用户名: 密码: 验证码:
无机膜除尘器对水泥厂窑尾烟气脱硫机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是针对在水泥厂回转窑窑尾安装的无机膜除尘器进行除尘试验的基础上,通过分析实际烟尘的特性,研究无机膜除尘器在回转窑窑尾烟气脱硫的机理。这一项研究无论是在膜科学理论还是在工程应用方面均是一项积极而有益的工作尝试,其研究工作为无机膜在气固分离和烟气脱硫领域更广泛的应用提供了有价值的参考。
     由于无机膜是一种惰性膜,不会参与脱硫反应的进行。所以,本文采用化学分析方法和XRD衍射分析方法对无机膜除尘器进出口粉尘的成分进行了分析;利用烟气自动分析仪对进出口的烟气特性进行了检测,在试验的工况为:进口烟气流量是22.4 L/min,进口SO_2质量浓度1700 mg/m~3,进口粉尘的质量浓度为31.54g/m~3,烟气入口温度为50℃,烟气的相对湿度为0.7下,无机膜除尘器具有2.0%~5.7%的脱硫效率,在此基础上对无机膜除尘器烟气脱硫的机理进行分析。
     通过分析掌握了无机膜除尘器的脱硫机理是烟气中携带的粉尘吸附在无机膜管内壁上,其中的潜在碱性物质在烟气中蒸汽的作用下被激活而释放出Ca(OH)_2等碱性物质,碱性物质与SO_2发生化学反应,进而产生脱硫效果。由于脱硫反应的过程是气固反应,所以本文采用气固反应的收缩核模型,同时将反应的区域晶粒化,在此基础上通过引进分形维数来纠正使用收缩核模型时由于粉尘颗粒形状不规则而导致对脱硫效率的分析误差。利用改进的模型来分析SO_2的浓度、烟气的相对湿度、烟气的温度及钙硫比等对脱硫效率的影响。通过这些重要影响因素的分析发现:无机膜除尘器内控制脱硫反应过程进行的环节主要是二氧化硫气体通过灰层的扩散阻力。无机膜除尘器入口二氧化硫气体的浓度、和烟气的温度相对于相对湿度及Ca/S摩尔比对脱硫效率的影响要小。相对湿度对无机膜除尘器脱硫效率的影响最为显著。
In this article, by analyzing the characteristics of the actual dust to research the flue gas desulphurization mechanism of inorganic membrane filter at the kiln tail of cement plant, it is on basis of the experimental of its remove dust. This work is a positive and beneficial research in the theory of membrane science and its application, the research work provide a valuable reference in the field of gas-solid separation and the flue gas desulphurization for its more widely application.
     The membrane is an inert inorganic, it doesn't take part in desulphurization reaction. In the research, by using chemical analysis methods and XRD pattern analysis methods to analyze the dust of inorganic membrane filter's inlet and outlet, and the gas by automatic flue gas analyzer. There is 2.0%~5.7% of desulphurization efficiency under these conditions that the gas flow rate is 22.4 L/min, the mass concentration of SO_2 is 1700 mg/m~3, the mass concentration of dust is 31.54 g/m~3,the gas temperature is 50℃and relative humidity is 0.7.In according these to study the gas desulphurization mechanism of inorganic membrane filter.
     The results show that the gas desulphurization mechanism of inorganic membrane filter is dust carried by gas is absorbed in inorganic membrane, including the potential alkaline substances in the steam activation and release Ca(OH)_2, alkaline material and SO_2 result in the chemical reaction, produce desulphurization efficiency. The desulphurization process is gas-solid reaction, the paper using gas-solid reaction shrinking core model, and also the regional grain of reaction. On this basis induce the fractal dimension to rectify shrinking core model because the dust particle shape is not a spherical lead to the error of desulphurization efficiency. By using the improved model to do a contrastive analysis of the concentration of SO_2, the relative humidity of gas, the temperature, sulfur and calcium's ratio to research the desulphurization efficiency. Through these important factors' analysis found: the mainly control desulphurization process is sulfur dioxide gas through the ash layer diffusion resistance in inorganic membrane filter. The inlet's the concentration of sulfur dioxide gas, and the gas temperature compared to the relative humidity and Ca/S's effect is small in desulphurization efficiency. Relative humidity is the most important factor to impact the inorganic membrane filter's desulphurization efficiency.
引文
[1]郝吉明,王书肖.燃煤SO_2控制技术手册[M].北京:化学工业出版社,2001.
    [2]国家环保总局,孙荣庆.我国二氧化硫污染现状与控制对策能源与环境,2003.7.
    [3]刑连中.用国家政策推动火电厂烟气脱硫的全面实验[J].华东电力,2004,6(2):12-18.
    [4]国家环保总局,2002年《中国环境状况公报》.
    [5]杨锋.二氧化硫减排技术与烟气脱硫工程[M].冶金工业出版社,2004.
    [6]马广大.大气污染物控制工程[M].第二版,中国环境科学出版社,2006.
    [7]刘志全.关于燃煤二氧化硫排放污染防治技术政策的探讨[J].环境保护,20(2):6-10.
    [8]淳于菱.几种先进烟气脱硫技术综合性能评价及在我国应用前景分析[J].电力环境保护,2006,16(1):18-22.
    [9]国家环保总局.建材工业废气治理.工业污染治理技术丛书.北京:中国环境科学出版社,1996.
    [10]黄学敏,马广大.粒状脱硫剂层干法烟气脱硫除尘性能研究[J].环境工程,2001,6(2):62-65.
    [11]钱枫,王华军,张漆芳,杨学富.生石灰孔结构对高温脱硫性能的影响[J].环境污染治理技术与设备,2000,(2):32-37.
    [12]F Hill,J Zank.Flue gas desulphurization by spray dry absorption[J].Chemical Engineering and processing,2000,3(9):45-52.
    [13]Laursen Karin,Duo Wenli,Grace John R,et al.Characterization of steam reactivation mechanisms in limes tones and spent calcium sorbets[J].Fuel,2001,80(6):1293-1306.
    [14]Ingemar Bjerle.A model for absorption of sulphur dioxide into a limestone slurry[J].Chem Eng Journal,1993,8(5):99-108.
    [15]刘海波,杨学富,钱枫,等.相对湿度对烟气脱硫效率的影响[J].北京轻工业学院学报,2000,18(1):1-4.
    [16]张佩芳.粒状脱硫剂脱硫性能和脱硫装置的研究[D]:[硕士论文].西安:西安建筑科技大学.2004.36-42.
    [17]Lepovitz L R et al.10 MW Demonstration of the ADVACATE Flue Gas Desulphnrization Process Proceeding the 1993 SO_2 Control Symposium.Boston:MA,Aug.1993.
    [18]Peterson.J.R.,G.T.Rochelle.Aqueus reaction of fly ash and Ca(OH)_2 to produce calcium silicate absorbents for flue gas desulphurization[J].Science And Technology,1988,22(11):1299-1304.
    [19]时黎明,徐常旭.水合作用对钙基吸收剂脱硫特性的影响[J].环境工程,1998,16(4):29-36.
    [20]时黎明,徐常旭,祁海鹰.粉煤灰—石灰中温烟气脱硫和蒸汽活化的机理[J].环境科学,2000,21(4):25-28.
    [21]王世昌,徐旭常.水蒸汽对CaO颗粒脱硫反应催化作用的实验研究[J].中国机电工程学报,2004,24(9):62-66.
    [22]钱枫,郑跃红.潮湿气氛下Ca(OH)_2与SO_2反应动力学研究[J].环境化学,1999,18(4):315-320.
    [23]王敦球,张文杰,解庆林,左华.固定床煤渣烟气脱硫性能的研究[J].环境污染与防治,2005,4(2):12-16.
    [24]赵毅.利用粉煤灰吸收剂对烟气脱硫脱氮的实验研究[J].中国机电工程学报,2002,22(3):52-56.
    [25]宋蔷,定方正毅.基于自由基链式反应改进干法烟气脱硫的方法[J].清华大学学报,2004.44(11):29-33.
    [26]藤斌,高翔.添加剂对消石灰结构特征和脱硫性能的影响[J].浙江大学学报,2004,33(2):16-22.
    [27]黄红.添加金属氧化物对脱硫剂脱硫性能影响的研究[D]:[硕士论文].西安:西安建筑科技大学.2005.49-52.
    [28]陈亚非,高翔.金属氧化物对Ca(OH)_2脱硫影响的研究[J].工程热物理学报,1997,9(5):65-67.
    [29]杨立寨,祁海鹰,由长福,徐旭常.氧化铁对石灰中温烟气脱硫活化机理的流化床实验分析[J].工程热物理学报,2003,24(2):357-359.
    [30]李天祥,韩立鹏.燃煤电厂脱硫技术[J].山西化工,2007,27(4):42-44.
    [31]张新生.燃煤烟气脱硫[M].中国地质大学出版社,1991.
    [32]郑楚光.洁净煤技术[M].华中理工大学出版社,1996.
    [33]毛健雄,毛健全.煤的清洁燃烧[M].北京:科学出版社,1998.
    [34]郝吉明.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2000.
    [35]李绚天.循环流化床脱硫脱硝及灰渣冷却余热利用的研究[D]:[博士论文].杭州:浙江大学,1992.26-28.
    [36]范浩杰.煤粉/水煤浆燃煤脱硫的研究[D]:[博士论文].杭州:浙江大学,1997.46-52.
    [37]岑可法,池涌.洁净煤技术的研究与进展[J].动力工程,1997,17(5):15-20.
    [38]张洪.燃煤流化床高效脱硫剂的开发研究[D]:[博士论文].北京:清华大学,1992.34-38.
    [39]马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [40]傅康,周俊虎,黄镇宇.燃煤脱硫技术的研究进展[J].锅炉技术,2003,34(4):72-76.
    [41]扈圣军,李玉平.两种新型烟气脱硫技术[J].环境科学动态,2003,6(3):3-5.
    [42]陈兵,张学学.烟气脱硫技术研究与进展[J].工业锅炉,2002,8(4):6-10.
    [43]赵旭东.干法、半干法(钙基)烟气脱硫技术研究进展及趋势[J].化学工程,2003,31(4):2-6.
    [44]孙荣庆.我国二氧化硫污染现状与控制对策[J].能源与环境,2003,25(7):25-28.
    [45]薛菲,石劲松.烟气脱硫技术现状与发展建议[J].江苏化工,2001,29(2):32-35.
    [46]杨锋.二氧化硫减排技术与烟气脱硫工程[M].冶金工业出版社,2004.
    [47]马广大.大气污染物控制工程[M].第二版,中国环境科学出版社,2006.
    [48]赵旭东,马春元,李振山等.循环流化床烟气脱硫装置对袋式除尘器影响的实验研究[J].环境工程,2005,23(5):39-41.
    [49]张凡.半干法钙基脱硫技术[J].能源环境保护,2004,18(1):44-47.
    [50]王红梅,张凡,王凡.半干半湿法脱硫灰循环利用试验研究[J].2004,5(5):31-34.
    [51]聂丽君,刘敬.烟气干法脱硫技术的发展与应用[J].煤炭加工与综合利用,2002,24(1):52-55.
    [52]Paolo Davini.Investigation of the SO_2 adsorption properties of Ca(OH)_2-fly ash systems[J].Fuel,1996,75(6):713-716.
    [53]曹桂萍.我国二氧化硫烟气治理技术现状及发展趋势[J].云南环境科学,2002,21(1):43-46.
    [54]陈里.国外烟气脱硫脱硝技术开发近况[J].化工环保,1997,3(1):145-148.
    [55]池若德.德国火电厂新技术简介[J].山东电力技术,1999,6(1):77-81.
    [56]唐恒.烟气脱硫技术的现状和发展[J].江苏理工大学学报,1999,5(1):44-47.
    [57]冯玲,杨景玲,蔡树中.烟气脱硫的应用及发展现状[J].环境工程,1997,15(12):19-24.
    [58]张齐,杨萍.燃煤工业锅炉除尘脱硫脱氮技术[J].大气环境,1989,4(6):1-35.
    [59]朱联锡,卢虹.烟气脱硫脱销技术发展情况[J].环境科技,1993,13(2):86-90.
    [60]杨官平,胡满银.燃煤电厂脱硫中的新技术[J].电力情报,1995,3(1):12-16.
    [61]李学俊.我国的脱硫和选硫技术[J].煤炭加工与综合利用,1999,3(6):56-58.
    [62]曾汉才.我国燃煤电厂的烟气脱硫问题[J].电站系统工程,1994,10(5):27-32.
    [63]张齐,杨萍.燃煤工业锅炉除尘脱硫脱氮技术[J].大气环境,1990,5(1):1-33.
    [64]徐正中.我国燃煤电厂脱硫方式的探讨[J].热力发电,1992,4(1):27-36.
    [65]王小曼,邹仁军.烟道气脱硫新工艺[J].化工进展,1991,1(1):26-29.
    [66]吴江全,许晋源.燃煤电站锅炉的脱硫技术[J].环境保护,1991,4(1):14-16.
    [67]徐正中.目前火电厂脱硫的几种流行方法[J].热力发电,1991,3(1):53-60.
    [68]杨天正,马驰.中国煤炭燃烧及脱硫技术的优先选择和预测[J].动力工程,1989,9(6):18-22.
    [69]杨硕芳.湿法烟气脱硫技术综述[J].环境工程,1989,7(2):1-5.
    [70]叶奕林.低浓度二氧化硫烟气脱硫[M].上海科技出版社,1981.
    [71]高翔.新型余热回收、除尘脱硫多功能烟气净化装置的基础研究[D]:[博士论文].杭州:浙江大学,1995.28-35.
    [72]高翔.新型多功能烟气净化装置的开发[J].环境科学学报,1999,1(4):363-367.
    [73]《国务院关于加强节能工作的决定》.国发(2006)28号.
    [74]林庚,倪文,陈德平,赵雪娜.陶瓷无机膜过滤除尘器的高温除尘机理研究[J].中国矿业,2007,16(1):105-107.
    [75]国家环境保护局科技标准司.工业污染物和排放系数手册[M].北京:中国环境科学出版社,2004.
    [76]王稚阳.基于无机膜除尘装置的研究[D]:[硕士论文].贵阳:贵州大学,2006.28-35.
    [77]唐国山,唐复磊.水泥厂静电除尘器的应用[M].化学工业出版社,2005.
    [78]陶文亮,田蒙奎,聂登攀.无机膜在高温气体除尘中的试验研究[J].膜科学与技术,2006,26(1):32-36。
    [79]时钧,袁权,高从揩.膜技术手册[M].化学工业出版社,2001.
    [80]李树棠.晶体射线衍射学基础[M].冶金工业出版社,1990.
    [81]李树棠.金属射线与电子显微分析技术[M].冶金工业出版社,1985.
    [82]YOON.Laboratory and field development of coolside SO_2 abatement technology[A].Second Annual Pittsburgh Coal Conference[C].pittsburgh:PA,2003.105-110.
    [83]DAMLEAS.Modeling of SO_2 removal in spray dryer flue gas desulphurization system[R].Kansas:EPA,2000.
    [84]RICE R W,BONG GA.Comparison of kinetic and diffusion models in solid-gas reactions[J].AIChE J,1990,26(4):311 - 315.
    [85]KHINAST J,BRUNNER C,AICHINGER G,et al.Reaction of flue gas desulphurization at low temperatures using Ca(OH)_2[A].EPRI Proc.Of 15th SO_2Control Symp[C].Miami:EPRI,1995,207 - 215.
    [86]Jorgensen,C.Chang.Evaluation of sorbets and additives far dry SO_2 removal[J].EnvirProg.1987,6(1):26-32.
    [87]Irabin et al.Thermal dehydration of calcium hydroxide Kinetic model arid parameters[J].Ind.EngChem.1986,29(1):1606-1611.
    [88]L.W.Nannen,R.E.West,F.Kreith.Removal of SO_2 from Sulfur Coal Combustion Gases by Limestone Scrubbing[J].JAPCA,1974,24(1):29 - 39.
    [89]W.S.Kyte.Some chemical and Chemical Engineering aspects of Flue Gas desulphurization[J].Inst.Chem.Eng,1981,59(1):219 -228.
    [90]Davini P.An investigation of the influence of sodium chloride on the desulphurization properties of limestone[J].Fuel,1992,71(6):831 - 834.
    [91]陈明功,支友刚.半干法烟道气脱硫影响因素的理论分析[J].江苏环境科技,2000,13(1):62-66.
    [92]Fabrizio Scala,Michele D'Ascenzo,Amedeo Lancia.Modeling flue gas desulphurization by spray-dry absorption[J].Separation and Purification Technology,2004,34(5):143-153.
    [93]Ramachandran,P.A,Doraiswamy L.K.Modeling of catalytic gas-solid reactions[J].AIChE J,1982,28(6):881-900.
    [94]Xuan tian li,Zhong yang luo,Ming jiang ni,Kefa Cen.Modeling sulfur retention in circulating fluidized bed combustors[J].Chem.Eng.Sci,1992,50(10):2235-2242.
    [95]Mandelbrot B.The fractal geometry of nature[M].San Francisco:W H Free man and Company,1982.
    [96]Borgwart R H.Calcination kinetics and surface area of dispersed limestone particles[J].AIChE J,1985,31(1):103-111.
    [97]郑瑛,陈小华,郑楚光.描述石灰石分解的分数维收缩核模型及模拟[J].华中科技大学学报2005,31(3):78-79.
    [98]李留仁,赵艳艳,李忠兴等.多孔介质微观孔隙结构分形特征及分形系数的意义[J].石油大学学报(自然科学版),2004,28(3):106-112.
    [99]Fenouil.Design of entrained flow and moving,packed,and fluidized bed sorption system:Grain-model kinetics for hot coal-gas desulphurization with limestone[J].Industrial and chemical Engineering Research,1996,35(10):1024- 1043.
    [100]段百涛,吴成宝.水泥颗粒微观分维与宏观流动性关系的研究[J].水泥,2004,8(4):8-12.
    [101]S.R.Dantuluri.Mathematical Model of Sulfur Dioxide Absorption into a Calcium Hydroxide in A spray Dryer[J].Separation Science and Technology,1990,25(5):1843-1855.
    [102]A.F.Shaaban,Determination of the kinetic parameters of the reaction between SO_2and CaO using the thermo gravimetric technique[J].Thermochimica Acta,1991,180(6):9-21.
    [103]Gerea.Kinetic of flue gas desulphurization at low temperatures using Ca(OH)_2:Competitive reactions of sulfating and Carbonation[J].Chemical Engineering,2001,56(6):1387-1393.
    [104]建忠,袁惠新.颗粒群的体积分维数对过滤性能的影响过滤与分离[J].2002,12(2):12-14.
    [105]谢端缓.化工工艺算图(常用物料物性数据)[M].化学工业出版社,北京,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700