等.一种铸钢球铰支座: CN101403242[P].
    [127] Workroom T. S., Institute Beijing Architecture Design Research.坦桑尼亚国家体育场万向支座设计及试验分析研究:首届全国建筑结构技术交流会论文集, 2006[C].《建筑结构》编辑部, 200606.
    [128]朱兴刚,陈林,程懋堃.钢结构万向支座: CN1811086[P]. 2006.08.02.
    [129]王锦.考虑接触面特性球型支座有限元分析与试验研究[D].同济大学, 2007.
    [130]郭海山,李黎明,王又文,等.建筑用柱顶显式万向转动铸钢支座: CN200975029[P].
    [131]郭海山,李黎明,王又文,等.建筑用钢管柱顶隐式万向转动铸钢支座: CN200975028[P].
    [132]赵宪忠,王冠男,陈以一,等.北京奥运会老山自行车馆柱脚铸钢节点试验研究[J].建筑结构学报, 2008(01):10-15.
    [133]韩庆华,王开强.北京奥运会自行车馆原铸钢球铰支座与销轴节点数值分析,中国天津, 2008[C].
    [134]王开强,刘超.北京奥运会自行车馆原铸钢球铰支座数值分析[J].山西建筑, 2008(20):80-81.
    [135]工程建设标准化协会.铸钢节点应用技术规程CECS235:2008[Z].北京: 2008.
    [136]曾攀.有限元分析及应用[M].北京:清华大学出版社, 2006.
    [137]孙鹏,王元清,石永久.考虑倒角系数的T型铸钢节点轴向承载力非线性分析[J].空间结构, 2006(02).
    [138]戴国欣,李万伟,邢世建,等.重庆江北国际机场新航站楼大跨钢桁架铸钢节点性能研究[J].建筑结构学报, 2005(04).
    [139]韩西,钟厉,邵毅明,等.轻轨PC梁铸钢支座有限元分析及实验[J].重庆大学学报(自然科学版), 2002(05).
    [140]范重,彭翼,王喆,等.国家体育场多面体铸钢节点设计[J].钢结构, 2006(05).
    [141]李鹤,闻邦椿,边弘晔. HyperMesh有限元前处理关键技术研究[J].机床与液压, 2008(04):60-61.
    [142]杜平安.有限元网格划分的基本原则[J].机械设计与制造, 2000(01):34-36.
    [143]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社, 2004.
    [144]王勖成.有限单元法[M].北京:清华大学出版社, 2005.
    [145]赵惠麟,郭小明.工程结构接触问题的研究及进展[J].东南大学学报(自然科学版), 2003(05):77-82.
    [146]吴新炳,马文华.约束、罚单元及其在接触问题中的应用[J].上海力学, 1984(04):16-27.
    [147]成大先.机械设计手册(第五版)[M].第5版.北京:化学工业出版社, 2008.
    [148] ISO. ISO 3755:1991 Cast carbon steels for general engineering purposes[S]. Geneva: 1991.
    [149] ASTM. A216/A216M-93 Standard Speci?cation for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service[S]. West Conshohocken, Philadelphia: 1993.
    [150] DIN. DIN17182-1992 General-purpose steel castings with enhanced weldability and higher toughness[S]. 1992.
    [151] JIS. JIS G 5102 Steel Castings for Welded Structure[S]. Japan: 1991.
    [152]国家标准局. GB/T 1591-94焊接结构用碳素钢铸件[S].北京: 1987.
    [153]翟红.大直径圆钢管空间KK型节点滞回性能研究[D].上海:同济大学, 2003.
    [154]牛冬生. PTA桩传递函数分析仪[J].建筑技术开发, 1993,2:30-33.
    [155]张禁,张文元,张耀春.多功能加载装置的研制和应用[J].工业建筑, 2004,34(3):40-43.
    [156] Nakasone Y., Yoshimoto S. Engineering Analysis with ANSYS Software[M]. Elsevier Butterworth-Heinemann, 2006.
    [157]张素梅,王玉银,吴兆旗,等.中国?北京侨福花园广场环保顶罩铸钢支座数值分析及试验研究报告[R].哈尔滨工业大学, 2007.
    [158]湛迪强. SolidWorks2008宝典[M].北京:电子工业出版社, 2008.
    [159]国家质量技术监督局. GB/T 5782-2000六角头螺栓[S].北京:中国标准出版社, 2000.
    [160] Wriggers Peter. Computational Contact Mechanics (Second Edition)[M]. Netherlands: Springer-Verlag Berlin Heidelberg, 2006.
    [161] Gladwell G. M. L.经典弹性理论中的接触问题[M].范天佑,译.北京:北京理工大学出版社, 1991.
    [162] Johnson K. L.接触力学[M].徐秉业,罗学富,刘信声,等,译.北京:高等教育出版社, 1992.
    [163]西田正孝.应力集中[M].李安定,郭廷玮,张诚文,等,译.北京:机械工业出版社, 1986.
    [164]航空工业部科学技术委员会.应力集中系数手册[M].北京:高等教育出版社, 1990.
    [165] Walter D. Pilkey Deborah F. Pilkey Rudolph. Peterson's Stress Concentration Factors[M]. John Wiley and Sons, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700