用户名: 密码: 验证码:
疏肝补肾养心法对疲劳所致学习记忆力下降作用的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,人们生活节奏加快,学习及工作压力也在无形中增大,疲劳因此成为现代人的所要面对的共同问题。疲劳包含体力疲劳及脑力疲劳,表现为四肢倦怠无力、情绪异常、反应能力及学习记忆力下降等。而记忆的能力又会影响学习成绩及工作效率,本课题以此为研究方向,由中医整体辨证思维探讨疲劳与记忆的关系,探索改善疲劳状态从而提高记忆力的方法。由于体力及脑力疲劳是并存且相互影响的,所以我们从疲劳及记忆力下降对心肝肾的病理表现影响之理论研究着手,通过实验研究,对疲劳所致学习记忆改变的中医证候学特点及其分子生物学机制进行探讨,以疏肝及补肾养,法同时着手治疗,改善由疲劳引发的学习记忆下降。因此更好地发挥中医整体观治病特点,并为改善记忆力下降奠定基础。
     1理论研究
     “疲劳”在古代以“懈怠”、“解惰”、“四肢倦怠”等来记载类似的症状,属于“劳倦”范畴,中医古籍中其实并没有分为心理性疲劳(脑力疲劳)或生理性疲劳(体力疲劳)。疲劳是由于大量的体力、脑力耗损而造成机体在生理及心理不同层面的功能失调。过度的劳力及劳神是相互影响的,并且累及心、肝、肾三脏,使之正常生理表现无法发挥,如肝失疏泄、肾精不充等,从而影响精、气、血、神。传统医学中学习记忆的功能是归属于“神志”的范畴,而“神”分属五脏所掌管。心藏神,主宰一切心理活动。通过认知与五神脏理论依据提示,由“肝魂”提取“肾志”所储存的长期记忆,并将“脾意”的决策信息一同传送至“心”,说明心、肝、肾三脏在学习记忆的认知过程中的重要性。
     因此本课题以肝、肾、心、脑之间的关系,从疲劳影响学习记忆的下降病理机制为基础,提出通过疏肝以及补肾养心法治疗改善疲劳状态的理论,理论包括阻断学习记忆能力下降的发生和直接提高学习记忆的能力的两方面内容。
     2实验研究
     本课题实验研究部分,首先以衰减全反射-傅里叶变换红外光谱(ATR-FTIR)技术对实验所选用方药进行检测,以此实验进行药物质量监控,与文献比对后证实实验用药具有药品可信度,并且推测其中所含的多醣类及氨基类物质与神经传导有关。动物实验采用复合疲劳模型以模拟更接近现实状况的疲劳病理状态,并由行为学实验证明疲劳影响学习记忆的功能。突触可塑性(Synaptic plasticity)被认为是产生学习和记忆的神经化学基础,主要由不同的蛋白激酶和蛋白磷酸化的活性特点,通过磷酸化对突触蛋白进行调控。据此,本研究以神经颗粒素(Neurigranin, Ng).蛋白激酶C(Protein kinaseC, PKC)及Ca2+-CaM依赖性蛋白激酶(Ca2+/Calmodulin-Dependent Protein KinaseⅡ. CaMKⅡ)等三个与突触可塑性密切相关的指标作为研究对象,应用Western Blot与Real-time PCR实验技术观察三者在疲劳大鼠海马CAl区的蛋白质及mRNA表达的变化,以及使用疏肝、补肾养心的三组方药干预后的改变情形。以此分析疲劳所致学习记忆下降的机理和中医心肝肾间的关系。
     ATR-FTIR检测实验用药组方及个别单味药
     将四逆散、生慧汤之组方、单味药以及四逆散与生慧汤合方以衰减全反射-傅里叶变换红外光谱(ATR-FTIR)技术进行检测,实验通过与文献比对研究中所用的配方颗粒,结果经分析后实验用药具有可信度。以单味药、复方交叉比对,结果显示四逆散及生慧汤皆有较明显的多醣类及氨基的特殊峰。
     疲劳大鼠动物模型的建立及评价
     本实验结合大鼠游泳运动及睡眠剥夺的复合方法建立疲劳动物模型,用药组给予疏肝的四逆散,补肾养心的生慧汤以及兼具调补心肝肾作用的四逆散及生慧汤合方进行干预。由一般生理指标,如毛色、体重等及血清LDH作为判定疲劳的指标。证实本实验成功的建立疲劳模型,并且三个方药都具一定的改善疲劳作用。
     疲劳大鼠学习记忆能力的评定
     本研究通过Y迷宫实验,观察正确反应率、错误反应次数、达标所需训练次数和总反应时间,藉以评价疲劳大鼠的学习记忆能力,以及各方药的调节作用。Y迷宫结果显示,造模前各组大鼠的学习记忆能力无显着差异。造模后,模型组与对照组比较,正确反应率明显降低(p<0.01),错误次数明显增多(p<0.01),达到学会所需次数明显增多(p<0.01)。说明疲劳可能导致大鼠学习记忆能力的下降,疏肝组、补肾养心组以及合方组与模型组相比,均能提高正确反应率,减少错误反应次数及达标所需次数。说明疏肝、补肾养心及合方组均能改善疲劳大鼠学习记忆能力的下降,其中以合方组改善实验动物的学习记忆能力最为明显。
     疲劳大鼠记忆力下降与Ng、PKC及CaMKⅡ表达之关系
     行为学实验结束后,各组随机选取大鼠6只,取其左侧半脑进行Western Blot实验,右侧半脑进行Real time PCR实验,检测Ng、PKC及CaMKⅡ在疲劳大鼠海马CA1区中蛋白质及mRNA的表达水平。
     Ng为脑特异性蛋白质,是PKC的作用底物,亦是Ca2+敏感性钙调蛋白(calmodulin,CaM)的结合蛋白,通过调控Ca2+和CaMKⅡ,参与学习记忆过程。结果显示,模型组的疲劳大鼠海马CA1区Ng蛋白质及mRNA的表达水平较对照组下降,由于Ng的表达与学习记忆能力成正相关,而推测疲劳可导致学习记忆受损。通过疏肝的四逆散、补肾养心的生慧汤以及兼补心肝肾的合方的调节,实验显示,其Ng的蛋白质及mRNA表达皆较模型组提升。三个用药组中Ng的表达上升趋势以合方最为显效,其次为补肾养心方,再其次为疏肝方。另外,在PCR实验中显示,合方之提升作用明显超越对照组,说明合方效用优于单纯的疏肝或补肾养心作用。另外,合方对Ng的提升作用不论在蛋白质水平或基因水平中都与疏肝组有差异性。
     基于PKC的蛋白质和mRNA水平在疲劳大鼠海马CA1区的表达,模型组较对照组显着降低,说明经由睡眠剥夺及游泳的复合模型降低了PKC水平,可能造成海马区神经细胞的受损。与模型组相比,三个用药组对PKC的蛋白质及基因水平都具有明显的上调作用。其中在Western blot实验中更可见补肾养心组及合方组上调作用明显高于疏肝组。虽然Western blot实验中合方组与补肾养心组并无显着差异,且在PCR实验中的差异更小,但以其中的趋势看的出疏肝补肾养心合方用药组是优于另两组,而补肾养心组又优于疏肝组。因此,疏肝及补肾养心的合方虽然没有明显的加成作用,但对于PKC的表达仍显示其具有较好的上调结果。
     在检测Thr286磷酸化CaMKⅡ的Western blot实验中,结果显示模型组显着低于对照组。PCR实验中模型组CaMKⅡ的基因表达也有极为显着的下调。由于CaMKⅡThr286自身磷酸化为诱导LTP的形成之所须,说明模型组可能因造模期间海马损伤而影响其CaMKⅡ的基因及蛋白表达,进而使CaMKⅡ在Thr286位点的磷酸化现象也受影响。三个用药组对于CaMKⅡ的调节于实验结果中可见:蛋白质水平中,疏肝组及合方组与模型组相比对Thr286磷酸化的CaMKⅡ的上调作用非常显着;补肾养心组则略微上调,但不具差异性。就基因水平而论与模型组相比,合方组具有上调作用,单纯的疏肝及补肾养心组则效用不具差异性。并且,三个用药组的CaMKⅡ基因表达水平与对照组相比是显着低于对照组,说明用药可能不作用于基因水平上,而在蛋白质水平上也有可能在影响CaMKⅡ的磷酸化途径上,进而使Thr286磷酸化的CaMKⅡ的上调,其机制还有待进一步研究。
     3小结
     本课题对疏肝法与补肾养心法改善疲劳所致学习记忆力下降的作用情况进行了研究。理论研究从中医对心、肝、肾与疲劳影响学习记忆的关系入手,认为疲劳是由体力及脑力疲劳相互作用,且与心、肝、肾之关系密切,因此由疏肝法和补肾养心法都能改善疲劳后的学习记忆能力下降的问题。实验通过行为学实验,及检测分析参与学习记忆机制中的Ng、PKC和CaMKⅡ的蛋白质和基因水平表达,观察发现合方方药对三者的表达皆有一定程度的上调作用,说明藉由疏肝及补肾养心可以有效改善因疲劳而造成的学习记忆能力下降。
As society develops, the accelerating pace of life has increased pressure among everyone in working and studying. Fatigue has become a common problem to modern people; it includes physical fatigue and mental fatigue, which shows symptoms of tiredness, mood disorder, slow responses, and decline of learning and memory ability. As memory effects on learning performance and work efficiency, our main research goal is to study the relationship between fatigue and memory under the concept of Traditional Chinese Medicine, and also to search for methods to improve memory loss. Since the coexistence of physical and mental fatigue and affect between each other, our study underlies the theory of the effect on heart, liver and kidney pathology, which led by fatigue and memory loss, and combine experimental researches to have a better perspective on the mechanism of how soothing liver and tonifying kidney with nourishing heart can improve memory loss induced by fatigue.
     1. Theory Research
     There was no difference between physical or mental fatigue in ancient Chinese medicine. Symptoms were described as "slack", "laziness", "limb fatigue", which all refers as "fatigue". With great amount of physical and mental wear out will cause physical and psychological dysfunction. Excessive physical fatigue and mental fatigue will interact, and cause damage to the normal physiological manifestations on liver and kidney, showing symptoms such as stagnation in liver Qi or lack of kidney essence, therefore essence, Qi, blood and the spirit will be affected. In TCM theory, learning and memory are being categorized in "Mind". The five spirits are in charged by the five viscera. Heart masters "God", and takes charge of all mental activities. In the five spirit cognitive theory, "liver soul" extracts the long-term memory in "kidney will" and delivers the message to "heart" along with the decision information made in "spleen intent". This implies the key role of heart, liver and kidney in the recognition process.
     Therefore, according to the relationship between liver, kidney, heart and brain. and the connection with the pathological mechanism of fatigue induced memory loss, we propose the theory of recover fatigue to block the occurrence of learning and memory ability decline by soothing liver and tonifying kidney with nourishing heart, and also to improve memory loss directly by soothing liver and tonifying kidney with nourishing heart.
     2. Experimental Research
     At first, we applied ATR-FTIR (Attenuated Total reflection-Fourier transform infrared spectroscopy) technique to exam the herbs we use. In fatigue animal experiment, combine swimming and multiple platform method in order to imitate the realistic pathological state of fatigue. And in behavior experiment, it has been proven that memory loss can be induced by fatigue. Learning and memory is underling synaptic plasticity in neurology, and is activated by different protein kinase activity and regulate by protein phosphorylation on synapse. Therefore our research focus on the study of Neurogranin (Ng), Protein Kinase C (PK.C) and Ca2+-CaM-dependent protein kinase (CaMKⅡ). application of Western Blot and Real-time PCR technique to observe the level of protein and mRNA in the Hippocampal CA1 region of fatigue rats. And the expression difference after applying soothing liver and tonifying kidney with nourishing heart formulas.
     ATR-FTIR
     By using ATR-FTIR technique screen all of the single herbs in Si Ni San and Sheng Hui Tang. Experimental herbs were proven to be reliable. And we speculate polysaccharide and amino substance are contained in these formulas, as also relevant to signal transmit in neurons.
     Combined fatigue animal model
     Combine swimming and multiple platform sleep deprivation methods as composite fatigue animal model on sleep deprivation rats, which is an ideal method to avoid additional stress, inflammation and other occurred error. Animal model is proved by animal's weight, coat color and other general observations, tests of CK and LDH in serum, and other common indicators of fatigue testing. Use soothing liver Qi formula:Si Ni San, and tonify kidney and nourishing heart formula:Sheng Hui Tang has also proved to be effective to reduce fatigue and improve memory.
     Evaluation of learning/memory in fatigue rats
     Evaluate learning/memory changes through Y maze. Results show, comparing model group and normal group, the correct response rate was significantly lower (p< 0.01), numbers of error increased (p< 0.01); numbers of time to learn have increased (p< 0.01). Comparing soothing liver group, tonify kidney and nourishing heart group, combined formula group and model group have all increased correct response rate (p< 0.01), decreased in error rate (p< 0.01). Indicate that comparing with model group, soothing liver group, tonify kidney and nourishing heart group and combined formula group can elevate the correct respond rate and decline error rate. The combined formula group has the most significant learning ability among all.
     The expression of Ng, PKC, CaMKⅡin the Hippocampal CA1 region of fatigue rats
     After the behavioral experiment,6 rats were randomly selected in each group, obtain the left hemisphere of the brain for Western Blot test, the right half for Real time PCR experiments, examine the protein and mRNA expression levels of Ng, PKC and CaMKⅡin the Hippocampal CA1 region of fatigue rats.
     Ng is the brain-specific protein, is the substrate of PKC, and is also the binding protein of calmodulin. which is involved in the process of learning and memory by regulating Ca2+ and CaMKⅡ. Results show, both Ng protein and mRNA expressions in the Hippocampal CA1 region of fatigue rats decrease in the model group than in control group. According to the expression of Ng was positively related to learning and memory, we speculate that fatigue can reduce learning and memory ability. Comparing to model group the Ng protein and mRNA expression level increased after intake soothing liver and tonifying kidney plus nourishing heart formulas. Among the three treatment groups, the combined formula has the most effective influence, followed by tonifying kidney and nourishing heart formula, and then soothing liver formula. Indicates combining soothing liver and tonifying kidney and nourishing heart has the most effective influence than methods only applying soothing liver or tonifying kidney and nourishing heart.
     The level of PKC protein and mRNA expression in the Hippocampal CA1 region of fatigue rats, decrease significantly in the model group than in control group. Base on the decrease level of PKC. might indicate damage occurred to nerve cells in the hippocampus. Both PKC protein and mRNA expression level increased after intake soothing liver and tonifying kidney formulas. In the result of Western blot, tonify kidney group and combined lormula group perform better than soothing liver group. Although, the results of western blot and PCR in combined formula group are just slightly higher than tonify kidney and nourishing heart group, but they indicate, with combining soothing liver and tonifying kidney with nourishing heart has the most effective influence.
     The detection of Thr286 phosphorylation CaMKⅡin Western blot experiments showed that the model group was significantly lower than the control group, results are the same based on gene expression level. CaMKⅡThr286 autophosphorylation is cruial to induce LTP, thus indicates there might be damge in hippocampus while animal model experiment, lead to affect CaMKⅡexperession. In three treatment groups. the Thr286 phosphorylation of CaMKⅡin soothing liver group and in combine formula group were significant upregulation comparing to model group. And there's only slightly upregluate in tonifing kidney and nourishing heart group, but there are not difference. On the gene level, the combined formula group has significant upregulation on CaMKⅡcomparing with the model group. But there are no difference with soothing liver group and tonifying kidney and nourishing heart group. Plus, the regulation comaring between the protein and gene espression are different, maybe because the formulas don't effect on CaMKⅡgenes, and directly effect on CaMKⅡphosphorylation.
     Conclution
     Our project focus on the mechanism of the regulation of memory loss induced by fatigue with the methods of using soothing liver and tonifying kidney. Our theory is to use heart, liver and kidney as a breakthrough to regulate memory loss lead by fatigue, according to the impact between fatigue and memory loss, and the connections within heart, liver and kidney. With the experimental research, by ATR-FTIR. behavioral experiment, and by Western blot and PCR technique examing the expression of Ng, PKC and CaMKⅡ, we discover that the regulation of soothing liver and tonifying kidney and nourishing heart formulas can improve memory loss induced by fatigue. Thus, the method of soothing liver and tonifying kidney with nourishing heart can regulate memory loss by recovering fatigue or to improve memory directly.
引文
[1]烟建华.医道求真-《黄帝内经》学术体系研究[M].北京.人民军医出版社,2007:122.
    [2]张伯华.中医心理学.北京[M].科学出版社,1995:42-43.
    [3]贾宏晓,康永怡,张继志.中医“五神藏”理论的认知心理学内涵及其精神科临床应用[J].北京中医药大学学报,2000,23(12):1-3.
    [4]章薇,严洁.对心脑内在关系的再认识[J].湖南中医药导报,2004.10(4):1-4.
    [5]杜艳军,康玉屏,孙国杰.脏腑衰老的机制及启动因子的研究[J].中医药学刊,2005,23(4):689-690.
    [6]张友和.健忘症辨治体会[J].内蒙古中医药,2002,21(6):15-1 6.
    [7]卞伟,张荣华.从脾论治老年性健忘症探讨[J].陕西中医,2009,30(5):580-581.
    [8]任振华,李光武.中药有效成分治疗老年性痴呆的研究进展[J].中成药,2004,26(12):1054-1056.
    [9]张均田.人参皂苷Rg1的促智作用机制对神经可塑性和神经发生的影响[J].药学学报,2005,40(5):385-388
    [10]杨迎,张均田.人参皂甙Rb1和Rgl促智作用机制探讨-对小鼠神经发育的影响[J].药学学报,1994,29(4):241-243
    [11]张荔,潘志远,金毅,等.人参皂苷Rg2对拟血管性痴呆大鼠学习记忆的影响[J].中国临床药理学与治疗学,2008,13(3):276-282.
    [12]邬伟,马飞煜,杨景全,等.人参皂苷Rgl对痴呆模型大鼠行为学及酪氨酸蛋白激酶A表达的影响[J].中国老年学杂志.2007,27(1):41-43.
    [13]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社,2008,795-796.
    [14]Stolls, Scheuer K, Pohl O, et al.Ginkgo biloba extract(EGb761)in dependently improve changes in passive avoidance learning and brain membrane fluidity in the aging mouce[J].Pharmaop sychia try,1996,29(4):144-915.
    [15]陈建宗,黄晨,高建苑,等.银杏叶提取物对老龄大鼠学习、记忆及有关神经递质的影响[J].成都中医药大学学报,2004,27(3):27-28.
    [16]吴禹,胡长林.银杏叶提取物对大鼠学习记忆能力的影响[111.现代预防医学,2008,35(13):2585-2586.
    [17]Bastianetto S, Zheng Wenhua. Quirion R. The Ginkgobiloba extract (Egb 761) protects and rescues hippocampal cells against nitric oxide induced toxicity: involvement of its falconoid constituents and protein kinase C [J]. J Neurochem. 2000,74(6):2268-2277.
    [18]段方荣,袁宝强.银杏叶提取物对点燃模型幼鼠学习记忆及海马NMDAR1表达的影响[J].中国当代儿科杂志,2008,10(3):367-370.
    [19]郑勇英,杨隽,潘喜华.银杏叶抗衰老和调节血脂的实验研究[J].上海预防医学杂志,2000,12(2):71-73.
    [20]周灵贵,曾昭毅,黄江,等.银杏内酯对拟AD模型大鼠海马CA1区Aβ140表达的影响[J].贵阳医学院学报,2006,31(4):313-316.
    [21]任非,龚淑英.银杏叶提取物治疗老年痴呆症[J].中国临床康复,2005,9(32):166-168.
    [22]张耀春,王立为.远志提取物对小鼠学习记忆的影响[J].中国新药杂志,2006,15(15):1254-1257.
    [23]郑璐,邱蕾,张瑶,冯天骄,于建春,张占军.远志皂苷对快速脑老化鼠学习记忆能力的改善及对神经递质的影响[J].北京中医药大学学报.2010,33(3):183-186.
    [24]陈勤,高晨曦,葛礼浩.远志皂苷对脑定位注射Aβ-(1-40)拟AD大鼠脑内神经形态病理学变化的影响[J].激光生物学报,2005.15(3):294-298.
    [25]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008.555.
    [26]温中京,陈海委.中药石菖蒲提取物对记忆障碍小鼠模型的改善作用研究[J].中华中医药学刊,2009,27(10):2203-2205.
    [27]景玉宏,冯慎远,汤晓琴.石菖蒲对学习记忆的影响及突触机制[J].中国中医基础医学杂志.2002,8.(6):38-40.
    [28]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008.379
    [29]杨敏.黄芪对慢性低O2高CO2大鼠学习记忆能力的影响[J].中国热带医学,2008,8(1):28-29.
    [30]尹艳艳,公惠玲,李维祖,等.黄芪总苷对血管性痴呆小鼠学习记忆功能的影响[J].安徽医药,2009,13(9):1018-1020.
    [31]董晓华,张丹参.大黄酚对Aβ25-35所致AD大鼠学习记忆及LTP的影响[J].中国药理学通报,2009,25(5):682-685.
    [32]王树,张丹参,张力,等.大黄酚对脑缺血再灌注小鼠记忆功能的保护作用[J].中国老年学杂志,2009,29(15):1934-1936.
    [33]聂晶.罗勇,龚其海,等.淫羊藿苷对三氧化铝诱导痴呆大鼠模型脑内胆碱能系统的影响[J].上海中医药杂志,2008.42(4):69-72.
    [34]楚晋,李林,叶翠飞,等.淫羊藿黄酮对APP转基因小鼠学习记忆及β-amyloid 生成的影响[J].中国科学技术大学学报,2008,38(4):439-448.
    [35]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008.547.
    [36]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008.550.
    [37]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008.844.
    [38]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008:270.
    [39]木村正康.汉方药理学[M].北京.中国医药科技出版社.2006.212.
    [40]梅全喜.现代中药药理与临床应用手册[M].北京.中国中医药出版社.2008.869.
    [1]Loomis, Alfred L; Harvey EN, Hobart GA. Ⅲ Cerebral states during sleep, as studied by human brain potentials [J]. J Exp Psychol.1937,21:127-44.
    [2]Dement, William, Nathaniel Kleitman. Cylic variations in EEG during sleep and their relation to eye movement [J]. Electroencephalogram Clin Neurophysical,1957, 9(4):673-690.
    [3]Iber C, Ancoli-Israel S, Chesson A.The AASM Manual for the Scoring of Sleep and Associated Events:Rules, Terminology and Technical Specifications [M] Quan SF for the American Academy of Sleep Medicine.2007.45.
    [4]Silber MH, Ancoli-Israel S, Bonnet MH, et al. The visual scoring of sleep in adults [J]. Journal of Clinical Sleep Medicine 2007,3 (2):121-131.
    [5]Myers, David. Psychology (7th ed.)[M]. New York:Worth Publishers.2004,268.
    [6]Matthew A. Tucker, Yasutaka Hirota, Erin J. Wamsley, et al. A daytime nap containing solely non-REM sleep-enhances declarative but not procedural memory [J].Neurobiology of Learning and Memory.2006,86(2):241-247.
    [7]M. Mirmiran, J. Scholtens, N.E. Van de Poll, et al.Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat [J]. Developmental Brain Research.1983,7(2-3):277-286.
    [8]Michael J Morrissey, S.P Duntley, A.M Anch, R Nonneman. Active sleep and its role in the prevention of apoptosis in the developing brain [J].2004,62(2): 876-879.
    [9]Andreasen, Nancy C., Black, Donald W. Introductory Textbook of Psychiatry [M]. American Psychiatric.2006.
    [10]Deaconson T.F., O'Halr D.P., Levy M.F., et al.Sleep deprivation and resident performance[J]. Journal of American Medical Association.1988,260: 1721-1727.
    [11]Taheri S. Lin L. Austin D. Young T. Mignot E.Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index [J].PLoS Med.2004,1 (3):62
    [12]Raymond C.A. Shifting work sleep cycles are on the way to becoming another public health issue [J]. Journal of American Medical Association.1988.359: 2958-2959.
    [13]Alhola, Paula; Paivi Polo-Kantola.Sleep deprivation:Impact on cognitive performance [J].Neuropsychiatr Dis Treat.2007,3(5):553-567.
    [14]Morin, Charles M..Insomnia [M]. New York:Kluwer Academic/Plenum Publ. 2003,28.
    [15]National Institute of Neurological Disorders and Stroke-Brain Basics: Understanding Sleep
    [16]Smith, Andrew P..Handbook of Human Performance [M]. London:Acad. Press. 1992,240.
    [17]曹雪亮,茵丹民,黄甫思等.高原低氧条件下45h唾眠剥夺对工作记忆的影响[J].中国行为学科学,2005,14:4446.
    [18]Himashree G, Banerjee PK, Selvamunhy W. Sleep and performance recent trends [J]. Indian J Physiol Pharmacol,2002,46:6-24.
    [19]李津强,胡文东.24h睡眠剥夺对人体平衡能力的影响[J]中国行为医学科学.2008,17(5):447-448.
    [20]Everson C A, Laatsch C D, Hogg N, et al. Antioxidant defense responses to sleep loss and sleep recovery [J]. Am J Physio Regul Integr Comp Pysiol.2005. 288(2):374-383.
    [21]吴兴曲,杨来启,李拴德,等.睡眠剥夺对大鼠血清MBP集皮质醇含量的影响[J].中国神经免疫学和神经病学杂志,2004,11(2):102-104.
    [22]王焕林,余海鹰,崔庶,等.精神分裂正病人红细胞SOD、GPX及CAT活性的对照研究[J].解放军医杂志,1990,15(2):83-86.
    [23]柴慧娟,徐淑梅.睡眠剥夺对大鼠心肌损伤效应和抗氧化指标的影响[J].中国应用生理学杂志,2008,24(1):71-75.
    [24]Dinges D, Douglas S, Hamarman S. Sleep deprivation and human immune function [J]. Advances in Neuroimmunology 1995,5:97-110.
    [25]洪军,袭于容,王升旭等.剥夺睡眠56小时对正常人血细胞和免疫功能的影响[J].中国临床心理学.2000,8(1):27-28.
    [26]Giam GCK. Effects of sleep deprivation with reference to military operations [J]. Annals Academy of Medieine.1997,26:88-93.
    [27]潘集阳,田径,马文彬等.REM睡眠剥夺对大鼠焦虑行为的影响集瘦素的作用[J].实用医学,2010,26(13):2292-2295.
    [28]Jennings JR, Monk TH, Ven Der Molen MW. Sleep deprivation influences some but not all processes of supervisory attention [J]. Psychol Sci,2003,14(5): 473-479.
    [29]Chuah YM, Venkataman V, Dinges DF, et al. The neural basis of inter individual variability in inhibitory efficiency after sleep deprivation [J]. J Neurosci,2006, 26(27):7156-7162.
    [30]邵永聪,毕国华,叶恩茂,等.睡眠剥夺影响执行控制的功能磁共振成像研究[J].中国心理卫生杂志,2008,22(11):816-819,832.
    [31]Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation [J]. Semin Neurol,2005,25(1):117-129.
    [32]Ertugrul A, Rezaki M. The neurobiology of sleep and its influence on memory [J]. Turk Psikiyatri Derg,2004,15(4):300-308.
    [33]McDermott CM, LaHoste GJ, Chen C. et al. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons [J]. J Neurosci,2003,23(29):9687-9695.
    [34]Romcy-Pereira R, Pavlides C. Distinct modulatory effects of sleep on the maintenance of hippocampal and medial prefrontal cortex LTP [J]. Eur J Neurosci,2004,20(12):3453-3462.
    [35]宋国萍,皇甫恩,苗丹民,等.睡眠剥夺对大鼠学习和行为的影响[J].第四军医大学学报,2000.21(6):663-666
    [36]吴兴曲;杨来启;王晓峰;杨喜民;张宏试;马文待;刘光雄;张彦;王蓉蓉;睡眠剥夺对大鼠一氧化氮和一氧化氮合酶的影响[J].中国临床心理学杂志2002,10(2):106-107,125.
    [37]杨国愉,冯正直.皇甫思,等.人参皂甙对睡眠剥夺下大鼠脑干中缝核群5-HT的影响[J].第三军医大学学报,2002;24(2):158-160.
    [38]吴兴曲,杨来启,王晓峰,等.唾眠剥夺后大鼠5-HT1AH和5-HT 2A受体的表达[J].中国行为医学科学,2002;11(4):364-365.
    [39]Blanco-Centurion,-C-A et al. Extracellular serotonin levels in the modularly reticular formation during normal sleep and after REM sleep deprivation[J]. Brain-Res.2001,923(122):128-136.
    [40]张娜,刘洪涛.不同睡眠剥夺时间对大鼠海马和前额皮层Ng、PKC、CaMK Ⅱ mRNA表达的影响[J].中国病理生理,2009.25(7):1355-1359.
    [41]韩太真,吴馥梅.学习与记忆的神经生物学[M].北京:北京医科大学中国协和医科大学联合出版社,1998,208-209.
    [1]高兴.运动性疲劳研究[M].四川教育出版社殷劲,1993.
    [2]李志文.罗兴华.葡萄据对消除躯体运动性疲劳的影响[J].现代康复2001.4(4):117-118.
    [3]田文秀.冯克俊.浅析运动性疲劳的产生与消除[J]山东体育科技,20012354):65-66.
    [4]谭小勇.巴义名消除运动性疲劳方法的研究(综述)[J]河北体育学院学报.2003.17(1):79-81.
    [5]McEntee. W. Crook, T. Glutamate:its role in learning, memory, and the aging brain [J]. Psychopharmacology,1993,111 (4):391-401.
    [61李人等.运动性疲劳与脑中Y-氨基丁酸[J].中国运动医学杂志,1985,4(2):81-86.
    [7]孙国欣,田振军.有氧训练及大强度疲劳训练对小鼠学习记忆能力的影响[J].西安体育学院学报,2002,19(4):45-47.
    [8]Manev H, Favaron M, Guidotti A, Costa E Delayed increase of Ca2+ influx elicited by glutamate:role in neuronal death[J]. Mol. Pharmacol.1989,36 (1): 106-112.
    [9]Aoyama K, Watabe M. Nakaki T.Regulation of neuronal glutathione synthesis [J]. J. Pharmacol. Sci.2008,108 (3):227-238.
    [10]Fei Li and Joe Z. Tsien.Clinical Implications of Basic Research:Memory and the NMDA receptors [J].N Engl J Med,2009,361:302.
    [11]J. Farmer, X. Zhao, H.Van Praag, et al. Effects of Voluntary Exercise on Synaptic Plasticity and Gene Expression in the Dentate Gyrus of Adult MaleSprague-Dawley Rats in Vivo [J]. Neurosci,2004,124:71-79.
    [12]J.L. Trejo. M.V. LLorens-Martin, I. Torres-Aleman.The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis [J]. Molecular and Cellular Neuroscience.2008,37(2):402-411.
    [13]Grace Sophia Griesbach. Fernando Gomez-Pinilla. David Allen Hovda. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise [J]. Brain Research.2004.1016 (2):154-162.
    [141贺洪,唐晖.汪保和,等.人参皂甙Rgl对小鼠力竭游泳恢复期骨骼肌自由基代谢的影响[J].中国运动医学杂志,2002.21(6):610-612.
    [15]王晓明.江岩.钟国赣.等.人参二醇、三醇组皂甙对离体大鼠工作心脏的抗自由基损伤作用[J].中国中药杂志.1993.18(2):113-114.
    [16]罗陆一.人参汤对老龄大鼠红细胞超氧化物歧化酶活性及血清脂质过氧化物含量的影响[J].国医论坛,1994,9(6):37-38.
    [17]徐先祥,夏伦祝,高家荣.中药皂苷类物质抗氧化作用研究进展[J].中国中医药科技,2004,11(2):126-128.
    [18]王密,许明荣,杨柯,等.人参二醇组皂苷对游泳训练大鼠抗氧化效应及免疫调节的研究[J].广西医科大学学报2001,18(4):479-481.
    [19]杨燕,吴铁,何康,等.有氧运动联用人参茎叶皂甙对高脂血症小鼠脂质代谢干预作用[J].中国药理学通报,1999,15(2):65-69.
    [20]唐省三.灵芝多糖对电刺激离体蟾蜍腓肠肌疲劳的影响[J].河南中医药学刊,2002,17(6):19-20.
    [21]王满福.胡淑萍,张安民,等.灵芝液对运动员抗疲劳效果的实验观察[J1.中国运动医学杂志,1999,18(1):78-79.
    [22]张安民,常明昌,胡淑萍,等.灵芝液对运动员抗疲劳作用及对血中SOD,CAT,LPO的影响[J].中国运动医学杂志,1997,16(4):302-304.
    [23]夏勇,赵硕,傅剑云,等.灵芝粉抗疲劳作用的实验研究[J].中国临床康复,2002,6(17):2618-2619.
    [24]叶丽卡,陈济民.淫羊藿的药理研究进展[J].中国中药杂志,2001.26(5):293-295.
    [25]吕红斌,王嘉芙,岳珍,等.淫羊藿糖浆对家兔血浆睾酮水平的影响[J].中国运动医学杂志,1998,17(1):80-81.
    [26]牛英鹏,吕莹,曲天敏,等.淫羊藿对羟基自由基的清除作用[J].中国运动医学杂志,2000,19(4):434-435.
    [27]吕莹,牛英鹏,曲天敏.木兰花碱消除运动性疲劳的机理[J].郑州大学学报(自然科学),2001,33(4):77-81.
    [28]郭海平,杨智敏.冬虫夏草药理作用研究进展[J].中草药,1999,30(3):231-233.
    [29]曹晓哲,钱震.冬虫夏草对超强度运动大鼠心肌保护作用的电镜观察[J].中国运动医学杂志,1997,16(1):61-62.
    [30]樊柏林,李宇红,李新兰,等.冬虫夏草的抗疲劳作用研究[J].湖北预防医学杂志,2000,11(2):25.
    [31]李国莉.黄元庆,杨卫东,等.枸杞多糖对运动训练小鼠耐力及体内自由基防御体系的影响[J].中国运动医学杂志,1998,17(1):56-57.
    [32]李国莉,马利琪,贺长乐,等.宁夏枸杞清除活性氧及抗疲劳作用的研究[J].宁夏医学院学报.1996.18(3):5-6.
    [33]Reddy KV. Kumar TC, Prasad M. et al.Pulmonnary lipidperoxidation and antioxidant defenses during exhaustive physical exercise:the role of vitamin E and selenium [J]. Nutrition,1998,14(5):448-451.
    [34]王树云,岑浩望,刘永成,等.花粉对提高运动能力的研究[J].中国运动医学杂志,1989,8(3):139-141.
    [35]吕建新,金丽琴.蜂花粉对小鼠心肌,肝脏乳酸脱氢酶活性及同工酶谱的影响[J].温州医学院学报,1990,20(4):213-216.
    [36]宫霞,卢元芳.银杏叶提取物对小鼠骨骼肌过氧化损伤的保护作用[J].中国运动医学杂志,1998,17(4):359-360.
    [37]丁莉,宫霞,许豪文,等.银杏叶提取物对运动小鼠肝组织自由基代谢的影响[J].中国运动医学杂志,1999,18(4):312-313.
    [38]崔建华,张芳,哈振德,等.银杏叶片、红景天、酪氨酸对高原人体运动心肌酶活性的影响[J].西藏医药杂志,2003,24(2):1-3.
    [39]Oyama Y, Chilkahisa L, Toshiko U,et al. Ginkno bilobaextract protects brain neurons against oxidative stress in2duced by hydronen peroxide[J]. Brain Res, 1996,712:349-352.
    [40]唐量,熊正英.芦荟对运动训练小鼠肝组织自由基代谢及超微结构影响的实验研究[J].中国运动医学杂志,2002,21(6):607-609.
    [41]唐量,熊正英.芦荟抗疲劳作用的实验[J].体育学刊,2003.10(2):50-52.
    [42]唐量,熊正英.芦荟对运动训练小鼠脑组织自由基代谢的影响[J].陕西师范大学学报(自然科学版),2003,30(2):99-101.
    [43]熊正英,唐量.芦荟对运动训练小鼠骨骼肌自由基代谢及运动能力的影响[J].中国运动医学杂志,2003,22(2):182-183.
    [44]夏云建.芦丁和维生素C对大鼠力竭运动后自由基代谢的影响[J].中国运动医学杂志,1999,18(2):169-170.
    [45]潘志军,许豪文.绞股蓝及运动训练对中年大鼠主动脉壁脂质过氧化水平和血脂含量的影响[J].中国运动医学杂志,1997,16(4):271-274.
    [46]杨阳,张洪.绞股蓝总皂苷对大鼠力竭运动后自由基代谢的影响[J].中国运动医学杂志,2001,20(3):319-320.
    [47]宾晓农,桂羽.绞股蓝皂苷对力竭运动小鼠心、肾组织MDA、SOD活性影响[J].衡阳医学院学报,1994,22(1):28-30.
    [48]龚云.红景天与运动性疲劳[J].西北师范大学学报(自然科版),2001,37(3):110-114.
    [49]庄剑青,施建蓉,曾兆麟,等.红景天及其复方对小鼠运动能力和能量代谢影响研究[J].中国运动医学杂志,1998.17(2):124-125.
    [50]李靖,张蕴琨.中药红景天在竞技体育领域中的研究近况[J1.南京体育学院学报 (自然科学版),2002,1(1):27-30.
    [51]徐峰,陈星,韩璐璐,等.对红景天抗疲劳作用机理的探讨[J].食品科学,2004,25(10):366-370.
    [52]张彩.中药复方消除运动性疲劳的研究概况和展望[J].体育科学研冤,2009.13(1):77-79.
    [53]谢敏豪.对消除运动性疲劳中药评价方法的回顾与思考[J].中国运动医学杂志,1999,18(4):346-347.
    [54]李丽.常波.浅谈中医药在运动性疲劳中的应用[J].南京体育学院学报.2003,2(2):23-24.
    参考文献
    [1]陈家旭,杨维益,梁嵘.中医药抗运动性疲劳研究概况与展望.中国运动医学杂志,1997,16(2):50.
    [2]贾清秀.雄激素与运动关系的探索与研究[J].赣南师范学院学报.2007,3:97-99.
    [3]杨秋美,钱汝红,庄剑青.肾虚与脑内雄激素受体关系的探讨[J].中国中医药科技.2006,13(2):68-69.
    [4]明·吴馄.黄帝内经素问吴注.[M].北京.中国中医药出版社,1999,228.
    [5]Nicole Lamond, Drew Dawson, and Gregory D. Roach Fatigue Assessment in the Field:Validation of a Hand-Held Electronic Psychomotor Vigilance Task [J]. Aviation, Space, and Environmental Medicine,2005,76(5):486-489.
    [6]烟建华.医道求真-《黄帝内经》学术体系研究[M].北京.人民军医出版社,2007:122.
    [7]卞伟,张荣华.从脾论治老年性健忘症探讨[J].陕西中医,2009,30(5):580-581.
    [8]董湘玉,李琳.中医心理学基础[M].北京.北京科学技术出版社.2003,35.
    [9]张伯华.中医心理学[M].北京:科学出版社,1995:42-43.
    [10]唐启盛,包祖晓,曲淼,赵晶.肾与神志关系的探讨[M].北京中医.2006,25(9):538-540.
    [11]张孝娟,严灿,高敏.中医药与心理应激亚健康状态的调节[J].中医杂志.2002,43(9):647-648.
    [12]赵献可.医贯.[M].海口.海南国际新闻出版社,1996:7036.
    [1]翁诗甫.傅里叶变换红外光谱仪[M].北京:化学工业出版社,2005.
    [2]董庆年.红外光谱法[M].北京:石油化学工业出版社,1977.
    [3]林林,吴平平,周文敏等.实用付里叶变换红外光谱学[M].北京:中国环境科学出版社,1991.
    [4]肖军,王洪涛,冯建阔,李东萱,崔晓彬.ATR-FTIR附件在废旧塑料鉴别方面的应用[J].河北化工,2010,33(3):12-13.
    [5]http://www.uweb.engr.washington.edu/research/tutorials/atr.html
    [6]汤俊明,孙素琴,袁子民,等.中药配方颗粒红外指纹图谱的无损快速鉴别研究[J].光谱学与光谱分析,2004,24(5):554-556.
    [7]吴婧,孙素琴,周群,郁露.中药配方颗粒红外指纹图谱的研究[J].光谱学与光谱分析,2007,127(18):1535-1538.
    [8]田进国,朱文荣,任健,等.中药配方颗粒红外指纹图谱的研究[J].中成药,2003,25(12):949-953.
    f9]李维,孔烈,李峰,等.四逆散对运动性疲劳大鼠海马突触素的调节作用[J].中国康复理论与实践,2009,15(8):739-741.
    [10]李维,李峰,孔烈,等.疲劳大鼠空间探索能力的变化及中药调节作用[J].实用医学杂志,2005.25(13):2055-2057.
    [11]畅洪升,孙建宁,石任兵,王庆国,等.四逆散有效部位对嗅球损毁大鼠探索行为及学习记忆功能的影响[J].北京中医药大学学报,2005,28(4):39-41.
    [12]Liy-Salmeron G, Meneses A. Effects of 5-HT drugs in prefrontal cortex during memory formation and the ketamine amnesia-model [J].Hippocampus.2008, 18(9):965-74.
    [13]李玉萍,徐瑞鑫,李廷利.四逆散冻干粉对睡眠剥夺果蝇头部5-HT含量和5-HT1A受体表达的影响[J].中国药师,2010,35(20):2749-2751.
    [14]邹移海,黄韧海,连至诚,等.实验动物学[M].广州:暨南大学出版社.1999.167.180.
    [15]清·陈士铎.辨证录[M].北京:人民卫生出版社,1998,78.
    [16]纪荣芳,牛建昭,许树强,王继峰,李健,崔树娜.从数据挖掘角度看中医药治疗健忘与痴呆[J].中日友好医院学报,2006,20(6):337-340.
    [17]周敏,白兰,周丽娜,李慧,宋春艳.生慧汤对学习记忆障碍模型小鼠的影响[J].中医药信息,2009,26(6):54-55.
    [18]高学敏,中药学[M].北京.中国中医药出版社,2002.
    [19]孙素琴,周群,秦竹.中药二维相关红外光谱鉴定图集[M].北京,化学工业出版 社.2003.
    [20]郭晓玉,雷敬卫,樊克锋,等.傅立叶红外技术在中药鉴别中的应用研究[J].世界中西医结合杂志,2006,1(1):26-28.
    [21]刘瑾彦.神经递质和调质对运动性中枢疲劳影响的研究进展[J].2002,9(6):134-137.
    [1]李晓勇,靳文,赵晓山,孙晓敏,李玉萍,聂晓莉,魏敏戴,红芳,李纪强,罗仁.复合因素致疲劳大鼠运动能力及血生化的变化[J].广东医学,2008,29(6):892-894.
    [2]侯丽娟,刘晓莉,乔德才.大鼠游泳训练痨劳模型建立的研究[J].实验动物科学与管理,2005,22(1):1-3.
    [3]Ricardo Borges Machado, Debora C. Hipolide, Ana Amelia Benedito-Silva, et al.Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery [J]. Brain Research 2004,1004:45-51.
    [4]宋国萍,苗丹民,皇甫恩,陈足怀,冯学文.睡眠剥夺对大鼠学习和行为的影响[J].第四军医大学学报,2000,21(6):663-665.
    [5]李珩.儿童脑性瘫痪的中医康复评定及相关证候的分子生物学机制研究[D].北京:北京中医药大学博士论文,2008,101-102.
    [6]徐淑云,卞如濂.陈修.药理实验方法学[M].北京:人民卫生出版社,1991,644.
    [7]刘雁峰,王天芳.杨维益.复合应激因素致“疲劳”模型大鼠脾脏β-肾上腺素能受体变化的研究[J].中国中医基础医学杂,2000,6(6):22-24.
    [8]尹喜玲,肖颖,李可基.多重应激建立疲劳综合征动物模型的研究[J].中国运动医学杂志,2005.24(4):452-456.
    [9]陈易新,王天芳,季绍良.慢性束缚致大鼠疲劳模型的肾上腺皮质超微结构的变化[J].北京中医药大学学报,2000,23(1):33-35.
    [10]侯丽娟,刘晓莉,乔德才.大鼠游泳训练痨劳模型建立的研究[J].实验动物科学与管理,2005,22(1):1-3.
    [11]靳文,李晓勇,等.疲劳大鼠模型创建研究[J].山东中医药大学学报,2008,32(2):107-108.
    [12]Machado R B. Hipolide D C, Benedito-Silva A A, et al. Sleep deprivation induced by the modified multiple platform technique:quantification of sleep loss and recovery [J]. Brain Res.2004.1004(1-2):45-51.
    [13]柴慧娟,徐淑梅.睡眠剥夺对大鼠心肌损伤效应和抗氧化指标的影响[J].中国应用生理学杂志.2008,24(1):71-75.
    [14]张福康,侯一平等.剥夺异相睡眠导致大鼠学习记忆的能力的下降的机制[J].中国临床康复,2003,7(28):3798-3799.
    [15]邹移海.黄韧海.连至诚,等.实验动物学[M].广州:暨南大学出版社,1999.167,180.
    [16]清·陈士铎.辨证录[M].北京:人民卫生出版社,1998,1781.
    [17]赵世雄.心泵血功能和心肌收缩性对运动锻炼的适应[J].生理科学进展,1982,13(3):227-231.
    [181张爱芳,徐晓阳,等.理气扶正中药对运动训练大鼠糖、氨基酸代谢有关指标的影响[J].中国运动医学杂志,2000,19(1):33.
    [1]王跃春、王子栋、孙黎明,何斯纯、柏志全.动物学习记忆能力的Y-型迷宫测试法(综述)[J].暨南大学学报(自然科学版),2001,22(5):137-140.
    [2]http://sbfnl.stanford.edu/bml_ymaze.html
    [3]王跃春.Y型电迷宫在大鼠学习记忆功能测试中合理运用[J].中国行为医学科学,2003.12(3):333-355.
    [1]Cooke SF, Bliss TV. Plasticity in the human central nervous system [J]. Brain, 2006.29(7):1659-73.
    [2]Benfenati F. Synaptic plasticity and the neurobiology of learning and memory [J]. Acta Biomed.2007,78(1):58-66.
    [3]Ran X, Miao HH, Sheu FS, et al. Structural and dynamic characterization of a neuron-specific protein kinase C substrate, neurogranin [J]. J Biochem,2003,42:5143-5150.
    [4]Watson JB, Battenberg EF, Wong KK, et al. Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein.[J] J Neurosci Res,1990,26(4):397-408.
    [5]Feart C, Mingaud F, Enderlin V, et al. Differential effect of retinoic acid and triiodothyronine on the age-related hypo-expression of neurogranin in rat [J]. Neurobiol Aging,2005,26:729-738.
    [6]Miyakawa T, Yared E, Pak JH. et al. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components[J]. Hippocampus,2001,11(6):763-775.
    [7]Neuner-Jehle M, Rhyner TA, Borbely A A. Sleep deprivation differentially alters the mRNA and protein levels of Neurogranin in rat brain [J]. Brain Res.1995. 685(1-2):143-15.
    [8]Neuner-Jehle M, Denizot JP, Mallet J. Neurogranin is locally concentrated in rat cortical and hippocampal neurons [J]. Brain Res,1996,733(1):149-154.
    [9]Zhabotinsky AM, Camp RN, Epstein IR. Lisman JE.Role of the neurogranin concentrated in spines in the induction of long term potentiation [J]. J Neurosci.200626:7337-7347.
    [10]Huang KP, Huang FL, Chen HC. Characterization of a 7.52 kDa protein kinase C substrate (RC3protein, neurogranin) from rat brain [J]. Arch Biochem Biophys. 1993,305(2):570-580.
    [11]Baudier J, Deloulme JC. Van DA. el al. Purification and characterization of a brain-specific protein kinase substrate Neurogranin [J].J Biol Chem.1991,266: 229-237.
    [12]Hayashi Y. Long-term potentiation:two pathways meet at Neurogranin [J]. The EMBO Journal.2009.28.2859-2860.
    [13]Miyakawa T. Yared E. Pak JH, et al. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components[J]. Hippocampus,2001, 11(6):763-777
    [14]方明,田国红,黄流清,等.快速眼动睡眠剥夺后大鼠皮质及海马神经元突触相关蛋白神经颗粒素表达的变化[J].内科理论与实践,2007,2:324-327.
    [15]李欢欢,林文娟.李俊发.急性生理应激对大鼠的行为及脑神经颗粒素磷酸化水平的影响[J].心理学报,2007.39:648-655.
    [1]Xu SZ, Bullock L, Shan CJ, et al. PKC isoforms were reduced by lead in the developing rat brain[J]. Int J Dev Neurosci,2005,23(1):53-64.
    [2]Hussain RJ, Carpenter DO. A comparison of the roles of protein kinase C in long-term potentiation in rat hippocampal areas CA1 and CA3 [J]. Cell Mol Neurobiol.2005,25(3-4):649-661.
    [3]Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses [J].FASEB J,1995,9:484-496.
    [4]Hofmann J. The potential for isoenzyme selective modulation of protein kinase C [J]. FASEB J,1997,11:649-669.
    [5]魏小龙,张永祥.蛋白激酶与阿尔采末病[J].生理科学进展11999:30(4):359-362.
    [6]MacManus JP, Hill IE, Preston E, et al. Difference in DNA fragment at ion following Transient cerebral or decapitation is chemical in rat [J]. J Cereb Blood Flow Metab,1995,15(5):728-7371.
    [7]敖海清.徐志伟,严灿,等.逍遥散对应激大鼠海马突触体内PKC活性及Ca2+浓度的影响[J].山东中医杂志,2006,2(25):112-114.
    [8]刘雨星.电针对老年性痴呆大鼠海马组织信号转导介质的调节[D].成都中医药大学博士论文集,2003,5:42.
    [9]LingDS. Benardo LS, Serrano PA, et al. Protein kinase M zeta is necessary and sufficient for LTP maintenance [J]. Nat Neurosci.2002.5(4):295-296.
    [1]Cooke SF, Bliss TV. Plasticity in the human central nervous system. [J]. Brain, 2006.129(7):1659-1673.
    [2]Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioral memory [J].Nat Rev Neurosci,2002,3(3):175-190.
    [3]Fink CC. Bayer KU, Myers JW. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoforms of CaMKII [J].Neuron,2003,39(2):283-297.
    [4]PrattKQ. WattJ, GrifflthLC. Activity-dependent remodeling of pre-synaptic inputs by postsynaptic expression of activated CaMKII [J].Neuron,2003,39 (2):269-28.
    [5]Soderling TR, Chang B. Briekey D, et al. Cellular signaling through multifunctional Ca2+/calmodulin dependent protein kinase Ⅱ [J]. J Bio.Chem,2001, 276(6):3719-3722.
    [6]Bayer KU, De Koninck P, Leonard AS, et al. Interaction with the NMDA receptor locks CaMK in an active conformation [J]. Nature,411:801-805.
    [7]Sheng M. Kim MJ. Post synaptic signaling and plasticity mechanisms [J]. Science, 2002.298:776-780.
    [8]Silva AJ. Paylor R. Impaired special learning in alpha-calcium-calmodulin kinase Ⅱ mutant mice [J].Science,1992,257:206-211.
    [9]John EL. Justin RF. What Maintains Memories? [J].Science,1999,283 (15): 339-340.
    [10]赵岩,邢伟.铝对学习记忆及大鼠海马Ca2+-CaM -CaMK Ⅱ途径的影响[J].生命的化学,2007,27(6):530-533.
    [11]彭建安.郭萍.学习和记忆与LTP关系的研究进展[J].河南职工医学院学报,2008.20(3):315-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700