用户名: 密码: 验证码:
钻爆法海底隧道建设期工程安全风险分析及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着经济和社会的发展,作为重要的交通方式,海底隧道已引起世界各国越来越多的关注。与山岭隧道不同,海底隧道由于处于无限的海洋环境,使得其在修建过程中具有更大的挑战和安全风险。大量的地下结构工程施工安全风险研究表明,项目施工阶段的安全风险既存在着带有阶段特性的阶段风险,也存在着由规划阶段或设计阶段产生的累积风险。如果前一阶段的安全风险没有得到有效地规避处理,其势必会累积到后续阶段形成累积风险。相对于阶段风险的规避,累积风险的规避处理要复杂的多,有些累积风险甚至在该阶段无法规避,必须返至风险产生阶段进行处理。因此,对钻爆法海底隧道的安全风险研究也应从建设期全过程出发,充分考虑各建设阶段自身的安全风险特点及其对后续阶段的安全风险累积效应,及时规避,减小整个隧道工程的安全风险。
     本文以钻爆法海底隧道规划阶段、设计阶段、施工阶段为研究的建设范围,以突水安全风险分析为风险的研究重点,在以厦门翔安海底隧道及青岛胶州湾海底隧道为主要工程背景的基础上,采用理论分析、数值模拟、现场实测以及模糊数学运算相结合的方法,具体开展了以下五方面的研究工作。
     (1)构建了海底隧道建设期全过程安全风险管理体系。针对海底隧道的风险特点,提出了海底隧道建设期全过程安全风险管理的理念;引入了“核心安全风险”及“累积风险”的概念;并借鉴国内外相关风险管理内容,构建了海底隧道建设期全过程安全风险管理体系;
     (2)揭示了基于围岩变形的海底隧道施工突水机理。通过对海底隧道突水模式及过程分析,认为海底隧道突水主要源于隧道开挖引起围岩变形过大,进而重点讨论了隧道施工突水与隧道地表及拱顶沉降之间的关系,并以厦门翔安海底隧道左线F1风化槽段为工程背景确立了海底隧道在特定地质条件下安全施工的地表及拱顶极限沉降值,制定了施工各阶段的地层沉降安全控制值标准;
     (3)分析了海底隧道建设期全过程安全风险环境及风险因素。从海底隧道建设期全过程安全风险环境分析入手,对海底隧道规划阶段、设计阶段和施工阶段安全风险环境所蕴藏的安全风险因素进行详细的分析、辨识及评估,确定出核心安全风险因素;
     (4)预测了海底隧道施工突水安全风险。基于安全风险因素综合评价的结果,以厦门海底隧道左线F1风化槽段为例,采用模糊综合评价法对风化槽段的突水安全风险发生可能性进行预测;并将可拓工程方法应用于突水安全风险后果损失评价;进而对该风化槽段的突水安全风险进行等级划分,确定出该风化槽段的突水安全风险大小;
     (5)提出了海底隧道施工突水核心安全风险控制技术。针对建设期全过程各阶段的安全风险特点,提出了相应的安全风险控制对策和措施。
ABSTRACT:With the development of economy and the demand of traffic, as an important means of transportation, the subsea tunnel has attracted more and more attention around the world. Because of the infinitude of the ocean above, subsea tunnel construction brings us new challenges and risks, which are different from usual mountain tunnels. On the basis of massive researches on safety risk in underground structure construction, it shows that the safety risk in construction phase contains both its own risks with phased characteristics and the cumulative risks from planning phase and designing phase. If the safety risks of former phase are not evaded effectively, they are surely to add to the following phase and form cumulative risks. The evasion of phase risks is easier, while the evasion of cumulative risks is much more complex and difficult, and even can not be evaded. Therefore, safety-risk researches in subsea tunnels, which are constructed by drilling and blasting method, should be started from the whole constructing process, and engineers should fully consider both the own safety risk during every construction phase and its cumulative effect to the following phase, and evade all the risks promptly to reduce the safety risk of a tunnel project.
     This paper takes planning, designing and constructing phases of drilling-blasting subsea tunnels as construction scope of the research, and safety-risk analysis of water-inrush as the scope of risk research. Based on the projects of Xiamen XiangAn subsea tunnel and Qingdao JiaoZhouWan subsea tunnel, the following five aspects are carried out by using theoretical analysis, numerical simulation and field measurement methods..
     (1) Establishment of safety-risk management system for the whole construction process of subsea tunnel. According to the risk characteristics of subsea tunnels, this paper puts forward the idea of safety risk management in the whole construction process of subsea tunnels; introduces the concept of "core safety risk" and "cumulative risk"; refers relevant knowledge of risk management at home and abroad, and establishes safety-risk management system for the whole construction process of subsea tunnel;
     (2) Analysis of subsea tunnel water inrush based on rock deformation control. By analyzing the pattern and mechanism of water-inrush in subsea tunnel, it is considered that water-inrush in subsea tunnel mainly originates from big deformation due to tunnel excavation, and then the paper makes a major discussion on the relationship between safety risk of water-inrush and the tunnel crown settlement. Setting the left line F1 weathered trough section in Xiamen XiangAn subsea tunnel as project background, this paper establishes the crown settlement for safe construction of subsea tunnels, and makes out the safety control target of settlement in every construction phase;
     (3) Analysis of safety risk environment and risk factors of full-process for subsea tunnel. Beginning with the analysis of safety risk environment in the whole construction process of subsea tunnels, this paper makes detailed analysis and differentiation for safety risk factors of the risk environment in the planning, designing and construction phase of the subsea tunnels, and determines core safety-risk factors;
     (4) Analysis and prediction of water inrush safety risk for subsea tunnel. Based on the result of comprehensive evaluation for safety risk factors, taking the left line F1 weathered trough section in Xiamen XiangAn subsea tunnel for example, the paper makes a comprehensive evaluation on the occurrence probability of water-inrush safety risk in weathered trough section by using the fuzzy comprehensive evaluation; applies Expandingable Engineering Method to assess the consequence loss of water-inrush safety risk; makes grade division of the water-inrush safety risk in the weathered trough section, and confirms the safety risk scale of water-inrush in the weathered trough section.
     (5) Study of control technology of water inrush safety risk for subsea tunnel. According to the characteristics of safety risk in every phase during the whole construction process, the relevant control technology of safety risk is put forward in this paper from technical view.
引文
[1]吕明.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4220-4222.
    [2]李术才,李树忱等.海底隧道最小岩石覆盖层厚度确定方法研究[J].岩石力学与工程学报,2007,26(11):2289-2295.
    [3]王梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [4]WALLIS Shane. Freezing under the sea rescues Oslofjord highway tunnel[J]. Tunnel,1999 (8):19-26.
    [5]戴国平.英法海峡隧道火灾事故剖析及其启示[J].铁道建筑,2001(3):6-9.
    [6]中交第二公路勘察设计研究院.大连湾海底隧道推荐方案汇报材料[R].2006.
    [7]刘丰军.世界海底隧道工程概况及对我国的启示[J].现代隧道技术,2006增刊:3843.
    [8]田政,叶志祥.挪威船级社定量风险评估方法解析[J].中国海上油气(工程),2001,13(5):4547.
    [9]M.H.Faber, M. C. Stewart. Risk assessment for civil engineering facilities:critical overview and discussion [J]. Reliability Engineering and System Safety 2003 (80):173-184.
    [10]Einstein, H.H. Geologic uncertainties in tunneling [J]. Geotechnical Special Publication, (58 I),239-253.
    [11]Reilly.J.J. Management process for complex underground and tunneling projects [J]. Tunneling & Underground Space Technology,2000:31-44.
    [12]International Tunnel Association Working Group. Guidelines for Tunnelling Risk Management. No.2,2003.
    [13]黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报,1999,8(2):21-29.
    [14]陈立文.项目投资风险分析理论与方法[M].北京:机械工业出版社,2004.
    [15]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.
    [16]胡群芳.基于地层变异的盾构隧道工程风险分析及其应用研究[D].同济大学,2006.
    [17]李继华.可靠性数学(结构数学丛书)[M].北京,中国建筑工业出版社,1988.
    [18]高大钊.土力学可靠性原理[M].北京,中国建筑工业出版社,1989.
    [19]邹天一.桥梁结构可靠度(高等学校试用教材)[M].北京,中国交通出版社,1991.
    [20]Einstein.H.H&Vick.S.G. Geological model for tunnel cost model, Proc Rapid Excavation and Tunneling Conf,2nd,1974,1701-1720.
    [21]Einstein.H.H, Chiabverio.F & Koppel.U. Risk analysis for Alder tunnel, Tunnels & Tunnelling,26 (11),1994,28~30.
    [22]Einstein.H.H. Risk and risk analysis in rock engineering[J]. Tunneling & Underground Space Technology,1996,141~155.
    [23]Einstein.H.H, Xu.S, Grasso.P, and Mahtab MA. Decision Aids in Tunneling[J]. World Tunneling April,1998,157~159.
    [24]B.Nilsen, A.palmstrom, H.Stille. Quality control of a sub-sea tunnel project in complex ground conditions [J]. Challenges for the 21st century,1992,137~145.
    [25]R·Stuzk, L-Olsson, U-Uohansson. "Risk and Decision Analysis for Large Underground Projects, as Applied to the Stockholm Ring Road Tunnels"[J]. Tunnelling and Underground Space Technology,1996,11 (2):157-164.
    [26]Heinz Duddeck. Challenges to Tunnelling Engineers[J]. Tunnelling and Underground Space Technology,1996,11 (1):5~10.
    [27]佐藤久,田中胜雄,先明其译.日本隧道工程的发展和灾害情况的统计[J].隧道及地下工程.1998(4):1-9.
    [28]Burland.J.B. Wroth.C.P Settlements on buildings and associated damage [J]. In:Proceedings of Conference on Settlement of structures. Cambridge:BTS; 1974, pp:611-654.
    [29]Burland.J.B. Assessment of risk damage to buildings due to tunneling and excavation[J].In:proceedings of 1st International Conference on Earthquake and Geotechnical Engineering, IS-Tokyo,1995.
    [30]Burland.J.B, Houlsby.G.TAugarde.C.E, Lui.G. Modeling tunneling-induced settlement of masonry buildings[J]. Institution of Civil Engineers and Geotechnical Engineering,2000, pp:17-29.
    [31]Reilly. J.J.1999. Policy, Innovation, Management and Risk Mitigation for Complex. Urban Underground Infrastructure Projects. ASCE New York. Metropolitan Section. Spring geotechnical Seminar. May.
    [32]Isaksson. T 1998. Tunnelling in poor ground-choice of shield method based on reliability Proc XI Danube-European Conference on Soil Mechanics and Geotechnical Engineering:pp 527-534 (Balkema. Rotterdam).
    [33]Chapman, C.B. Design engineering-a need to rethink the solution using knowledge based engineering[J]. Knowledge-Based Systems Volume:12, Issue:5-6, October,1999, pp.257~267.
    [34]R.Stuzk, L.Olsson. U.Uohansson Risk and Decision Analysis for Large Underground Projects, as Applied to the Stockholm Ring Road Tunnels [J].Tunnelling and Underground Space Technology,1996,11 (2):157~164.
    [35]Vik, E.A.. Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten tunnel [J]. Tunneling and Underground Space Technology Volume:15, Issue:4, October 12,2000, pp.369-378.
    [36]Yoo, C., Jeon, Y-W, Choi, B.-S. IT based tunnelling risk management system (IT TURISK)-Development and implementation (2006) [J]. Tunnelling and Underground Space Technology 21 (2), pp; 190-202.
    [37]Yoo, C., Kim, J:H. A web-based tunneling-induced building utility damage assessment system:TURISK (2003) [J]. Tunnelling and Underground Space Technology 18 (5), pp.497-511.
    [38]白峰青.隧洞工程的风险设计及决策[D].天津大学,1996.
    [39]白峰青,卢兰萍,姜兴阁.地下工程的可靠性与风险决策[J].辽宁工程技术大学学报,2000,6(3):237-239.
    [40]崇明越江通道工程风险分析研究总报告[R].同济大学,2002.
    [41]陶履彬,黄宏伟.武汉长江隧道(含地铁)工程灾害与风险分析研究[R].同济大学,2003.
    [42]黄宏伟.苏州轨道交通试验段的初步风险评估[R].同济大学,2003.
    [43]陈桂香.地铁工程项目的风险管理研究[D].同济大学,2004.
    [44]陈龙.软土地区盾构隧道施工期风险分析与评估研究[D].同济大学,2004.
    [45]孙河川.地铁浅埋暗挖车站设计安全风险分析[D].北京交通大学,2006.
    [46]王梦恕.厦门海底隧道设计、施工、运营安全风险分析[J].施工技术,2005增刊,1-4.
    [47]郭陕云.关于我国海底隧道建设若干工程技术问题的思考[J].隧道建设,2007,27(3): 1-5.
    [48]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8): 1513-1521.
    [49]范益群.隧道及地下工程设计系统的风险管理[J].地下工程与隧道,2007(1):11-15.
    [50]王学斌.厦门翔安隧道五通端陆域全强风化层施工风险分析[J].公路交通技术,2007(2):137-141.
    [51]李锋.翔安隧道强风化层施工的风险管理[D].同济大学,2007.
    [52]顾雷雨.对某拟建海底隧道运营期的风险评估[J].地下空间与工程学报,2007,3(7):1236-1242.
    [53]王燕.海底隧道施工风险辨识及其控制[J].地下空间与工程学报,2007,3(7)1261-1264.
    [54]闫玉茹.大连湾海底隧道钻爆法施工风险评估研究[J].岩石力学与工程学报,2007,26(增2):3616-3624.
    [55]A B Huseby, S Skogen. Dynamic risk analysis:the Dyn-Risk concept[J]. International Journal of Project Management,1992,10 (3):160-164.
    [56]A Del Cano. Continuous project feasibility study and continuous project risk assessment[J]. International Journal of Project Management,1992,10 (3):165-170.
    [57]H Ren. Risk lifecycle and risk relationships on construction projects[J]. International Journal of Project Management,1994,12 (2):68-74.
    [58]Stephen C Ward, Chris B Chapman. Risk-management perspective on the project lifecycle[J]. International Journal of Project Management,1995,13 (3):145-149.
    [59]Chris Chapman. Project risks analysis and management PRAM the generic process[J]. International Journal of Project Management,1997,15 (5):273~281.
    [60]Geoff Conroy, Hossein Soltan. ConSERV A Project Specific Risk Management Concept[J]. International Journal of Project Management,1998,16 (6):353-366.
    [61]Ali Jaafari. Management of risks, uncertainties and opportunities on projects:time for a fundamental shift[J]. International journal of project management,2001 (19):89-101.
    [62]张建设.面向过程的工程项目风险动态方法管理研究[D].天津大学,2002.
    [63]金德民.工程项目全寿命期风险管理系统理论及集成研究[D].天津大学,2004.
    [64]阮新.桥梁工程风险评估体系及关键问题研究[D].同济大学,2006.
    [65]钱鸿生.基于风险管理的软件生命周期模型研究[D].同济大学,2006.
    [66]陈桂香.对地铁项目全寿命周期风险管理的研究[D].同济大学,2004.
    [67]马洪等.现代管理百科全书(7-80087-008-1/F.8).北京,中国发展出版社,1995.
    [68]郭仲伟.风险分析与决策[M].机械工业出版社,北京,1986.
    [69]余志锋.大型建筑工程项目风险管理和:工程保险的研究[D].同济大学,1993.
    [70]周直.大型工程项目实施阶段风险分析与管理研究[D].同济大学,1993.
    [71](美)E.J.亨利著,吕应中等译.可靠性工程与风险分析[M].北京,原子能出版社,1988.
    [72]于九如.投资项目风险分析[M].机械工业出版社,1997.
    [73]姜青航,李心丹,姜树元.风险度量理论——数学模型研究[R].国家社会科学基金课题组,1998.
    [74]卢有杰,卢家仪.项目风险管理[M].北京,清华大学出版社,1998.
    [75]汪敏.滑坡灾害风险分析系统理论及在港渝地区应用研究[D].重庆大学,2001.
    [76]张顶立.海底隧道不良地质体及结构界面的变形控制技术[J].岩石力学与工程学报,2007,26(11):2161-2169.
    [77]刘高.深埋长大隧道涌(突)水条件及影响因素分析[J].天津城市建设学院学报,2002,8(3):160-165.
    [78]白明洲.深埋隧道岩溶突水灾害的地质条件研究[J].铁道工程学报,2006(3):21-24.
    [79]李兴高.隧道渗涌水量的随机模型预测[J].中国安全科学学报,2002,12(4):60-64.
    [80]刘招伟,何满潮.圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学,2006,27
    (2):228-233.
    [81]蒋建平.隧道工程突水机制及对策[J].中国铁道科学,2006,27(5):76-82.
    [82]李付法.锦屏水电站辅助洞突水、突泥机理及预测预报研究[D].西南交通大学,2006.
    [83]王东.武广线韶关段某岩溶隧道涌突水量预测及对施工影响评价[D].西南交通大学,2008.
    [84]易小明.城市隧道地层变形规律及其控制技术研究[R].北京交通大学博士后出站报告,2008.
    [85]李术才,李树忱.海底隧道最小岩石覆盖厚度确定方法研究[J].岩石力学与工程学报,2007,26(11):2289-2295.
    [86]重庆交通科研研究院.JTGD70-2004公路隧道设计规范[S].北京:人民交通出版社,2004.
    [87]郭衍敬.基于矿山工程方法的海底隧道变形分析与控制研究[D].山东科技大学,2008.
    [88]杨新锐.软土地区隧道开挖引起的地层变形研究[D].北京交通大学,2007.
    [89]包承钢.可靠度分析方法在岩土工程中的应用,海峡两岸土力学及基础工程学术研讨会论文集,西安,1994.
    [90]王梦恕.浅埋暗挖法通论[M].合肥:安徽教育出版社,2004.
    [91]陈宏毅.用事故树评价建筑施工的安全性.建筑安全.1998,13(8),30-34.
    [92]戴树和.风险分析技术(一)—风险分析的原理和方法.机械设计.2002.19(2).
    [93]Dai, Shu-Ho and Ming-O Wang. Reliability Analysis in Engineering Applications. New York:Van Nostrand Reinhold,1992.
    [94]陈国华.风险工程学[M].北京:国防工业出版社,2007.
    [95]杨春燕.可拓工程[M].北京,科学出版社,2007.
    [96]戴树和.工程风险分析技术[M].北京,化学工业出版社,2007.
    [97]黄崇福.自然灾害风险分析[M].北京:北京师范大学出版社,2001.
    [98]周旭章等.模糊数学在化学中的应用[M].长沙:国防科技大学出版社,2002.
    [99]肖辞源.工程模糊系统[M].北京:科学出版社,2003.
    [100]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [101]王彬译.挪威海底隧道的设计与施工[J].世界隧道,1996,(3):25~33.
    [102]韩常领.公路隧道总体设计中若干问题的探讨[J].公路隧道,2002,(4):12-14.
    [103]谢季坚.模糊数学方法及其应用[M].武汉,华中理工大学出版社,2000.
    [104]蔡文.物元分析[M].广州,广东高等教育出版社,1987.
    [105]蔡文,杨春燕,林伟初.可拓工程方法[M].北京,科学出版社,2000.
    [106]胡宝清.区域水环境质量的区间可拓评估方法及其应用[J].中国工程科学,2001,3 (6):53-56.
    [107]李志林.关联函数为区间数的综合评价方法[J].江汉大学学报(自然科学报)2003,3(11):17-20.
    [108]丁鹏.海底管线安全可靠性及风险评价技术研究[D].中国石油大学,2008.
    [109]中华人民共和国建设部.地铁及地下工程建设风险管理指南[S].北京,中国建筑工业出版社,2007.
    [110]张顶立,李兵,房倩等.基于风险系数的海底隧道纵断面确定方法[J].岩石力学与工程学报,2009,28(1):9-19.
    [111]张明平,徐园园.海底隧道最小安全顶板厚度优化决策研究[J].青岛理工大学学报,2008,29(1):14-18.
    [112]李树忱.海底隧道最小岩石覆盖厚度的位移收敛法[J].岩土力学,2007,28(7):1443-1447.
    [113]周宇,陈卫忠.跨海公路隧道岩石覆盖厚度探讨[J].岩石力学与工程学报,2004,23(增2):4704-4708.
    [114]李树忱.数值方法确定海底隧道最小岩石覆盖厚度研究[J].岩土工程学报,2006,28(10):1304-1308.
    [115]刘君.厦门东通道海底隧道位移判定基准研究[J].隧道建设,2006,26(3):11-13.
    [116]尹莹,王在泉.用有限元强度折减法对海底隧道进行稳定性分析[J].烟台大学学报
    (自然科学与工程版),2007,20(3):210-214.
    [117]许传华.地下工程围岩稳定性分析方法研究进展[J].金属矿山,2003,(2):34-37.
    [118]李树忱,李术才.隧道围岩稳定分析的最小安全系数法[J].岩土力学,2007,28(3):549-554.
    [119]杨泽平,李海兵.层次分析法在工程岩体分类中的应用[J].工程地质学报,2006,14(6):830-834.
    [120]刘臻.公路建设项目经济评价与方案比选的研究[D].西南交通大学,2007.
    [121]中国系统工程学会决策科学专业委员会.决策科学理论与实践[M].北京:海洋出版社,2003.
    [122]谭跃进.定量分析方法[M].北京:中国人民大学出版社,2006.
    [123]李治国,孙振川.厦门翔安海底服务隧道F1风化槽注浆堵水技术[J].岩石力学与工程学报,2007,26(增2):3841-3848.
    [124]王在泉,王建新.局部破碎带渗水条件下海底隧道稳定性的有限元极限分析[J].岩石力学与工程学报,2007,26(增2):3751-3755.
    [125]李术才,徐帮树,李树忱.海底隧道衬砌结构选型及参数优化研究[J].岩石力学与工程学报,2005,24(21):3894-3902.
    [126]薛玺成,杨万诚.地下洞室断面形状的优化计算方法[J].岩土工程学报,1999,21(2):144-147.
    [127]冯紫良.地下洞室形状设计优化的一个方法[J].岩土工程学报,1993,15(3):29-36.
    [128]王锦山,王力.厦门海底隧道综合超前地质预报实践[J].岩石力学与工程学报,2007,26(11):2309-2317.
    [129]房营光,方引晴.城市地下工程安全性问题分析及病害防治方法[J].广东工业大学学报,2001,18(3):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700