用户名: 密码: 验证码:
岩体结构非平衡演化稳定与控制理论基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然岩石受不同尺度节理、裂隙切割,构成裂隙岩体复合介质。各种裂隙岩体进一步构成大规模岩体工程结构。我国岩石工程规模与复杂度迅速增长,岩体工程结构稳定性问题突出。本文采用动态演化观点研究岩体结构稳定与控制问题,提出相对完整的岩体结构非平衡演化研究体系,重点研究该体系数学与力学相关理论基础。主要工作与创新性成果如下:
     (1)非平衡态热力学基础研究:证明齐次Onsager流必然全等次,从而证明基于齐次Onsager流的Rice正则结构等价于Ziegler最大耗散率原理;该结论表明岩土类材料本构关系热力学基础需要建立在有旋热力学流范围。
     (2)方向分布函数与组构张量:提出最一般形式的方向分布函数——张量型方向分布函数,建立其相对完备的组构张量代数,包括非对称与全对称组构张量解析解、收敛性与拟合精度、不同阶组构张量关系等。
     (3) Kachanov-Rabotnov (K-R)损伤有效应力:基于矢量型方向分布函数建立K-R损伤有效应力三维各向异性微平面模型,实现严格宏—细观几何等效原理;该模型澄清连续体损伤力学若干基本问题,包括常用各向异性与各向同性有效应力模型适用条件、损伤效应张量正定性与Voigt对称性等。
     (4)广义Hamilton原理:建立内变量热力学耗散材料体系广义Hamilton原理,相比经典弹性体Hamilton原理,只需将结构弹性应变能替换为特定内能与非弹性内耗散功之和,适用于非保守外力与内力以及有限变形情况;广义Hamilton原理是以下Lyapunov稳定与控制理论的连续介质力学基础。
     (5) Rice非弹性体Lyapunov稳定与控制理论:基于Lyapunov第二类稳定性方法,证明理想Rice非弹性体在恒定外部作用条件与拟静力条件下的最小流动势原理,结合材料损伤效应阐明结构非平衡演化的一般规律;在此基础上提出结构稳定评价与失稳控制的有效方法,同时阐明新奥法原理、潘家铮最大最小原理等岩土工程实用稳定性原理的理论依据。
     (6)变形加固理论:基于Rice非弹性体Lyapunov稳定与控制理论证明变形加固理论,并依托变形加固理论这一特例将前者应用于工程结构稳定评价与加固设计。结合有限元算例初步研究结构整体稳定性、加固措施效果与效率、结构长期稳定性监测与预测等岩土工程重要问题。
Natural rocks cut by joints and fissures form rock masses, which further constructlarge-scale rock engineering structures. Due to the rapid growth of the scale andcomplexity of rock engineering in China, the stability of rock engineering structures ispotentially threatened. In this paper, the stability and control of rock mass structures arestudied from the perspective of non-equilibrium evolution. An integrated researchframework is proposed, whose mathematical and mechanical fundamentals are focusedin this paper. The major achievements are listed as below:
     (1) Non-equilibrium thermodynamics: It is proved that the degrees of a set ofhomogeneous Onsager fluxes must be identical and thus the Rice's normalitystructure based on homogeneous Onsager fluxes is equivalent to Ziegler'sprinciple of maximum rate of dissipation. Such conclusion means that thethermodynamic basis for the constitutive relations of geomaterials must beestablished in the range of rotational thermodynamic fluxes.
     (2) Orientation distribution function (ODF) and fabric tensor: The mostgeneralized type of ODF is proposed as the tensor-valued ODFs. Integrated fabrictensor algebra for tensor-valued ODFs is established, including the analytical solutionsfor asymmetric and symmetric fabric tensors of any orders, the convergence andaccuracy analysis for the fabric tensor expansion and the relationship between fabrictensors of different orders.
     (3) The Kachanov-Rabotnov (K-R) damage effective stress: Amicroplane-based model for3D anisotropic K-R damage effective stress isproposed based on vector-valued ODFs, which fulfills rigorous geometryequivalence between the micro and macro scopes. The model clarifies some basic issuesin continuum damage mechanics such as the applicability of some frequently usedanisotropic and isotropic effective stress models and the positive definiteness and Voigtsymmetry of the damage effect tensor.
     (4) Generalized Hamilton's principle: A generalized Hamilton's principlefor dissipative material bodies is established in thermodynamics with internalvariables. Compared with the classical Hamilton's principle for elastic bodies, the generalized form has the elastic strain energy replaced by the summation ofthe specific internal energy and the inelastic dissipation work. The generalizedHamilton's principle is the continuum mechanical basis for the followingLyapunov theory for stability and control.
     (5) The Lyapunov theory for stability and control of Rice inelastic bodies:Based on the Lyapunov's second method for stability, the principle of minimumflow potential for perfect Rice inelastic bodies is proved, which is thenincorporated with damage effects to reveal the non-equilibrium evolution lawsof continuum structures. Effective methods for stability evaluation and controlare proposed based on the evolution laws. The theoretical bases are clarified forsome important practical principles in geotechnical engineering such as the NewAustrian Tunneling Method and the Pan's principles of soil and rock stability.
     (6) The deformation reinforcement theory: Based on the Lyapunov theoryestablished above, the deformation reinforcement theory is proved as a specialcase, through which the Lyapunov theory is applied to stability evaluation andreinforcement design for engineering structures. Combined with numericalexamples using finite element method, some fatal issues in geotechnicalengineering is preliminarily studied, such as global structural stability, effectand efficiency of reinforcement measures, monitoring and forecasting forlong-term stability of engineering structures.
引文
[1]黄润秋.中国西南岩石高边坡的主要特征及其演化.地球科学进展,2005,20(3):292-297.
    [2]王兰生,李文纲,孙云志.岩体卸荷与水电工程.工程地质学报,2008,16(2):145-154.
    [3]马洪琪.小湾水电站建设中的几个技术难题.水力发电,2009,35(9):17-21.
    [4]谢和平,冯夏庭.灾害环境下重大工程安全性的基础研究.北京:科学出版社,2009.
    [5]王思敬.坝基岩体工程地质力学分析.北京:科学出版社,1990.
    [6]汝乃华,姜忠胜.大坝事故与安全:拱坝.北京:中国水利水电出版社,1995.
    [7]宋胜武,向柏宇,杨静熙,等.锦屏一级水电站复杂地质条件下坝肩高陡边坡稳定性分析及其加固设计.岩石力学与工程学报,2010,29(3):442-458.
    [8]杨弘,涂向阳,奚智勇.二滩高拱坝裂缝监测与控制措施综合分析.人民珠江,2010,(6):66-69.
    [9]周华,王国进,傅少君,等.小湾拱坝坝基开挖卸荷松弛效应的有限元分析.岩土力学,2009,30(4):1175-1180.
    [10]杨强,刘耀儒.四川省大渡河大岗山水电站右岸枢纽区边坡稳定分析及加固措施研究.北京:清华大学科研报告,2012.
    [11]杨春和,梁卫国,魏东吼,等.中国盐岩能源地下储存可行性研究.岩石力学与工程学报,2005,24(24):4409-4417.
    [12]张鸿翔.页岩气:全球油气资源开发的新亮点——我国页岩气开发的现状与关键问题.中国科学院院刊,2010,25(4):406-410.
    [13] Muller L. The rock slide in the vajont valley. Berlin: Springer-Verlag,1964.
    [14]孙广忠.论“岩体结构控制论”.工程地质学报,1993,1(1):14-18.
    [15] Terzaghi K. Rock defects and loads on tunnel supports//White R V. Rock Tunneling with SteelSupports. Youngstown, Ohio: Commercial Shearing and Stamping Co.,1946:15-99.
    [16] Deere D U. Technical description of rock cores for engineering purposes. Rock MechanicsEngineering Geology,1964,1(1):18-22.
    [17] Bieniawski Z T. Engineering rock mass classifications. New York: John Wiley and Sons Inc.,1989.
    [18] Barton N. Some new q-value correlations to assist in site characterisation and tunnel design.International Journal of Rock Mechanics and Mining Sciences,2002,39(2):185-216.
    [19]中华人民共和国水利部. GB50218-94工程岩体分级标准.北京:中国计划出版社,1994.
    [20] Kim M K, Lade P V. Modelling rock strength in three dimensions. International Journal of RockMechanics and Mining Sciences&Geomechanics Abstracts,1984,21(1):21-33.
    [21] Mcclintock F A, Walsh J B. Friction on griffith cracks under pressure. Proceedings of the4th USNational Congress on Applied Mechanics, Berkeley, U.S.,1962:1015-1021.
    [22]俞茂宏,何丽南,宋凌宇.双剪应力强度理论及其推广.中国科学: A辑,1985,(12):1113-1120.
    [23] Hoek E, Carranza-Torres C, Corkum B. Hoek-brown failure criterion-2002edition. Proceedings ofthe5th North American Rock Mechanics Symposium, Toronto, Canada,2002:267-271.
    [24] Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock Mechanics,1977,10(1-2):1-54.
    [25] Dragon A, Mroz Z. A continuum model for plastic-brittle behaviour of rock and concrete.International Journal of Engineering Science,1979,17(2):121-137.
    [26]徐卫亚,杨圣奇,褚卫江.岩石非线性黏弹塑性流变模型(河海模型)及其应用.岩石力学与工程学报,2006,25(3):433-447.
    [27] Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behaviour of discontinuous rockmass and damage mechanics theory. International Journal for Numerical and Analytical Methodsin Geomechanics,1988,12(1):1-30.
    [28] Hillerborg A, Modeer M, Petersson P. Analysis of crack formation and crack growth in concreteby means of fracture mechanics and finite elements. Cement and Concrete Research,1976,6(6):773-781.
    [29] Salari M R, Saeb S, Willam K J, et al. A coupled elastoplastic damage model for geomaterials.Computer Methods in Applied Mechanics and Engineering,2004,193(27):2625-2643.
    [30]周维垣,杨延毅.节理岩体的损伤断裂力学模型及其在坝基稳定分析中的应用.水利学报,1990,(11):48-54.
    [31]朱维申,邱祥波,李术才,等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用.岩石力学与工程学报,1997,16(5):431-436.
    [32]周维垣,杨强.岩石力学数值计算方法.北京:中国电力出版社,2005.
    [33] Zienkiewicz O C, Taylor R L. The finite element method: solid mechanics. Oxford: ButterworthHeinemann,2000.
    [34] Cundall P A. A microcomputer program for modelling large-strain plasticity problems.Proceedings of the6th International Conference on Numerical Methods in Geomechanics,Innsbruck, Austria,1988:2101-2108.
    [35] Forest S. Mechanics of cosserat media—an introduction. Paris: Ecole des Mines de Paris,2005.
    [36]佘成学,熊文林,陈胜宏.具有弯曲效应的层状结构岩体变形的cosserat介质分析方法.岩土力学,1994,15(4):12-19.
    [37] Dawson E M, Cundall P A. Cosserat plasticity for modeling layered rock. Proceedings of theISRM Regional Conference on Fractured and Jointed Rock Masses, Berkeley,1995:269-276.
    [38] Li Y, Yang C, Daemen J J, et al. A new cosserat-like constitutive model for bedded salt rocks.International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(15):1691-1720.
    [39]杨春和,李银平.互层盐岩体的cosserat介质扩展本构模型.岩石力学与工程学报,2005,24(23):4226-4232.
    [40] Bazant Z P, Gambarova P G. Crack shear in concrete: crack band microplane model. Journal ofStructural Engineering,1984,110(9):2015-2035.
    [41] Bazant Z P, Oh B H. Microplane model for progressive fracture of concrete and rock. Journal ofEngineering Mechanics,1985,111(4):559-582.
    [42] Bazant Z P, Caner F C, Carol I, et al. Microplane model m4for concrete. I: formulation withwork-conjugate deviatoric stress. Journal of Engineering Mechanics,2000,126(9):944-953.
    [43] Caner F C, Ba V Z Ant Z U E K. Microplane model m7for plain concrete: i. Formulation. Journalof Engineering Mechanics,2012, In press(doi:10.1061/(ASCE)EM.1943-7889.0000570).
    [44] Batdorf S B, Budiansky B. A mathematical theory of plasticity based on the concept of slip. Tech.Note No.1871, National Advisory Committee for Aeronautics, Washington, D.C.,1949.
    [45]巫昌海.混凝土微平面本构理论综述.水利水电科技进展,1997,17(3):18-21.
    [46] Bazant Z P, Goangseup Z I. Microplane constitutive model for porous isotropic rocks.International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(1):25-47.
    [47] Desai C S. Mechanics of materials and interfaces: the disturbed state concept. Boca Raton: CRCPress,2000.
    [48] Schofield A N, Wroth P. Critical state soil mechanics. New York: McGraw-Hill,1968.
    [49] Desai C S, Ma Y. Modelling of joints and interfaces using the disturbed-state concept.International Journal for Numerical and Analytical Methods in Geomechanics,1992,16(9):623-653.
    [50] Wu G, Zhang L. Studying unloading failure characteristics of a rock mass using the disturbed stateconcept. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):419-425.
    [51] Oda M. Fabric tensor for discontinuous geological materials. Soils and Foundations,1982,22(4):96-108.
    [52] Dafalias Y F, Manzari M T. Simple plasticity sand model accounting for fabric change effects.Journal of Engineering Mechanics,2004,130(6):622-634.
    [53] Li X S, Dafalias Y F. Anisotropic critical state theory: role of fabric. Journal of EngineeringMechanics,2011,138(3):263-275.
    [54]钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述.岩石力学与工程学报,2008,27(6):1278-1284.
    [55]钱七虎.非线性岩石力学的新进展——深部岩体力学的若干关键问题.第八次全国岩石力学与工程学术会议论文集,成都,2004:10-17.
    [56]周小平,周敏,钱七虎.深部岩体损伤对分区破裂化效应的影响.固体力学学报,2012,33(003):242-250.
    [57] Sulem J. Bifurcation analysis in geomechanics. London: Routledge,1995.
    [58] Rudnicki J W, Rice J R. Conditions for the localization of deformation in pressure-sensitivedilatant materials. Journal of the Mechanics and Physics of Solids,1975,23(6):371-394.
    [59] Rice J R. The mechanics of earthquake rupture//Dziewonski A, Boschi E. Physics of the Earth'sInterior. New York: Academic Press,1979.
    [60] Mandelbrot B B. The fractal geometry of nature. New York: Times Books,1982.
    [61]谢和平,陈至达.分形(fractal)几何与岩石断裂.力学学报,1988,20(3):264-271.
    [62] Xie H. Fractals in rock mechanics. London: Taylor&Francis,1993.
    [63]谢和平.分形几何及其在岩土力学中的应用.岩土工程学报,1992,14(1):14-24.
    [64] Xie H, Sun H, Ju Y, et al. Study on generation of rock fracture surfaces by using fractalinterpolation. International Journal of Solids and Structures,2001,38(32):5765-5787.
    [65]郑颖人,沈珠江,龚晓南,等.岩土塑性力学原理:广义塑性力学.北京:中国建筑工业出版社,2002.
    [66]郑颖人.岩土塑性力学的新进展——广义塑性力学.岩土工程学报,2003,25(1):1-10.
    [67]孔亮,郑颖人.一个基于广义塑性力学的土体三屈服面模型.岩土力学,2000,21(2):108-112.
    [68]段建立,郑颖人.一种基于广义塑性力学的硬化剪胀土模型.岩土力学,2000,21(004):360-362.
    [69] Jing L, Hudson J A. Numerical methods in rock mechanics. International Journal of RockMechanics and Mining Sciences,2002,39(4):409-427.
    [70] Hudson J A. The next50years of the isrm and anticipated future progress in rock mechanics.Proceedings of the12th ISRM International Congress on Rock Mechanics, Beijing, China,2011:47-55.
    [71] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. Journal of SoilMechanics and Foundations Div, ASCE,1968,94(SM-3):637-659.
    [72] Desai C S, Zaman M M, Lightner J G, et al. Thin-layer element for interfaces and joints.International Journal for Numerical and Analytical Methods in Geomechanics,1984,8(1):19-43.
    [73] Kim J, Yoon J, Kang B. Finite element analysis and modeling of structure with bolted joints.Applied Mathematical Modelling,2007,31(5):895-911.
    [74]陈胜宏,强晟,陈尚法.加锚岩体的三维复合单元模型研究.岩石力学与工程学报,2003,22(1):1-8.
    [75]杨强,张建立,周维垣.三维退化夹层元的弹塑性分析及其在拱坝稳定分析中的应用.水力发电学报,2004,23(001):15-20.
    [76] Jungels P H, Frazier G A. Finite element analysis of the residual displacements for an earthquakerupture: source parameters for the san fernando earthquake. Journal of Geophysical Research,1973,78(23):5062-5083.
    [77] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing.International Journal for Numerical Methods in Engineering,1999,45(5):601-620.
    [78] Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recentdevelopments. Computer Methods in Applied Mechanics and Engineering,1996,139(1):3-47.
    [79]方义琳,卓家寿,章青.具有任意形状单元离散模型的界面元法.工程力学,1998,15(2):27-37.
    [80] Cundall P A, Strack O D. A discrete numerical model for granular assemblies. Geotechnique,1979,29(1):47-65.
    [81] Cundall P A. Formulation of a three-dimensional distinct element model—Part I. A scheme todetect and represent contacts in a system composed of many polyhedral blocks. InternationalJournal of Rock Mechanics and Mining Sciences,1988,25(3):107-116.
    [82] Boettcher M S. Numerical simulations of granular shear zones using the distinct element method1.Shear zone kinematics and the micromechanics of localization. Journal of Geophysical Research,1999,104(B2):2703-2719.
    [83] Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modifieddistinct element method. Powder Technology,2000,109(1):192-205.
    [84]张冲,侯艳丽,金峰,等.拱坝—坝肩三维可变形离散元整体稳定分析.岩石力学与工程学报,2006,25(6):1226-1232.
    [85] Nezami E G, Hashash Y, Zhao D, et al. A fast contact detection algorithm for3-d discrete elementmethod. Computers and Geotechnics,2004,31(7):575-587.
    [86]张楚汉.论岩石,混凝土离散-接触-断裂分析.岩石力学与工程学报,2008,27(2):217-235.
    [87] Kawai T. New discrete models and their application to seismic response analysis of structures.Nuclear Engineering and Design,1978,48(1):207-229.
    [88]周维垣,杨若琼.岩石块体的力学模型及大坝稳定.全国高拱坝学术讨论会论文集,成都,1978:22-27.
    [89]卓家寿,赵宁.不连续介质静,动力分析的刚体—弹簧元法.河海大学学报:自然科学版,1993,21(5):34-43.
    [90] Zhang J, He J, Fan J. Static and dynamic stability assessment of slopes or dam foundations using arigid body-spring element method. International Journal of Rock Mechanics and Mining Sciences,2001,38(8):1081-1090.
    [91]侯艳丽,张楚汉,崔玉柱.用刚体弹簧元研究拱坝的地震破损过程.水力发电学报,2004,23(4):20-25.
    [92] Shi G, Goodman R E. Two dimensional discontinuous deformation analysis. International Journalfor Numerical and Analytical Methods in Geomechanics,1985,9(6):541-556.
    [93] Shi G, Goodman R E. Generalization of two-dimensional discontinuous deformation analysis forforward modelling. International Journal for Numerical and Analytical Methods in Geomechanics,1989,13(4):359-380.
    [94] Beyabanaki S, Mikola R G, Hatami K. Three-dimensional discontinuous deformation analysis (3-ddda) using a new contact resolution algorithm. Computers and Geotechnics,2008,35(3):346-356.
    [95]张伯艳,陈厚群. Ldda动接触力的迭代算法.工程力学,2007,24(6):1-6.
    [96]张国新,金峰.重力坝抗滑稳定分析中dda与有限元方法的比较.水力发电学报,2004,23(1):10-14.
    [97] Shi G H. Numerical manifold method and discontinuous deformation analysis. Beijing: TsinghuaUniversity Press,1997.
    [98]张国新,王光纶,裴觉民.基于流形方法的结构体破坏分析.岩石力学与工程学报,2001,20(3):281-287.
    [99]李海枫,张国新,石根华,等.流形切割及有限元网格覆盖下的三维流形单元生成.岩石力学与工程学报,2010,29(4):731-742.
    [100] Ma G, An X, He L. The numerical manifold method: a review. International Journal ofComputational Methods,2010,7(01):1-32.
    [101] Feng X, Li J, Yu S. A simple method for calculating interaction of numerous microcracks and itsapplications. International Journal of Solids and Structures,2003,40(2):447-464.
    [102] Kachanov M. Elastic solids with many cracks: a simple method of analysis. International Journalof Solids and Structures,1987,23(1):23-43.
    [103] Eshblby J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems.Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1957,241(1226):376-396.
    [104] Feng X, Li J, Ma L, et al. Analysis on interaction of numerous microcracks. ComputationalMaterials Science,2003,28(3):454-461.
    [105] Shen L, Li J. A numerical simulation for effective elastic moduli of plates with variousdistributions and sizes of cracks. International Journal of Solids and Structures,2004,41(26):7471-7492.
    [106] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—yieldcriteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology,1977,99:2-15.
    [107] Bensoussan A, Lions J, Papanicolau G. Asymptotic analysis for periodic structures. Amsterdam:North Holland,1978.
    [108] Mura T. Micromechanics of defects in solids. Burlin: Springer,1987.
    [109] Maugin G E R A. Material inhomogeneities in elasticity. London: Chapman and Hall/CRC,1993.
    [110] Hurtado J A, Dundurs J, Mura T. Lamellar inhomogeneities in a uniform stress field. Journal of theMechanics and Physics of Solids,1996,44(1):1-21.
    [111] Zhao Y H, Weng G J. Plasticity of a two-phase composite with partially debonded inclusions.International Journal of Plasticity,1996,12(6):781-804.
    [112] Shafiro B, Kachanov M. Solids with non-spherical cavities: simplified representations of cavitycompliance tensors and theoverall anisotropy. Journal of the Mechanics and Physics of Solids,1999,47(4):877-898.
    [113] Yang Q, Zhou W Y, Swoboda G. Asymptotic solutions of penny-shaped inhomogeneities in globalEshelby's tensor. Journal of Applied Mechanics,2001,68(5):740-750.
    [114] Bao J Q, Yang Q, Yuan W F. An iterative numerical scheme for the calculation of the effectivemoduli of heterogeneous materials with finite element method. Journal of Composite Materials,2012,46(13):1561-1570.
    [115]包劲青,杨强,刘耀儒.岩体次级结构模拟的材料力方法及有限元实现与应用.岩石力学与工程学报,2009,28(11):2184-2192.
    [116] Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: axial splittingand shear failure. Journal of Geophysical Research,1985,90(B4):3105-3125.
    [117] Yu S, Feng X. A micromechanics-based damage model for microcrack-weakened brittle solids.Mechanics of Materials,1995,20(1):59-76.
    [118] Budiansky B, O'Connell R J. Elastic moduli of a cracked solid. International Journal of Solids andStructures,1976,12(2):81-97.
    [119] Kachanov M. Continuum model of medium with cracks. ASCE Journal of the EngineeringMechanics,1980,106(5):1039-1051.
    [120] Oda M. A method for evaluating the effect of crack geometry on the mechanical behavior ofcracked rock masses. Mechanics of Materials,1983,2(2):163-171.
    [121] Oda M, Yamabe T, Kamemura K. A crack tensor and its relation to wave velocity anisotropy injointed rock masses. International Journal of Rock Mechanics and Mining Sciences andGeomechanics Abstracts,1986,23(6):387-397.
    [122] Kanatani K. Distribution of directional data and fabric tensors. International Journal ofEngineering Science,1984,22(2):149-164.
    [123] Kanatani K. Stereological determination of structural anisotropy. International Journal ofEngineering Science,1984,22(5):531-546.
    [124] Cowin S C. Fabric dependence of an anisotropic strength criterion. Mechanics of Materials,1986,5(3):251-260.
    [125] Lubarda V A, Krajcinovic D. Damage tensors and the crack density distribution. InternationalJournal of Solids and Structures,1993,30(20):2859-2877.
    [126] Zysset P K, Curnier A. An alternative model for anisotropic elasticity based on fabric tensors.Mechanics of Materials,1995,21(4):243-250.
    [127] Yang Q, Li Z K, Tham L G. An explicit expression of second-order fabric-tensor dependent elasticcompliance tensor. Mechanics Research Communications,2001,28(3):255-260.
    [128] Voyiadjis G Z, Kattan P I. Damage mechanics with fabric tensors. Mechanics of AdvancedMaterials and Structures,2006,13(4):285-301.
    [129] Voyiadjis G Z, Kattan P I. Evolution of fabric tensors in damage mechanics of solids withmicro-cracks: Part I--theory and fundamental concepts. Mechanics Research Communications,2007,34(2):145-154.
    [130] Voyiadjis G Z, Kattan P I. Evolution of fabric tensors in damage mechanics of solids withmicro-cracks: Part II--evolution of length and orientation of micro-cracks with an application touniaxial tension. Mechanics Research Communications,2007,34(2):155-163.
    [131] Voyiadjis G Z, Kattan P I, Taqieddin Z N. Continuum approach to damage mechanics ofcomposite materials with fabric tensors. International Journal of Damage Mechanics,2007,16(3):301-329.
    [132] Stumvoll M, Swoboda G. Deformation behavior of ductile solids containing anisotropic damage.Journal of Engineering Mechanics,1993,119(7):1331-1352.
    [133] Swoboda G, Yang Q. An energy-based damage model of geomaterials—i. Formulation andnumerical results. International Journal of Solids and Structures,1999,36(12):1719-1734.
    [134] Swoboda G, Yang Q. An energy-based damage model of geomaterials—ii. Deductionof damageevolution laws. International Journal of Solids and Structures,1999,36(12):1735-1755.
    [135] Li X, Li X. Micro-macro quantification of the internal structure of granular materials. Journal ofEngineering Mechanics,2009,135(7):641-656.
    [136] Oda M, Konishi J. Microscopic deformation mechanism of granular material in simple shear. Soilsand Foundations,1974,14(4):25-38.
    [137] Oda M, Nemat-Nasser S, Mehrabadi M M. A statistical study of fabric in a random assembly ofspherical granules. International Journal for Numerical and Analytical Methods in Geomechanics,1982,6(1):77-94.
    [138] Cowin S C. Anisotropic poroelasticity: fabric tensor formulation. Mechanics of Materials,2004,36(8):665-677.
    [139] Madadi M, Tsoungui O, L A Tzel M, et al. On the fabric tensor of polydisperse granular materialsin2d. International Journal of Solids and Structures,2004,41(9):2563-2580.
    [140] Li X, Yu H S, Li X S. Macro-micro relations in granular mechanics. International Journal of Solidsand Structures,2009,46(25):4331-4341.
    [141] Li X, Yu H S. Tensorial characterisation of directional data in micromechanics. InternationalJournal of Solids and Structures,2011,48(14):2167-2176.
    [142] Rahmoun J, Kondo D, Millet O. A3d fourth order fabric tensor approach of anisotropy in granularmedia. Computational Materials Science,2009,46(4):869-880.
    [143] Voyiadjis G Z, Kattan P I. Advances in damage mechanics: metals and metal matrix compositeswith an introduction to fabric tensors. Amsterdam: Elsevier Science,2006.
    [144] Ning J, Aifantis E C. Anisotropic yield and plastic flow of polycrystalline solids. InternationalJournal of Plasticity,1996,12(10):1221-1240.
    [145] Wu P D, Van der Giessen E. On improved network models for rubber elasticity and theirapplications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics ofSolids,1993,41(3):427-456.
    [146] Zysset P K, Curnier A. A3d damage model for trabecular bone based on fabric tensors. Journal ofBiomechanics,1996,29(12):1549-1558.
    [147] Parsheh M, Brown M L, Aidun C K. Investigation of closure approximations for fiber orientationdistribution in contracting turbulent flow. Journal of Non-Newtonian Fluid Mechanics,2006,136(1):38-49.
    [148] Rathi Y, Michailovich O, Shenton M E, et al. Directional functions for orientation distributionestimation. Medical Image Analysis,2009,13(3):432-444.
    [149] Feng X, Yu S. Damage micromechanics for constitutive relations and failure of microcrackedquasi-brittle materials. International Journal of Damage Mechanics,2010,19(8):911-948.
    [150] Ju J W, Lee X. Micromechanical damage models for brittle solids. Part I: tensile loadings. Journalof Engineering Mechanics,1991,117(7):1495-1514.
    [151] Lee X, Ju J W. Micromechanical damage models for brittle solids. Part II: compressive loadings.Journal of Engineering Mechanics,1991,117(7):1515-1536.
    [152] Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere andcylinder models. Journal of the Mechanics and Physics of Solids,1979,27(4):315-330.
    [153] Huang Y, Hu K X, Chandra A. A generalized self-consistent mechanics method for microcrackedsolids. Journal of the Mechanics and Physics of Solids,1994,42(8):1273-1291.
    [154] Hashin Z. The differential scheme and its application to cracked materials. Journal of theMechanics and Physics of Solids,1988,36(6):719-734.
    [155] Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfittinginclusions. Acta Metallurgica,1973,21(5):571-574.
    [156]杨松林,徐卫亚.裂隙岩体有效弹性模量估计的一种方法.河海大学学报:自然科学版,2003,31(004):399-402.
    [157]赖勇,张永兴.岩石宏,细观损伤复合模型及裂纹扩展规律研究.岩石力学与工程学报,2008,27(3):534-542.
    [158]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1997.
    [159] Kachanov L M. Time of the rupture process under creep conditions. Isv. Akad. Nauk. Ssr. OtdTekh. Nauk,1958,8:26-31.
    [160]周维垣.高等岩石力学.北京:水利电力出版社,1990.
    [161] Rabotnov Y N. On the equation of state of creep. Proceedings of the Institution of MechanicalEngineers, Conference Proceedings, London,1963:2-117.
    [162] Zheng Q S, Betten J. On damage effective stress and equivalence hypothesis. International Journalof Damage Mechanics,1996,5(3):219-240.
    [163] Lemaitre J. Continuous damage mechanics model for ductile fracture. Transactions of the ASME.Journal of Engineering Materials and Technology,1985,107(1):83-89.
    [164] Sidoroff F. Description of anisotropic damage application to elasticity. IUTAM Colloquium onPhysical Nonlinearities in structural analysis, Senlis, France,1981:237-244.
    [165] Murakami S, Ohno N. A continuum theory of creep and creep damage. Proceedings of the3rdIUTAM symposium: Creep in structures, Leicester, UK,1980:422-444.
    [166] Dragon A. Plasticity and ductile fracture damage: study of void growth in metals. EngineeringFracture Mechanics,1985,21(4):875-885.
    [167] Malvern L E. Introduction to the mechanics of a continuous medium. Upper Saddle River, NJ:Prentice Hall,1969.
    [168] Chow C L, Lu T J. On evolution laws of anisotropic damage. Engineering Fracture Mechanics,1989,34(3):679-701.
    [169] Ju J W. On energy-based coupled elastoplastic damage theories: constitutive modeling andcomputational aspects. International Journal of Solids and Structures,1989,25(7):803-833.
    [170] Krajcinovic D. Constitutive equations for damaging materials. ASME, Transactions, Journal ofApplied Mechanics,1983,50(2):355-360.
    [171] Krajcinovic D, Basista M, Sumarac D. Micromechanically inspired phenomenological damagemodel. Journal of Applied Mechanics,1991,58(2):305-310.
    [172] Kachanov M L. A microcrack model of rock inelasticity Part I: frictional sliding on microcracks.Mechanics of Materials,1982,1(1):19-27.
    [173] Kachanov M L. A microcrack model of rock inelasticity Part II: propagation of microcracks.Mechanics of Materials,1982,1(1):29-41.
    [174] Rice J R. Inelastic constitutive relations for solids: an internal-variable theory and its application tometal plasticity. Journal of the Mechanics and Physics of Solids,1971,19(6):433-455.
    [175] Rice J R. Continuum mechanics and thermodynamics of plasticity in relation to microscaledeformation mechanisms//Argon A. Constitutive Equations in Plasticity. Cambridge: MIT Press,1975:23-79.
    [176] Yang Q, Chen X, Zhou W. On microscopic thermodynamic mechanisms of damage evolution laws.International Journal of Damage Mechanics,2005,14(3):261-293.
    [177] Yang Q, Zhou W, Chen X. Thermodynamic significance and basis of damage variables andequivalences. International Journal of Damage Mechanics,2010,19(8):898-910.
    [178] Chow C L, Jie M, Wu X. A damage-coupled criterion of localized necking based on acoustictensor. International Journal of Damage Mechanics,2007,16(3):265-281.
    [179] Halm D, Dragon A, Charles Y. A modular damage model for quasi-brittle solids--interactionbetween initial and induced anisotropy. Archive of Applied Mechanics,2002,72(6):498-510.
    [180] Basista M, Gross D. The sliding crack model of brittle deformation: an internal variable approach.International Journal of Solids and Structures,1998,35(5):487-509.
    [181] Zhao J, Sheng D. Strain gradient plasticity by internal-variable approach with normality structure.International Journal of Solids and Structures,2006,43(18):5836-5850.
    [182]陈祖煜,汪小刚,杨健.岩质边坡稳定性分析——原理,方法,程序.北京:中国水利水电出版社,2005.
    [183] Bazant Z. Structural stability. International Journal of Solids and Structures,2000,37(1):55-67.
    [184] Sarma K S. Stability analysis of embankments and slopes. ASCE Journal of GeotechnicalEngineering Division,1979,105(12):1511-1524.
    [185] Hoek E, Bray J. Rock slope engineering. Oxford: Spon Press,1981.
    [186]潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.
    [187]陈祖煜.建筑物抗滑稳定分析中“潘家铮最大最小原理”的证明.清华大学学报(自然科学版),1998,38(1):1-4.
    [188]张伯艳,陈厚群.用有限元和刚体极限平衡方法分析坝肩抗震稳定.岩石力学与工程学报,2001,20(5):665-670.
    [189]杨强,朱玲,薛利军.基于三维多重网格法的极限平衡法在锦屏高边坡稳定性分析中的应用.岩石力学与工程学报,2005,24(supp.2):5313-5318.
    [190]包劲青,杨强,官福海.改进的三维多重网格法及其工程应用.水力发电学报,2011,30(2):112-117.
    [191] Liu Y R, Li B, Leng K D, et al. Limit equilibrium analysis of sliding block stability underearthquake. Advanced Materials Research,2011,243(5):4528-4534.
    [192] Goldstein H, Poole C P, Safko J. Classical mechanics. Upper Saddle River, NJ: Addison-Wesley,1980.
    [193] Goodman R E, Shi G. Block theory and its application to rock engineering. Englewood Cliffs, NJ:Prentice Hall,1985.
    [194] Goodman R E. Block theory and its application. Geotechnique,1995,45(3):383-423.
    [195] Ling H I. Recent applications of sliding block theory to geotechnical design. Soil Dynamics andEarthquake Engineering,2001,21(3):189-197.
    [196]黄正加,邬爱清,盛谦.块体理论在三峡工程中的应用.岩石力学与工程学报,2001,20(5):648-652.
    [197] Banerjee P K, Butterfield R. Boundary element methods in engineering science. London:McGraw-Hill,1981.
    [198] Chuhan Z, Feng J, Pekau O A. Time domain procedure of fe-be-ibe coupling for seismicinteraction of arch dams and canyons. Earthquake Engineering and Structural Dynamics,1995,24(12):1651-1666.
    [199] Drucker D C, Greenberg H J, Prager W. The safety factor of an elastic-plastic body in plane strain.Journal of Applied Mechanics,1951,18:371-378.
    [200] Koiter W T. General theorems for elastic-plastic solids. Amsterdam: North-Holland,1960.
    [201] Lubliner J. Plasticity theory. New York: Macmillan,1990.
    [202] Radenkovic D. Theoremes limites pour un materiau de coulomb a dilatation non standardisee. CrAcad. Sci. Paris,1961,252:4103-4104.
    [203] Nguyen Q. On shakedown analysis in hardening plasticity. Journal of the Mechanics and Physicsof Solids,2003,51(1):101-125.
    [204] Feng X, Yu S. An upper bound on damage of elastic-plastic structures at shakedown. InternationalJournal of Damage Mechanics,1994,3(3):277-289.
    [205] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics. Nature,1976,264(25):319-324.
    [206] Stein E, Huang Y. An analytical method for shakedown problems with linear kinematic hardeningmaterials. International Journal of Solids and Structures,1994,31(18):2433-2444.
    [207] Yu H S. Three-dimensional analytical solutions for shakedown of cohesive-frictional materialsunder moving surface loads. Proceedings of the Royal Society a: Mathematical, Physical andEngineering Science,2005,461(2059):1951-1964.
    [208] Belytschko T. Plane stress shakedown analysis by finite elements. International Journal ofMechanical Sciences,1972,14(9):619-625.
    [209] Corradi L, Zavelani A. A linear programming approach to shakedown analysis of structures.Computer Methods in Applied Mechanics and Engineering,1974,3(1):37-53.
    [210] Stein E, Zhang G, K O Nig J A. Shakedown with nonlinear strain-hardening including structuralcomputation using finite element method. International Journal of Plasticity,1992,8(1):1-31.
    [211] Chen H F, Ponter A R. Shakedown and limit analyses for3-d structures using the linear matchingmethod. International Journal of Pressure Vessels and Piping,2001,78(6):443-451.
    [212]钱令希,王志必.结构极限分析和安定分析—温度参数法.计算结构力学及其应用,6(1):113-121.
    [213] Carlson J A, Jaffe A, Wiles A. The millennium prize problems. Providence: Amere MathematicalSociety,2006.
    [214]周维垣,杨若琼,剡公瑞.高拱坝稳定性评价的方法和准则.水电站设计,1997,13(2):1-7.
    [215] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity andplasticity in soil mechanics. Geotechnique,1975,25(4):671-689.
    [216] Dawson E M, Roth W H, Drescher A. Slope stability by strength reduction. Geotechnique,1999,49(6):835-840.
    [217] Griffiths D V, Lane P A. Slope stability analysis by finite elements. Geotechnique,1999,49(3):387-403.
    [218]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用.土木工程学报,2005,38(1):91-98.
    [219]郑宏,李春光,李焯芬,等.求解安全系数的有限元法.岩土工程学报,2002,24(5):626-628.
    [220] Ugai K. A method of calculation of total factor of safety of slopes by elasto-plastic fem. Soils andFoundations,1989,29(2):190-195.
    [221]任青文,钱向东,赵引,等.高拱坝沿建基面抗滑稳定性的分析方法研究.水利学报,2002,(2):1-7.
    [222]连镇营,韩国城,孔宪京,等.强度折减有限元法研究开挖边坡的稳定性.岩土工程学报,2001,23(4):407-411.
    [223]刘祚秋,周翠英,董立国,等.边坡稳定及加固分析的有限元强度折减法.岩土力学,2005,26(4):558-561.
    [224] Rabcewicz L V. The new austrian tunnelling method. Water Power,1964,16(11):453-456.
    [225] Muller L. Removing misconceptions on the new austrian tunnelling method. Tunnels andTunnelling International,1978,10(8):29-32.
    [226] Rabcewicz L V, Golser J. Principles of dimensioning the support system for the "new austriantunnelling method". Water Power,1973,(3):88-93.
    [227] Chambon P, Corte J. Shallow tunnels in cohesionless soil: stability of tunnel face. Journal ofGeotechnical Engineering,1994,120(7):1148-1165.
    [228] Swoboda G. Finite element analysis of the new austrian tunnelling method (natm). Proceedings ofthe3rd international conference on numerical methods in geomechanics, Aachen, German,1979:604-618.
    [229] Meschke G, Kropik C, Mang H A. Numerical analyses of tunnel linings by means of a viscoplasticmaterial model for shotcrete. International Journal for Numerical Methods in Engineering,1998,39(18):3145-3162.
    [230] Ng C W, Lee K M, Tang D K. Three-dimensional numerical investigations of new austriantunnelling method (natm) twin tunnel interactions. Canadian Geotechnical Journal,2004,41(3):523-539.
    [231] Andersen L, Jones C. Coupled boundary and finite element analysis of vibration from railwaytunnels—a comparison of two-and three-dimensional models. Journal of Sound and Vibration,2006,293(3):611-625.
    [232] Kov A Ri K. Erroneous concepts behind the new austrian tunnelling method. International Journalof Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1995,32(4):188A.
    [233] Karaku C S M, Fowell R J. An insight into the new austrian tunnelling method (natm).Proceedings of the7th Regional Rock Mechanics Symposium, Sivas, Turkey,2004:1-14.
    [234]王彬,戴统三.新奥法是否存在?——新奥法的错误原理.现代隧道技术,1995,(5):11-22.
    [235]邵根大.国际隧道界围绕新奥法的激烈争论给我们的启示.铁道建筑,1997,(9):2-5.
    [236]陈宗基.根据流变学与地球动力学观点研究新奥法.岩石力学与工程学报,1988,7(2):97-106.
    [237]杨强,周维垣,陈新.岩土工程加固分析中的最小余能原理和上限定理//冯夏庭,黄理兴.21世纪的岩土力学与岩土工程.武汉:中国科学院武汉岩土力学研究所,2003:158-166.
    [238]杨强,陈新,周维垣,等.三维弹塑性有限元计算中的不平衡力研究.岩土工程学报,2004,26(003):323-326.
    [239]杨强,陈新,周维垣.岩土工程加固分析的弹塑性力学基础.岩土力学,2005,26(4):553-557.
    [240]杨强,薛利军,王仁坤,等.岩体变形加固理论及非平衡态弹塑性力学.岩石力学与工程学报,2005,24(20):3704-3712.
    [241]杨强,刘耀儒,陈英儒,等.变形加固理论及高拱坝整体稳定与加固分析.岩石力学与工程学报,2008,27(6):1121-1136.
    [242] Yang Q, Liu Y, Chen Y, et al. Deformation reinforcement theory and its application to high archdams. Science in China. E. Technological Sciences,2008,51(2):32-47.
    [243]杨强,冷旷代,刘耀儒.变形加固理论的力学基础与工程意义.岩土力学,2011,32(1):1-8.
    [244] Yang Q, Leng K D, Liu Y R. Structural stability in deformation reinforcement theory—fundamentals and applications. Proceedings of the13th International Conference on ComputerMethods and Advances in Geomechanics, Melbourne,2011:48-54.
    [245] Duvaut G, Lions J L, John C W. Inequalities in mechanics and physics. Berlin: Springer-Verlag,1976.
    [246] Yang Q, Leng K D, Chang Q, et al. Failure mechanism and control of geotechnical structures.Proceedings of the2nd International Symposium on Constitutive Modeling of Geomaterials-Advances and New Applications, Beijing, China,2012:63-87.
    [247]杨强,刘耀儒,潘元炜,等.基于非线性有限元的马吉拱坝整体稳定分析.岩石力学与工程学报,2010,29(10):2010-2016.
    [248]杨强,陈英儒,刘耀儒.基于变形加固理论的高拱坝坝踵开裂分析.水利学报,2008,39(1):20-26.
    [249]官福海,刘耀儒,杨强,等.白鹤滩高拱坝坝趾锚固研究.岩石力学与工程学报,2010,29(7):1323-1332.
    [250]陈英儒,杨强,刘耀儒,等.高拱坝坝基断层加固力研究.水力发电学报,2009,27(6):62-67.
    [251]刘耀儒,黄跃群,杨强,等.基于变形加固理论的岩土边坡稳定和加固分析.岩土力学,2011,32(11):3349-3354.
    [252] Liu Y, Wang C, Yang Q. Stability analysis of soil slope based on deformation reinforcementtheory. Finite Elements in Analysis and Design,2012,58(10):10-19.
    [253]杨强,刘耀儒,冷旷代,等.能源储备地下库群稳定性与连锁破坏分析.岩土力学,2009,30(12):3553-3561.
    [254]杨强,邓检强,吕庆超,等.基于能量判据的盐岩库群整体稳定性分析方法.岩石力学与工程学报,2011,30(8):1513-1521.
    [255] Yang Q, Leng K, Liu Y. A finite element approach for seismic design of arch dam-abutmentstructures. Science China Technological Sciences,2011,54(3):516-521.
    [256]杨强,冷旷代,刘耀儒,等.高拱坝-坝肩结构的抗震稳定与加固.水力发电学报,2010,29(5):14-21.
    [257]刘耀儒,王传奇,杨强.基于变形加固理论的结构稳定和加固分析.岩石力学与工程学报,2008,27(A02):3905-3912.
    [258]周建平,党林才.水工设计手册:第二卷,混凝土坝.北京:水利水电出版社,2011.
    [259] Lyapunov A M. The general problem of the stability of motion. International Journal of Control,1992,55(3):531-534.
    [260] Coleman B D, Gurtin M E. Thermodynamics with internal state variables. Journal of ChemicalPhysics,1967,2(47):597-613.
    [261] Kestin J, Rice J R. Paradoxes in the application of thermodynamics to strained solids. A Criticalreview of thermodynamics: the proceedings of an international symposium, Pittsburgh, U.S.,1969:275-297.
    [262] Suquet P, Nguyen Q S, Germain P. Continuum thermodynamics. Journal of Applied Mechanics,1983,50:1010-1020.
    [263] Maugin G A, Muschik W. Thermodynamics with internal variables. Part I. General concepts.Journal of Non-Equilibrium Thermodynamics,1994,19(3):217-249.
    [264] Valanis K C. A gradient theory of internal variables. Acta Mechanica,1996,116(1):1-14.
    [265] Yang Q, Xue L J, Liu Y R. Thermodynamics of infinitesimally constrained equilibrium states.Journal of Applied Mechanics-Transactions of the ASME,2009,76(1):014502.
    [266] Yang Q, Tham L G, Swoboda G. Normality structures with homogeneous kinetic rate laws.Journal of Applied Mechanics-Transactions of the ASME,2005,72(3):322-329.
    [267] Ziegler H. An introduction to thermomechanics. Amsterdam: North-Holland,1977.
    [268] Ziegler H, Wehrli C. On a principle of maximal rate of entropy production. Journal ofNon-Equilibrium Thermodynamics,1987,12(3):229-244.
    [269] Fischer F D, Svoboda J. A note on the principle of maximum dissipation rate. Journal of AppliedMechanics,2007,74(5):923-926.
    [270] Yang Q, Wang R K, Xue L J. Normality structures with thermodynamic equilibrium points.Journal of Applied Mechanics,2007,74(5):965-971.
    [271] Edelen D G. A nonlinear onsager theory of irreversibility. International Journal of EngineeringScience,1972,10(6):481-490.
    [272] Edelen D G. Asymptotic stability, onsager fluxes and reaction kinetics. International Journal ofEngineering Science,1973,11(8):819-839.
    [273] Yang Q, Bao J, Liu Y. Asymptotic stability in constrained configuration space for solids. Journalof Non-Equilibrium Thermodynamics,2009,34(2):155-170.
    [274] Yang Q, Guan F H, Liu Y R. Hamilton's principle for green-inelastic bodies. Mechanics ResearchCommunications,2010,37(8):696-699.
    [275] Onsager L. Reciprocal relations in irreversible processes. I. Physical Review,1931,37(4):405-426.
    [276] Rajagopal K R, Srinivasa A R. Mechanics of the inelastic behavior of materials. Part II: inelasticresponse. International Journal of Plasticity,1998,14(10):969-995.
    [277] Martyushev L M, Seleznev V D. Maximum entropy production principle in physics, chemistry andbiology. Physics Reports,2006,426(1):1-45.
    [278] Haslach H W. Thermodynamically consistent, maximum dissipation, time-dependent models fornon-equilibrium behavior. International Journal of Solids and Structures,2009,46(22):3964-3976.
    [279] Lubliner J. A maximum-dissipation principle in generalized plasticity. Acta Mechanica,1984,52(3):225-237.
    [280] Simo J C. A framework for finite strain elastoplasticity based on maximum plastic dissipation andthe multiplicative decomposition: Part I. Continuum formulation. Computer Methods in AppliedMechanics and Engineering,1988,66(2):199-219.
    [281] Simo J C, Hughes T. Computational inelasticity. Burlin: Springer-Verlag,2008.
    [282] Hackl K, Fischer F D. On the relation between the principle of maximum dissipation and inelasticevolution given by dissipation potentials. Proceedings of the Royal Society a: Mathematical,Physical and Engineering Science,2008,464(2089):117-132.
    [283] Brown L M. Transition from laminar to rotational motion in plasticity. Philosophical Transactionsof the Royal Society of London. A. Mathematical, Physical and Engineering Sciences,1997,355(1731):1979-1990.
    [284] Edelen D G. A thermodynamics with internal degrees of freedom and nonconservative forces.International Journal of Engineering Science,1976,14(11):1013-1032.
    [285] Sternberg S. Lectures on differential geometry. New York: Chelsea,1983.
    [286] Schr O Der J O R, Neff P. Invariant formulation of hyperelastic transverse isotropy based onpolyconvex free energy functions. International Journal of Solids and Structures,2003,40(2):401-445.
    [287] Hazan T, Shashua A. Convergent message-passing algorithms for inference over general graphswith convex free energies. Proceedings of the25th Conference on Uncertainty in ArtificialIntelligence, Montreal, QC, Canada,2012:393-401.
    [288] Mardia K V. Statistics of directional data. Journal of the Royal Statistical Society. B.Methodological,1975,37(3):349-393.
    [289] Bunge H J. Fabric analysis by orientation distribution functions. Tectonophysics,1981,78(1-4):1-21.
    [290] Hu H. Texture analysis in materials science. American Scientist,1984,72(1):93-94.
    [291] Jupp P E, Mardia K V. A unified view of the theory of directional statistics,1975-1988.International Statistical Review,1989,57(3):261-294.
    [292] Advani S G, Tucker C L. The use of tensors to describe and predict fiber orientation in short fibercomposites. Journal of Rheology,1987,31(8):751-784.
    [293] Yang Q, Chen X, Zhou W Y. Effective stress and vector-valued orientational distribution functions.International Journal of Damage Mechanics,2008,17(2):101-121.
    [294] Dafalias Y F. Orientation distribution function in non-affine rotations. Journal of the Mechanicsand Physics of Solids,2001,49(11):2493-2516.
    [295] Yang Q, Chen X, Tham L G. Relationship of crack fabric tensors of different orders. MechanicsResearch Communications,2004,31(6):661-666.
    [296] Yang Q, Chen X, Zhou W Y. Microplane-damage-based effective stress and invariants.International Journal of Damage Mechanics,2005,14(2):179-191.
    [297] Zheng Q S, Zou W N. Irreducible decompositions of physical tensors of high orders. Journal ofEngineering Mathematics,2000,37(1-3):273-288.
    [298] Lemaitre J. A course on damage mechanics. Berlin: Springer-Verlag,1992.
    [299] Ganczarski A, Barwacz L. Notes on damage effect tensors of two-scalar variables. InternationalJournal of Damage Mechanics,2004,13(3):287-295.
    [300] Leckie F A, Onat E T. Tensorial nature of damage measuring internal variables. Proceedings of thesymposium on physical non-linearities in structural analysis, Senlis, France,1980:140-155.
    [301] Chaboche J L. Continuous damage mechanics-a tool to describe phenomena before crackinitiation. Nuclear Engineering and Design,1981,64(2):233-247.
    [302] Betten J. Application of tensor functions to the formulation of constitutive equations involvingdamage and initial anisotropy. Engineering Fracture Mechanics,1985,25(5-6):573-584.
    [303] Chow C L, Wang J. An anisotropic theory of continuum damage mechanics for ductile fracture.Engineering Fracture Mechanics,1987,27(5):547-558.
    [304] Chow C L, Wang J. An anisotropic theory of elasticity for continuum damage mechanics.International Journal of Fracture,1987,33(1):3-16.
    [305] Chow C L, Wang J. Ductile fracture characterization with an anisotropic continuum damagetheory. Engineering Fracture Mechanics,1988,30(5):547-563.
    [306] Murakami S. Mechanical modeling of material damage. Journal of AppliedMechanics-Transactions of the ASME,1988,55(2):280-286.
    [307] Voyiadjis G J, Kattan P I. On the symmetrization of the effective stress tensor in continuumdamage mechanics. Journal of the Mechanical Behavior of Materials,1996,7(2):139-165.
    [308] Voyiadjis G Z, Park T. Anisotropic damage effect tensors for the symmetrization of the effectivestress tensor. Journal of Applied Mechanics-Transactions of the ASME,1997,64(1):106-110.
    [309] Cauvin A, Testa R B. Damage mechanics: basic variables in continuum theories. InternationalJournal of Solids and Structures,1999,36(5):747-761.
    [310] Skrzypek J J, Ganczarski A W. Anisotropic behaviour of damaged materials. Burlin:Springer-Verlag,2003.
    [311] Lemaitre J, Desmorat R, Sauzay M. Anisotropic damage law of evolution. European Journal ofMechanics. A. Solids,2000,19(2):187-208.
    [312] Hayhurst D R. Creep rupture under multi-axial states of stress. Journal of the Mechanics andPhysics of Solids,1972,20(6):381-382.
    [313] Leckie F A, Hayhurst D R. Creep rupture of structures. Proceedings of the Royal Society ofLondon. A. Mathematical and Physical Sciences,1974,340(1622):323-347.
    [314] Helnwein P. Some remarks on the compressed matrix representation of symmetric second-orderand fourth-order tensors. Computer Methods in Applied Mechanics and Engineering,2001,190(22-23):2753-2770.
    [315] Mehrabadi M M, Cowin S C. Eigentensors of linear anisotropic elastic materials. The QuarterlyJournal of Mechanics and Applied Mathematics,1990,43(1):15-41.
    [316] Yang Q, Chen X, Zhou W Y. On the structure of anisotropic damage yield criteria. Mechanics ofMaterials,2005,37(10):1049-1058.
    [317] Truesdell C, Toupin R. The classical field theories. Burlin: Springer,1960.
    [318] Toupin R A. The elastic dielectric. Journal of Rational Mechanics and Analysis,1956,5(6):849-915.
    [319] Biot M A. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics,1956,27(3):240-253.
    [320] Mindlin R D. Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis,1964,16(1):51-78.
    [321] Nowacki W. Some general theorems of thermopiezoelectricity. Journal of Thermal Stresses,1978,1(2):171-182.
    [322] Batra G. On hamilton's principle for thermo-elastic fluids and solids, and internal constraints inthermo-elasticity. Archive for Rational Mechanics and Analysis,1987,99(1):37-59.
    [323] Simo J C, Marsden J E, Krishnaprasad P S. The hamiltonian structure of nonlinear elasticity: thematerial and convective representations of solids, rods, and plates. Archive for Rational Mechanicsand Analysis,1988,104(2):125-183.
    [324] Grinfeld M A, Norris A N. Hamiltonian and onsageristic approaches in the nonlinear theory offluid-permeable elastic continua. International Journal of Engineering Science,1997,35(1):75-87.
    [325] Ma H M, Gao X L, Reddy J N. A microstructure-dependent timoshenko beam model based on amodified couple stress theory. Journal of the Mechanics and Physics of Solids,2008,56(12):3379-3391.
    [326] Ortiz M, Stainier L. The variational formulation of viscoplastic constitutive updates. ComputerMethods in Applied Mechanics and Engineering,1999,171(3):419-444.
    [327] Simo J C, Miehe C. Associative coupled thermoplasticity at finite strains: formulation, numericalanalysis and implementation. Computer Methods in Applied Mechanics and Engineering,1992,98(1):41-104.
    [328] Yang Q, Stainier L, Ortiz M. A variational formulation of the coupled thermo-mechanicalboundary-value problem for general dissipative solids. Journal of the Mechanics and Physics ofSolids,2006,54(2):401-424.
    [329] Stolz C. Functional approach in nonlinear dynamics. Archives of Mechanics-ArchiwumMechaniki Stosowanej,1995,47(3):421-435.
    [330] Stolz C. Analysis of stability and bifurcation in nonlinear mechanics with dissipation. Entropy,2011,13(2):332-366.
    [331] Anthony K. Hamilton's action principle and thermodynamics of irreversible processes—a unifyingprocedure for reversible and irreversible processes. Journal of Non-Newtonian Fluid Mechanics,2001,96(1):291-339.
    [332] Vujanovic B. A variational principle for non-conservative dynamical systems. Zamm-Journal ofApplied Mathematics and Mechanics,1975,55(6):321-331.
    [333] Germain P. Functional concepts in continuum mechanics. Meccanica,1998,33(5):433-444.
    [334] Kosinski W, Perzyna P. On consequences of the principle of stationary action for dissipativebodies. Archives of Mechanics,2012,64(1):95-106.
    [335] Casimir H B G. On onsager's principle of microscopic reversibility. Reviews of Modern Physics,1945,17(2-3):343-350.
    [336] Hill R. Aspects of invariance in solid mechanics. Advances in Applied Mechanics,1978,18(8):1-75.
    [337] Edelen D G. The college station lectures on thermodynamics. College Station: Texas A&MUniversity,1993.
    [338] Edelen D G. The thermodynamics of evolving chemical systems and the approach to equilibrium//Prigogine I, Rice S A. Advances in Chemical Physics. Hoboken: John Wiley&Sons,1975:399-442.
    [339] Edelen D G. Mass balance laws and the decomposition, evolution and stability of chemicalsystems. International Journal of Engineering Science,1975,13(9):763-784.
    [340] Duhem P M M. Traite de energetique ou de thermodynamique generales. Paris: Gauthier-Villary,1911.
    [341] Coleman B D, Noll W. On the thermostatics of continuous media. Archive for Rational Mechanicsand Analysis,1959,4(1):97-128.
    [342] Movchan A A. The direct method of liapunov in stability problems of elastic systems. Journal ofApplied Mathematics and Mechanics,1959,23(3):686-700.
    [343] Ericksen J L. A thermo-kinetic view of elastic stability theory. International Journal of Solids andStructures,1966,2(4):573-580.
    [344] Knops R J, Wilkes E W. Theory of elastic stability (liapunov functions application to stabilityanalysis of dynamic systems and elastic bodies, considering eigenfunction method, maximumprinciple and energy criterion). Solid-State Mechanics,1973,3(24-32):125-302.
    [345] Gurtin M E. Thermodynamics and the energy criterion for stability. Archive for RationalMechanics and Analysis,1973,52(2):93-103.
    [346] Gurtin M E. Thermodynamics and stability. Archive for Rational Mechanics and Analysis,1975,59(1):63-96.
    [347] Hill R. A general theory of uniqueness and stability in elastic-plastic solids. Journal of theMechanics and Physics of Solids,1958,6(3):236-249.
    [348] Nguyen Q S, Radenkovic D. Stability of equilibrium in elastic-plastic solids. Applications ofMethods of Functional Analysis to Problems in Mechanics,1976,503(9):403-414.
    [349] Chadwick P, Scott N H. Linear dynamical stability in constrained thermoelasticity i.Deformation-temperature constraints. The Quarterly Journal of Mechanics and AppliedMathematics,1992,45(4):641-650.
    [350] Scott N H. Thermoelasticity with thermomechanical constraints. International Journal ofNon-Linear Mechanics,2001,36(3):549-564.
    [351] Rooney F J, Bechtel S E. Constraints, constitutive limits, and instability in finite thermoelasticity.Journal of Elasticity,2004,74(2):109-133.
    [352] Lubarda V A. On thermodynamic potentials in linear thermoelasticity. International Journal ofSolids and Structures,2004,41(26):7377-7398.
    [353] Lubarda V A. On the gibbs conditions of stable equilibrium, convexity and the second-ordervariations of thermodynamic potentials in nonlinear thermoelasticity. International Journal ofSolids and Structures,2008,45(1):48-63.
    [354] Grmela M. Thermodynamics of driven systems. Physical Review E,1993,48(2):919-930.
    [355] Grmela M. Reciprocity relations in thermodynamics. Physica a: Statistical Mechanics and itsApplications,2002,309(3):304-328.
    [356] Serdyukov S I. Generalization of the evolution criterion in extended irreversible thermodynamics.Physics Letters a,2004,324(4):262-271.
    [357] Glansdorff P, Prigogine I. On a general evolution criterion in macroscopic physics. Physica,1964,30(2):351-374.
    [358] Nguyen Q S. Bifurcation and post-bifurcation analysis in plasticity and brittle fracture. Journal ofthe Mechanics and Physics of Solids,1987,35(3):303-324.
    [359] Nguyen Q S. Stability and nonlinear solid mechanics. Hoboken: John Willey&Sons,2000.
    [360] Haslach Jr H W. A non-equilibrium thermodynamic geometric structure for thermoviscoplasticitywith maximum dissipation. International Journal of Plasticity,2002,18(2):127-153.
    [361] Haslach Jr H W. Evolution construction for homogeneous thermodynamic systems//Haslach Jr HW. Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure. Burlin:Springer,2011:31-59.
    [362] Petryk H. Plastic instability: criteria and computational approaches. Archives of ComputationalMethods in Engineering,1997,4(2):111-151.
    [363] Petryk H. General conditions for uniqueness in materials with multiple mechanisms of inelasticdeformation. Journal of the Mechanics and Physics of Solids,2000,48(2):367-396.
    [364] Petryk H. Thermodynamic conditions for stability in materials with rate-independent dissipation.Philosophical Transactions of the Royal Society a: Mathematical, Physical and EngineeringSciences,2005,363(1836):2479-2515.
    [365] Petryk H, Stupkiewicz S. Instability of equilibrium of evolving laminates in pseudo-elastic solids.International Journal of Non-Linear Mechanics,2012,47(2):317-330.
    [366] Kalman R E, Bertram J E. Control system analysis and design via the "second method" oflyapunov: i—continuous-time systems. Journal of Basic Engineering,1960,82(2):371-393.
    [367] Slotine J E, Li W. Applied nonlinear control. Englewood Cliffs, NJ: Prentice-Hall,1991.
    [368]黄润秋.岩石高边坡发育的动力过程及其稳定性控制.岩石力学与工程学报,2008,27(8):1525-1544.
    [369] Perzyna P. Fundamental problems in viscoplasticity. Advances in Applied Mechanics,1966,9(2):244-368.
    [370]杨强,冷旷代,张小寒,等. Drucker-prager弹塑性本构关系积分:考虑非关联流动与各向同性硬化.工程力学,2012,29(008):165-171.
    [371] Zienkiewicz O C, Cormeau I C. Visco-plasticity—plasticity and creep in elastic solids—a unifiednumerical solution approach. International Journal for Numerical Methods in Engineering,1974,8(4):821-845.
    [372] Chaboche J L. A review of some plasticity and viscoplasticity constitutive theories. InternationalJournal of Plasticity,2008,24(10):1642-1693.
    [373]顾金才,陈安敏,徐景茂,等.在爆炸荷载条件下锚固洞室破坏形态对比试验研究.岩石力学与工程学报,2008,27(7):1315-1320.
    [374] Sakurai S, Takeuchi K. Back analysis of measured displacements of tunnels. Rock Mechanics andRock Engineering,1983,16(3):173-180.
    [375] Gioda G, Sakurai S. Back analysis procedures for the interpretation of field measurements ingeomechanics. International Journal for Numerical and Analytical Methods in Geomechanics,2005,11(6):555-583.
    [376]周维垣,杨若琼,剡公瑞.大坝整体稳定分析系统.岩石力学与工程学报,1997,16(5):424-430.
    [377]冯夏庭,杨成祥.智能岩石力学2:参数与模型的智能辨识.岩石力学与工程学报,1999,18(3):350-353.
    [378]何满潮.滑坡地质灾害远程监测预报系统及其工程应用.岩石力学与工程学报,2009,28(6):1081-1090.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700