用户名: 密码: 验证码:
陕北黄土区坡面微地形生境与林分结构关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以来,黄土高原人工造林根据立地类型划分尺度,沿等高线按照一定的等株距等行距布置栽植点,部分栽植点布设在了土壤水分等生境条件较差的位置上,导致坡面人工植被成活率和保存率均较低,甚至形成了“小老树林”,即忽略了坡面微地形及其带来的生境差异。因此,本研究以陕北黄土区坡面微地形及林分为研究对象,选择陕西省延安市吴起县为试验研究区,通过采用三维激光测量、高分辨率遥感影像解译等高技术手段,结合野外实地调查林分数据以及土壤水分、养分数据,利用ArcGIS、标准化降水指数、Mann-Kendall趋势检验以及Ripley's K函数等空间分析方法,揭示坡面微地形的分布规律,微地形土壤水分养分特征及对近56年来该区域干旱演变特征的响应,最后探讨了微地形对林分生长特征及空间分布格局的影响。结果表明:
     (1)浅沟、切沟、塌陷、缓台以及陡坎等微地形面积分布差异显著,从大到小依次为:切沟>缓台>浅沟>陡坎>塌陷,其分布规律受坡度、坡向以及土地利用类型的影响较大。
     (2)雨季,切沟、缓台、塌陷等微地形土壤的集水能力约为陡坎和原状坡土壤的2倍;生长季,陡坎、原状坡的土壤水分对大气降水的依赖性最大,切沟、缓台、浅沟的依赖性居中,塌陷的依赖性最小。
     (3)切沟、塌陷及缓台等林地的土壤含水量在0-120cm土层变化范围为15%-18%,陡坎林地的土壤含水量在0-80cm土层变化范围为13%-16%;缓台、切沟及塌陷等林地土壤含水量比陡坎微地形出现土壤干层深约40cm。
     (4)人工林地土壤的速效氮、速效磷、速效钾、全效氮以及有机质等养分含量在不同微地形的变化差异较大,且缓台、切沟、塌陷以及浅沟的土壤养分表聚现象比陡坎的弱。
     (5)阴坡树种的生长指标与坡位指数呈显著正相关,与坡度指数呈显著负相关;阳坡树种的树高、枯落物厚度与坡度指数呈显著负相关。同一树种在不同微地形上的生长差异显著,林分树种树高随胸径生长速度由大到小依次为:切沟内的刺槐、柳树以及小叶杨>塌陷内的山杏>陡坎上的榆树。
     (6)微地形内林分单种空间格局的最大聚集半径介于20-30m。均匀坡面在0-l00m空间尺度内,种间空间关联性为显著负相关;在含有微地形的坡面上,刺槐-杜梨、刺槐-山杏、刺槐-小叶杨、刺槐-榆树,以及河北杨-榆树等种间在0-30m空间尺度内为显著负相关变化到60-100m空间尺度内的显著正相关关系,而杜梨-河北杨、杜梨-山杏、杜梨-小叶杨、杜梨-榆树、河北杨-山杏、河北杨-小叶杨以及山杏-榆树等种间则表现为无空间关联性。
     (7)阴坡造林陡坎以榆树、缓台以山杏、切沟以刺槐为宜,缓台可混交小叶杨、杜梨等树种,切沟可混交河北杨,阳坡造林缓台以刺槐、切沟以榆树为宜。
Since the1980s, reforestation was designed according to the site type scale and along the contours with certain planting distance spaced arrangement in the loess plateau. Some plantation points were lainon the poor soil moisture habitat conditions of the slope. It led to the survival rate of artificial vegetation was low in the slope, and even formed a "small old trees", which ignores the effects of microtopography and microhabitat in the slope.Therefore, the soil and water conservation forest and microtopography were selected as the research object, and we considerd Wuqi County as the study area.Combined with the field survey of nutrients and soil water data, the3D laser measurement and high resolution remote sensing image interpretation technology were used, using ArcGIS, standardized precipitation index, Mann-Kendall trend test and Ripley 'K function, to reveal the area distribution of the microtopography and soil water and nutrient characteristics, and the response characteristic to regional drought evolution in recent56years.Finally, the effects of microtopography on growth characteristics and the spatial distribution pattern of forest standswere analyzed.The results showed that:
     (1)The difference among the area distribution of the microtopography was significant, and the area percentage of differerent microtopography types,from large to small, were gully>platform>ephemeral gully>scarp>sink hole.Meanwhile, the area distribution was effected by slope, aspect and the land use types.
     (2) The catchment of gully, platform and sink hole was about twice ability of scarp and uniform slope in the rainy season; there was positive correlation between the SPI of growing season and the change value of soil water layer thickness of microtopographies, and the dependence of soil moisture of microtopography with the precipitation, from large to small, was scarp, sunny uniform slope and half sunny uniform slope> gully, platform and ephemeral gully> sink hole.
     (3) The soil moisture of gully, sink hole and platform ranged from15%to18%at the layer of0-120cm, but that of scarp changed from13%to16%at the layer of0-80cm. The dry soil layers of platform, gully and sink hole appeared at the layer of120-140cm, but that of scarp appeared at80-100cm.
     (4) The soil nutrient content of available nitrogen, available P, available potassium, total N and organic matters displayed significant difference among the microtopography types, and the soil nutrient content of scarp had obvious topsoil accumulation.
     (5) In shady slope,height, DBH and litter depth had significantly positive correlations with the slope position index and significantly negative correlations with the slope index; while in sunny slope,height and litter depth had significantly negative correlations with the slope index; Conditions of same tree species in different microtopography types displayed the significant difference, especially,the growth rate of trees height with the DBH displayed the sequence, from large to small:Robinia pseudoacacia Linn., Salix matsudana Koidz and Populus simonii Carr in gully>Armeniaca sibirica Lam. in sink hole>Ulmus pumila Linn. in scarp.
     (6) The maximal aggregation radiuses of tree species on the microtopography slope fell in20-30m, but those of tree species on the uniform slope were larger than40m; andon the microtopography slope, Robinia pseudoacacia Linn. varied from strong negative association at microtopography scales (0-30m) to positive association (60-100m) with Pyrus betulifolia Bunge, Armeniaca sibirica Lam., Populus simonii Carr.and Ulmuspumila Linn., and Populus hopeiensis Hu&Chow-U. pumilashowed the same association pattern,while the others species pairs including P. betulifolia-P. hopeiensis,P. betulifolia-A. sibirica,P. betulifolia-P. simonii, P. betulifolia-U. pumila, P. hopeiensis-A. sibirica,P. hopeiensis-P. simonii, andA. sibirica-U. pumila showed no association.
     (7) Ulmuspumila-scarp, Armeniacasibirica+Pyrusbetulifolia and Populussimonii-platform, and Robiniapseudoacacia+Populus hopeiensis-gully could be appropriate forestation pattern in shady slopes respectively.Robiniapseudoacacia-platform and Ulmuspumila-gully could be appropriate forestation pattern in sunny slope respectively.
引文
1.陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征[J].生态学报,2005,25(10):2491-2498.
    2.陈永宗,景可,蔡强国,等.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988:1-194.
    3.陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,26(3):339-345
    4.程积民,万惠娥,杜锋.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学,2001,137(14):50-57.
    5.单长卷,梁宗锁,韩蕊莲,等.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究[J].应用生态学报,2005,16(7):1205-1212.
    6.范建容,刘飞,郭芬芬,等.基于遥感技术的三峡库区土壤侵蚀量评估及影响因子分析[J].山地学报,2011,29(3):306-311.
    7.冯玉婷,常禹,胡远满,等.大兴安岭呼中森林景观的空间点格局分析[J].生态学杂志,2012,31(4):1016-1021.
    8.国务院第一次全国水利普查领导小组办公室.第一次全国水利普查培训教材之六——水土保持情况普查[M].北京:中国水利水电出版社,2011.
    9.韩凤朋,郑纪勇,张兴昌.黄土退耕坡地植物根系分布特征及其对土壤养分的影响[J].农业工程学报,2009,25(2):50-55.
    10.韩鹏,李秀霞.黄河流域土壤侵蚀及植被水保效益研究[J].应用基础与工程科学学报,2008,16(2):181-190.
    11.郝占庆,于德永,吴钢等.长白山北坡植物群落B多样性分析[J].生态学报,2001,21(12):2018-2022.
    12.侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究[J].水土保持研究,2000,7(2):102-110.
    13.侯喜禄,梁一民,白岗栓,等.黄土丘陵沟壑区主要造林树种人工林分类型,中日黄土高原生物生产力可持续开发合作项目学术论文专集[M].西安:陕西科学技术出版社,1998,95-102.
    14.侯喜禄.实验区土壤水分动态与树种布设[J].水土保持通报,1985,5(04):9-12.
    15.侯向阳,韩进轩.长白山红松林主要树种空间格局的模拟分析[J].植物生态学报,1997,21(3):47-54.
    16.胡忠朗,王廷正.黄土高原林区鼠害综合管理研究[M].西安:西北大学出版社,1995,139-150.
    17.黄秋华,张新长,张文江.土地利用数据在不同空间尺度下的精度损失分析[J].测绘通报,2007(2):44-47,60.
    18.黄晚华,杨晓光,李茂松,等.基于标准化降水指数的中国南方季节性干旱近58a演变特征[J].农业工程学报,2010,26(07):50-59.
    19.贾俊姝,计文琦,周心澄,等.基于GIS和RS技术的辽宁省土壤侵蚀强度空间分析[J].西北林学院学报,2006,24(4):46-49,61.
    20.贾志清.晋西北黄土丘陵沟壑区典型流域不同植被土壤蓄水能力研究[J].水土保持通报,2006,26(1):10-15.
    21.江洪.云杉种群生态学[M].北京:中国林业出版社,1992:23-98.
    22.姜永清,王占礼,胡光荣等.瓦背状浅沟分布特征分析[J].水土保持研究,1999,6(2):181-184
    23.姜勇,郝伟,张玉革,等.潮棕壤不同利用方式营养元素随剖面深度的变化特征[J].水土保持学报,2006,20(03):93-96.
    24.蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社,1997,45-64.
    25.邝高明,朱清科,刘中奇,赵荟,王晶.黄土丘陵沟壑区微地形对土壤水分及生物量的影响[J].水土保持研究,2012,19(3):74-77.
    26.邝高明,朱清科,赵磊磊,等.黄土丘陵沟壑区陡坡微地形分布研究[J].干旱区研究,2012,29(6):1083-1088.
    27.赖江山,米湘成,任海保,等.基于多元回归树的常绿阔叶林群丛数量分类——以古田山24公顷森林样地为例[J].植物生态学报,2010,34(7):761-769.
    28.李安怡,吴秀芹,朱清科.陕北黄土区浅沟分布特征及其与立地类型的关系[J].西北农林科技大学学报,2010,38(4):79-85.
    29.李安怡.陕北黄土区浅沟地貌特征及其对植被的影响分析[D]:北京林业大学,2011.
    30.李斌兵,郑粉莉,张鹏.黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J].水土保持通报,2008,28(5):16-20.
    31.李春晖,杨志峰.黄河流域NDVI时空变化及其与降水/径流关系[J].地理研究,2004,23(6):753-759.
    32.李代琼,黄瑾,刘国彬,等.安塞黄土丘陵区优良草种引种试验研究,中日黄土高原生物生产可持续开发合作项目学术论文专集[M].西安:陕西科学技术出版社,1998,165-124.
    33.李海涛.植物种群分布格局研究概况[J].植物学通报,1995,12(2):19-26.
    34.李丽霞,梁宗锁,王俊峰.土壤水分和风速对沙棘苗木水分状况和成活率影响的实验研究[J].沙棘,1999,12(4):18-21.
    35.李利平,尼瓦尔·买买提,王襄平.新疆山地针叶林乔木胸径-树高关系分析[J].干旱区研究,2011,28(1):47-53.
    36.李明辉,何风华,潘存德.天山云杉天然林不同林层的空间格局和空间关联性[J].生态学报,2011,31(3):620-628.
    37.李萍,朱清科,谢芮,等.半干旱黄土丘陵沟壑区水平阶整地人工油松林种内竞争研究[J].应用基础与工程科学学报,2012,20(4):592-601.
    38.李萍,朱清科,赵磊磊,等.黄土丘陵沟壑区鱼鳞坑雨季土壤水分状况[J].农业工程学报,2011,27(7):76-81.
    39.李先琨,苏宗明,向悟生,等.濒危植物元宝山冷杉种群结构与分布格局[J].生态学报,2002,22(12):2246-2253.
    40.李艳梅,王克勤,刘芝芹等.云南干热河谷微地形改造对土壤水分动态的影响[J].浙江林学院学报,2005,22(03):259-265.
    41.李艳梅,王克勤,刘芝芹等.云南干热河谷不同坡面整地方式对土壤水分环境的影响[J].水土保持学报,2006,20(1):15-19,49.
    42.李智广,杨胜天,高云飞,等.土壤侵蚀遥感监测方法及其思考[J].中国水土保持科学,2008,6(3):7-12.
    43.梁一民,陈云明.论黄土高原造林的适地适树与适地适林[J].水土保持通报,2004,24(3):69-72.
    44.梁一民.从植物群落学原理谈黄土高原植被建造的几个问题[J].西北植物学报,1999,19(5):26-31.
    45.廖咏梅,田茂洁,宋会兴.植物群落的微生境研究[J].西华师范大学学报(自然科学版),2004,125(3):247-250
    46.刘东生.黄土与环境[M].北京:科学出版社,1985:1-481.
    47.刘艳锋,陈学华,贺秀斌,等.岷江上游土壤侵蚀与土地利用的耦合关系研究[J].西北林学院学报,2009,24(5):161-165,185.
    48.刘艳丽,王国庆,顾颖,等.基于改进的标准化降水指数的黄河中游干旱情势研究[J].干旱区资源与环境,2013,27(10):75-80.
    49.刘振,李红丽,董智,等.浑善达克沙地2种生境下榆树种群空间点格局[J].林业科学,2012,48(1):29-34.
    50.柳艺博,常庆瑞.RS与GIS在东北黑土区土壤侵蚀研究中的应用[J].西北林学院学报,2009,24(5):166-170.
    51.路保昌.黄土高原吴起县合家沟流域困难立地生境特征研究[D]:西北农林科技大学,2009.
    52.路保昌,薛智德,朱清科,等.干旱阳坡半阳坡微地形土壤水分的分布的研究[J],水土保持通报,2009,29(1):62-65.
    53.罗伟祥,邹年根,韩恩贤,等.陕西黄土高原造林立地条件类型划分及适地适树研究报告[J].陕西林业科技,1985,(01):1-16.
    54.马宝霞,李景侠.东灵山植物群落(乔木)物种多样性与微地形关系的研究[J],西北林学院学报,2006,21(6):47-49.
    55.马晶,毕强,鹿鹏.基于遥感技术的大安了市土地利用现状分析[J].测绘通报,2009,(11):60-63.
    56.马旭东,张苏峻,苏志尧,等.车八岭山地常绿阔叶林群落结构特征与微地形条件的关系[J].生态学报,2010,30(19):5151-5160.
    57.穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,16(2):41-45.
    58.牛丽丽,余新晓,岳永杰.北京松山自然保护区天然油松林不同龄级立木的空间点格局[J].应用生态学报,2008,19(7):1414-1418.
    59.彭建兵,李喜安,范文,等.黄土高原地区黄土洞穴的分类及发育规律[J].地学前缘(中国地质大学(北京);北京大学),2007,14(6):234-244.
    60.彭少麟.南亚热带森林群落动态学[M].北京:科学出版社,1996:114-124.
    61.秦伟,朱清科,赵磊磊,等.基于RS和GIS的黄土丘陵沟壑区浅沟侵蚀地形特征研究[J].农业工程学报,2010,26(6):58-64.
    62.任洪玉.基于GIS的中国水蚀区土壤侵蚀后果危险度研究方法[J].水土保持通报,2007,27(4):136-140.
    63.任杨俊,赵光耀,李建牢,等.黄土丘陵沟壑区(Ⅲ)山坡地林草植被配置模式研究[J].水土保持学报,2001,15(6):78-80.
    64.佘冬立,邵明安,俞双恩.黄土区农草混合利用坡面土壤水分空间变异性[J].农业机械学报,2010,41(7):57-63.
    65.佘冬立,邵明安,俞双恩.黄土高原典型植被覆盖下SPAC系统水量平衡模拟[J].农业机械学报,2011,42(5):73-78.
    66.宋述军,李辉霞,张建国.黄土高原坡地单株植物下的微地形研究[J].山地学报,2003,21(1):106-109.
    67.苏薇,岳永杰,余新晓.油松天然林群落结构及种群空间分布格局[J].东北林业大学学报,2009,37(3):18-20,61.
    68.孙强,薛智德.黄土丘陵沟壑区植被分布恢复试验研究[J].水土保持研究,2006,13(2):154-156.
    69.孙智辉,王治亮,曹雪梅,等.基于标准化降水指数的陕西黄土高原地区1971-2010年干旱变化特征[J].中国沙漠,2013,33(05):1560-1567.
    70.唐克丽,张科利,雷阿林.黄土丘陵区退耕上限坡度的研究论证[J].科学通报,1998,43(2):200-203.
    71.王进宝,聂维清,张培宏,等.关于黄土类土分布区地下水赋存与富集特征的探讨[J].山西矿业学院学报,1990,8(2):67-81.
    72.王进鑫,余清珠,高文秀,等.半干旱黄土丘陵沟壑区造林整地工程集流分析[J].西北林学院学报,1992,7(2):45-49.
    73.王晶,朱清科,秦伟,等.陕北黄土区封禁流域坡面微地形植被特征分异[J].应用生态学报,2012,23(3):694-700.
    74.王晶,朱清科,赵荟,等.陕北黄土区阳坡微地形土壤水分特征研究[J].水土保持通报,2011,31(4):16-21.
    75.王礼先.生态环境建设的内涵与配置[J].资源科学,2004,26:26-33.
    76.王玲燕,钟永辉.基于不同抽样方法的安义县土地资源遥感监测精度评价研究[J].测绘通报,2010(9):32-34,41.
    77.王明春,韩崇选,杨学军,等.克鼠星1号防治甘肃鼢鼠试验研究[J].西北林学院学报,1999,14(2):51-56.
    78.王延平,邵明安,张兴昌.陕北黄土区陡坡地人工植被的土壤水分生态环境[J].生态学报,2008,28(8):3769-3778.
    79.王媛媛,张勃.基于标准化降水指数的近40a陇东地区旱涝时空特征[J].自然资源学报,2012,27(12):2135-2144.
    80.王占礼,邵明安.黄土丘陵沟壑区第二副区山坡地土壤侵蚀特征研究[J].水土保持研究,1998,5(5):11-21,97.
    81.王中堂.有机物料覆盖对桃园土壤理化性质及桃生长结果的影响[D]:山东农业大学,2011.
    82.伍光和,田连恕,胡双熙,等.自然地理学[M].北京:高等教育出版社,2000:298.
    83.伍永秋,刘宝元.切沟、切沟侵蚀与预报[J].应用基础与工程科学学报,2000,8(2):134-142.
    84.谢云,刘宝元,伍永秋.切沟中土壤水分的空间变化特征[J].地球科学进展,2002,17(2):278-282.
    85.辛树帜,蒋德麟.中国水土保持概论[M].北京:农业出版社,1982:19-20.
    86.许建民.黄土高原浅沟发育主要影响因素及其防治措施研究[J].水土保持学报,2008,22(4):39-41.
    87.薛萐,李占斌,李鹏,等.不同植被恢复模式对黄土丘陵区土壤抗蚀性的影响[J].农业工程学报,2009,25(S1):69-72.
    88.薛智德,梁一民,杨光.侧柏紫穗槐混交理论与技术试验研究[J].水土保持研究,2000,7(2):140-142
    89.薛智德.燕儿沟人工植被营造模式与快速建设研究[J].水土保持研究,2000,7(2):128-132
    90.杨存建,刘纪远,张增祥,等.土地利用数据尺度转换的精度损失分析[J].山地学报,2001,19(3):258-264.
    91.杨勤科,李锐,刘咏梅.区域土壤侵蚀普查方法的初步讨论[J].中国水土保持科学,2008,6(3):1-6.
    92.杨文治,马玉玺,韩仕峰,等.黄土高原地区造林土壤水分生态分区研究[J].水土保持学报,1994,8(01):1-9.
    93.杨永川,达良俊,由文辉等.浙江天童国家森林公园微地形与植被结构的关系[J].生态学报.2005,25(11):2830-2840.
    94.杨永川,穆建平,TANG Cindy Q,等.残存银杏群落的结构及种群更新特征[J].生态学报,2011,31(21):6396-6409.
    95.姚雪玲,傅伯杰,吕一河.黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J].生态学报,2012,32(16):4961-4968.
    96.余清珠,王进鑫,高文秀.集流抗旱造林技术优化模式研究[J].水土保持通报,1993,(4):15-19
    97.云雷,毕华兴,田晓玲,等.晋西黄土区林草复合界面雨后土壤水分空间变异规律研究[J].生态环境学报,2010,19(4):938-944.
    98.张宏芝,朱清科,王晶,等.陕北黄土坡面微地形土壤物理性质研究[J].水土保持通报,2011,31(6):55-58.
    99.张宏芝,朱清科,赵磊磊,等.陕北黄土坡面微地形土壤化学性质[J].中国水土保持科学,2011,9(5):20-25.
    100.张杰,赵冰,杨伟,孙希华.基于ArcGIS的淮河流域大别山区土地利用变化与土壤侵蚀特征研究[J],2009,29(1):119-122.
    101.张金屯,孟东平.芦芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报,2004,24(1):35-40.
    102.张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344-349.
    103.张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究[J].水土保持学报,1991,5(2):8-13
    104.张世武,韩庆宪.黄土落水洞的初步研究[J].中国水土保持,1992,6:22-49.
    105.张文辉,李登武,刘国彬,等.黄土高原地区种子植物区系特征[J].植物研究,2002,22(3):373-379
    106.张文辉,徐学华,李登武,等.黄土高原丘陵沟壑区狼牙刺群落恢复过程中的种间联结性研究[J].西北植物学报,2004,24(6):1018-1023.
    107.张岩,刘宪春,李智广,等.利用侵蚀模型普查黄土高原土壤侵蚀状况[J].农业工程学报,2012,28(10):165-171.
    108.张益望,程积民,贺学礼.半干旱区人工林生长与水分生态研究[J].水土保持通报,2006,26(3):18-22.
    109.赵荟,朱清科,秦伟,等.黄土高原干旱阳坡微地形土壤水分特征研究[J].水土保持通报,2010,30(3):64-68.
    110.赵荟,朱清科,秦伟.黄土高原干旱阳坡微地形土壤水分特征研究[J].水土保持通报,2010,30(3):64-68.
    111.赵维军,刘宪春,张岩,等.基于均匀抽样调查的半干旱黄土区土壤侵蚀动态研究[J].水土保持通报,2013,33(04):125-130.
    112.赵维军,许智超,张岩,等.半干旱黄土区沟间地浅沟分布特征[J].干旱区研究,2011,28(4):586-591.
    113.郑粉莉,武敏,张玉斌,等.黄土陡坡裸露坡耕地浅沟发育过程研究[J].地理科学,2006,26(4):438-442
    114.郑粉莉.不同侵蚀条件下浅沟微地形坡面土壤水分分布研究[M]//邵明安.黄土高原土壤侵蚀与旱地农业.西安:陕西科学技术出版社,1999:51-56.
    115.朱清科.应用Fuzzy中心逐步修改聚类法对陕南山区封山育林立地条件类型的评定[J].水土保持通报,1988,8(05):30-34.
    116.朱清科,张岩,赵磊磊,等.陕北黄土高原植被恢复及近自然造林[M].北京:科学出版社,2012.
    117.邹厚远,梁一民,孙建亭.关于陕北黄土区植被区划问题的初步研究[J].植物学报,1980,22(04):399-401.
    118.邹厚远,刘国彬,王晗生.子午岭林区北部近50年植被的变化发展[J].西北植物学报,2002,22(1):1-8.
    119.邹厚远.黄土高原植被保护和恢复利用途径的探讨[J].中国科学院西北水土保持研究所集刊,1986,(3):90-101.
    120.邹厚远.陕北黄土高原植被区划及与林草建设的关系[J].水土保持研究,2000,7(2):96-101.
    121.邹文秀,韩晓增,江恒,等.东北黑土区降水特征及其对土壤水分的影响[J].农业工程学报,2011,27(9):196-202.
    122. Adler P B, Leiker J, Levine J M. Direct and indirect effects of climate change on a prairie plant community[J]. PLoS One,2009,4(9):e6887.
    123. Begin Z B, Schumm S A. Instability of alluvial valley floors:a method for its assessment[J].Trans.Am.Soc.-Agric.Eng.1979,22:347-350.
    124. Besag J. Contribution to the discussion of Dr. Ripley's paper[J]. Journal of the Royal Statistical Society (Series B),1977,39:193-195.
    125. Bogena H R, Herbst M, Huisman J A, et al. Potential of wireless sensor networks for measuring soil water content variability[J]. Vadose Zone Journal,2010,9:1002-1013.
    126. Caillaud D, Crofoot M C, Scarpino S V, et al. Modeling the spatial distribution and fruiting pattern of a key tree species in a neotropical forest:methodology and potential applications.[J]. PloS one,2010,5(11):e15002.
    127. Chen L, Huang Z, Gong J, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China[J]. Catena,2007,70(2):200-208.
    128. Cheng, H., Zou, X.Y., Wu, Y.Q., Zhang, C.L., Zheng, Q.H., Jiang, Z.Y.. Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China[J]. Soil & Tillage Research,2007,94(1):4-14.
    129. Chimner R A, Hart J B. Hydrology and microtopography effects on northern white-cedar regeneration in Michigan's Upper Peninsula[J]. Can. J. For. Res.,1996,26:389-393.
    130. Foster G R. Modeling ephemeral gully erosion for conservation planning [J]. International Journal of Sediment Re-search,2005,20(3):157-175.
    131. Franklin J F, Spies T A, Van Pelt R, et al. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example[J]. Forest Ecology and Management,2002,155(1/3):399-423.
    132. Friedman S K, Reich P B, Frelich L E. Multiple scale composition and spatial distribution patterns of the north-eastern Minnesota presettlement forest[J]. Journal of Ecology,2001,89(4): 538-554.
    133. Fu B, Wang J, Chen L, et al. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China[J]. Catena,2003,54(1-2):197-213.
    134. Gao X, Wu P, Zhao X, et al. Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China[J]. Catena,2011,87(3):357-367.
    135. Gemmer M, Becker S, Jiang T. Observed monthly precipitation trends in China 1951-2002[J]. Theoretical and applied climatology,2004,77(1-2):39-45.
    136. Gocic M, Trajkovic S. Analysis of precipitation and drought data in Serbia over the period 1980-2010[J]. Journal of Hydrology,2013,494:32-42.
    137. Grigg N S, Vlachos E C. Drought and Water-Supply Management:Roles and Responsibilities[J]. Journal of Water Resources Planning and Management,1993,119(5):531-541.
    138. Guhathakurta P, Rajeevan M. Trends in the rainfall pattern over India[J]. International Journal of Climatology,2008,28(11):1453-1469.
    139. Hao Z, Zhang J, Song B, et al. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest[J]. Forest Ecology and Management,2007,252(1-3):1-11.
    140. Hara M, Hirata K, Fujihara M, Oono K (1996a).Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, South-West Japan. Ecological Research,11,325-337.
    141. Hara M, Hiroshi K, Oono K(1996b). Relationship between micro-land form and vegetation structure in an evergreen broad-leaved forest on Okinawa Island, S-W. Japan. Natural History Research,4,27-35.
    142. Herrero-Jauregui C, Sist P, Casado M A. Population structure of two low-density neotropical tree species under different management systems[J]. Forest Ecology and Management,2012,280: 31-39.
    143. Heywood V H,Gray W F. Bias,p recision and accuracy of four measures of species richness [J]. Ecol.Appl,1999,9(3):824-834.
    144. Hisdal H, Stahl K, Tallaksen L M, et al. Have streamflow droughts in Europe become more severe or frequent?[J]. International Journal of Climatology,2001,21(3):317-333.
    145. Huo Z, Shao M A, Horton R. Impact of gully on soil moisture of shrubland in wind-water erosion crisscross region of the Loess Plateau[J]. Pedosphere,2008,18(5):674-680.
    146. Kendall M G. Rank Correlation Methods[M]. London:Griffin,1948.
    147. Kendall M G, Stuart A. The advanced theory of statistics:design and analysis, and time-series, vol 3[M]. London:Charles Griffin & Company Limited,1968.
    148. Khalili D, Farnoud T, Jamshidi H, et al. Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones[J]. Water resources management,2011, 25(6):1737-1757.
    149. Kikuchi T (1990). A DCA analysis of floristic variation of plant communities in relation to micro-landform variation in a hillside area. Ecological Review,22,25-31.
    150. Kikuchi T, Miura O (1991). Differentiation in vegetation related tomicro- scale landforms with special reference to the lower side slope. Ecological Review,22,61-70.
    151. Kikuchi T, Miura O(1993). Vegetation patterns in relation to micro- scale landforms in hilly land regions. Vegetatio,106,147-154.
    152. Kikuchi T. Vegetation and Landforms[M].Tokyo:University of Tokyo Press,2001,2-93
    153. Kohler M A. Double-mass analysis for testing the consistency of records and for making adjustments[J]. Bulletin of the American Meteorological Society,1949,30:188-189.
    154. Koponen P, Nygren P, Sabatier D, et al. Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana[J]. Plant Ecology,2004, 173(1):17.
    155. Krishnakumar K N, Prasada Rao G, Gopakumar C S. Rainfall trends in twentieth century over Kerala, India[J]. Atmospheric environment,2009,43(11):1940-1944.
    156. Lacambra L C J, Martin A G, Roberto S M F. Effects of microsite conditions and early pruning on growth and health status of holm oak plantations in Central-Western Spain[J]. New Forests, 2012,43(5):887.
    157. Larson A J, Churchill D. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments [J]. Forest Ecology and Management,2012,267:74-92.
    158.Lehmann E L. Nonparametrics:Statistical Methods Based on Ranks[M]. San Francisco: Holden-Day,1975.
    159. Levin S A. The Problem of Pattern and Scale in Ecology:The Robert H. MacArthur Award Lecture[J]. Ecology,1992,73(6):1943-1967.
    160. Liu Q, Yang Z, Cui B. Spatial and temporal variability of annual precipitation during 1961-2006 in Yellow River Basin, China[J]. Journal of Hydrology,2008,361(3):330-338.
    161. Lloyd-Hughes B, Saunders M A. A drought climatology for Europe[J]. International Journal of Climatology,2002,22(13):1571-1592.
    162. Lotwick H W, Silverman B W. Methods for analysing spatial processes of several types of points[J]. Journal of the Royal Statistical Society. Series B (Methodological),1982,44(3): 406-413.
    163. Manabe T, Nishimura N, Miura M, et al. Population structure and spatial patterns for trees in a temperate old-growth evergreen broad-leaved forest in Japan[J]. Plant Ecology,2000,151: 181-197.
    164. Mann H B. Nonparametric Tests Against Trend[J]. Econometrica,1945,13(3):245-259.
    165. Martinez I, Wiegand T, Gonzalez-Taboada F, et al. Spatial associations among tree species in a temperate forest community in North-western Spain[J]. Forest Ecology and Management,2010, 260(4):456-465.
    166. Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]. Anaheim, CA,1993.
    167. Meteorological World O. Drought and agriculture[J]. WMO Note 138 Publ WMO-392,1975, Geneva.
    168. Mishra A K, Singh V P. A review of drought concepts[J]. Journal of Hydrology,2010,391(1-2): 202-216.
    169. Montes F, Barbeito I, Rubio A N, et al. Evaluating height structure in Scots pine forests using marked point processes[J]. Canadian Journal Of Forest Research-Revue Canadienne De Recherche Forestiere,2008,38(7):1924-1934.
    170. Moreira E E, Coelho C A, Paulo A A, et al. SPI-based drought category prediction using loglinear models[J]. Journal of Hydrology,2008,354(1-4):116-130.
    171. Moreno-De Las Heras M, Espigares T, Merino-Martin L, et al. Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes[J]. Catena,2011,84(3):114-124.
    172. Nagamatsu D, Miura O. Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan[J]. Plant Ecology,1997,133(2):191-200.
    173. Naidu C V, Srinivasa Rao B R, Bhaskar Rao D V. Climatic trends and periodicities of annual rainfall over India[J]. Meteorological Applications,1999,6(4):395-404.
    174. North M, Chen J, Oakley B, et al. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests[J]. Forest Science,2004,50(3):299-311.
    175. Oguntunde P G, Abiodun B J, Lischeid G. Rainfall trends in Nigeria,1901-2000[J]. Journal of Hydrology,2011,411(3):207-218.
    176. Pacala S W, Deutschman D H. Details that matter:the spatial distribution of individual trees maintains forest ecosystem function[J]. Oikos,1995,74(3):357-365.
    177. Paeaetalo M, Peltola H, Kellomaeki S. Modelling the risk of snow damage to forests under short-term snow loading[J]. Forest Ecology and Management,1999,(116):51-70.
    178. Partal T, Kahya E. Trend analysis in Turkish precipitation data[J]. Hydrological processes,2006, 20(9):2011-2026.
    179. Patton P C, Schumm S A. Gully erosion, Northwestern Colorado:a threshold phenomenon[J].Geology,1975,3:83-90.
    180. Paulo A A, Pereira L S. Stochastic prediction of drought class transitions[J]. Water Resources Management,2008,22(9):1277-1296.
    181. Paulo A A, Rosa R D, Pereira L S. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal [J]. Natural Hazards and Earth System Sciences, 2012,12(5):1481-1491.
    182. Pereira L S, Cordery I, Iacovides I. Coping with water scarcity:Addressing the challenges[M]: Springer,2009:382.
    183. Phillips C L, Parr J M, Riskin E A. Signals, Systems and Transforms, fourth[M]. New Jersey: Prentice-Hall,2008.
    184. Piia Koponen P N D S. Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana[J]. Plant Ecology,2004,(173):17-32.
    185.Pretzsch H. Analysis and modeling of spatial stand structures. Methodological considerations based on mixed beech-larch stands in Lower Saxony[J]. Forest Ecology and Management,1997, 97(3):237-253.
    186. Rebertus A J, Williamson G B, Moser E B. Fire induced changes in Quercus Laevis spatial pattern in Forida sandhills[J]. Journal of Ecology,1989,77(3):638-650.
    187. Richard Condit, Peter S. Ashton, Patrick Baker, et al. Spatial patterns in the distribution of tropical tree species[J]. Science,2000,288:1414-1418.
    188. Ripley B D. Spatial Statistics[M]. New York:Wiley,1981:252-253.
    189. Ripley B D. The second-order analysis of stationary point processes[J]. Journal of Applied Probability,1976,13(2):255-266.
    190. Sakai A, Ohsawa M. Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan[J]. Ecological Research,1993,8(1):47-56.
    191. Sales J D, Delleur J W, Yevjevich V M, et al. Applied Modeling of Hydrologic Time Series[M]. Littleton, Colorado, USA:Water Resources Publication,1980.
    192. Shahid S. Spatial and temporal characteristics of droughts in the western part of Bangladesh[J]. Hydrological Processes,2008,22(13):2235-2247.
    193. Sneyers R. On the statistical analysis of series of observations[M]:Technical Note-World Meteorological Organization,1990:143,415.
    194. Stehman S, Czaplewski R. Design and analysis for thematic map accuracy assessment: fundamental principles[J]. Remote Sensing of Environment,1998(64):331-334.
    195. Steve Percy, Jane Lubchenco (Synthesis Team Co-chairs).Ecosystems and Human Well- being: Opportunities and Challenges for Business and Industry(Millennium Ecosystem Assessment) [M], Island Press/MA web.org, Washington, DC.2005, P6 (Ptota131).
    196. Storch H V, Navarra A. Analysis of Climate Variability-Applications of Statistical Techniques[M]. New York:Springer-Verlag,1995.
    197. Tabari H, Abghari H, Hosseinzadeh Talaee P. Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran[J]. Hydrological Processes,2012,26(22): 3351-3361.
    198. Tabari H, Talaee P H. Temporal variability of precipitation over Iran:1966-2005[J]. Journal of Hydrology,2011,396(3):313-320.
    199. Tamura T, Takeuchi K(1980).Land characteristics of the hills and their modification by man-with special reference to a few cases in the Tama Hills, west of Tokyo-Essays in Geography of Tokyo.Geographical Reports of Tokyo Metropolitan University,14/15,49-94.
    200. Thompson S E, Katul G G, Porporato A. Role of microtopography in rainfall-runoff partitioning: An analysis using idealized geometry[J]. Water Resources Research,2010,46(7):W7520.
    201.Tsutomu E. Microtopography and distribution of canopy trees in a subtropical evergreen broad-leaved forest in the northern part of Okinawa Island, Japan[J]. Ecological Research, 2003,(18):103-113.
    202. Turkington R, Harper J L. The growth, distribution and neighbour relationships of Trifolium repens in a permanent pasture. I. Ordination, pattern and contact[J]. Journal of Ecology,1979, 67(1):201-218.
    203. Vandaele K, Poesen J, Govers G, et al. Geomorphic threshold conditions for ephemeral gully incision[J]. Geomorphology,1996,16:161-173.
    204. Walter V Reid, Harold A. Mooney, Angela Cropper, et al(Core Writing Team). Ecosystems and Human Well-being:Synthesis (Millennium Ecosystem Assessment)[M]. Island Press, Washington, DC.2005 1-24 (Ptotal155).
    205. Wiegand T, A. Moloney K. Rings, circles, and null-models for point pattern analysis in ecology[J]. Oikos,2004,104(2):209-229.
    206. Zhang Y, Li J, Chang S, et al. Spatial distribution pattern of Picea schrenkiana population in the Middle Tianshan Mountains and the relationship with topographic attributes[J]. Journal of Arid Land,2012,4(4):457-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700