用户名: 密码: 验证码:
全向IRST系统的图像处理与信息融合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外搜索与跟踪(Infra-Red Searchand Tracking,IRST)系统是一种被动式的红外探测系统,具有隐蔽性好、角分辨率高、抗电磁干扰能力强等优点,已成为现代战争防御体系中的关键装备之一。特别是随着光电对抗技术的迅速发展及广泛使用,导弹、飞机等飞行速度不断提高、导弹作战方式的多样化(如一箭多头、真伪弹齐发、多方位群发等)以及实际作战环境的复杂性,都要求IRST系统必须同时兼具响应快、视场大(全向视场)和空间分辨率高(又称高精度)等性能。作者所在项目组提出的空间多路IRFPA凝视成像全向IRST系统方案,能较好地满足上述性能要求,本文重点研究系统的图像与信息处理算法及其硬件实现技术。
     论文在分析空间多路IRFPA凝视成像全向IRST系统结构和工作原理的基础上,对系统信息处理中涉及的关键技术,如红外图像预处理、弱小目标的检测与跟踪、信息融合(包括图像拼接和目标航迹融合)等问题进行了较深入的研究,提出了适用全向IRST系统性能要求的图像与信息处理算法,理论分析与仿真实验结果均验证了提出算法的合理性和有效性。最后,还设计并研制完成了实时实现上述算法的软硬件平台。论文的主要研究工作如下:
     1.分析了IRFPA非均匀性产生的机理和常用非均匀性校正算法的不足,研究了基于多分辨分析小波变换的非均匀性校正算法,该算法实现了非均匀性的增益和偏置参数自适应的校正。实验结果验证了算法的有效性,使图像的质量有着明显的改善。
     2.针对全向IRST系统工作环境中可能遇到的复杂云层背景和人为干扰,研究了基于全相位非下采样轮廓波变换(APNSCT)的背景抑制算法。为了增强算法的适应性,提出了两种较高性能的改进算法:基于双边滤波的APNSCT背景抑制算法和基于全变差模型的APNSCT背景抑制算法。实验结果显示,两种算法都能够有效抑制多种复杂背景,提高了图像信噪比,并且结构简单,实时性好。
     3.采用自适应阈值分割算法和帧间相关序列图像检测算法,实现了弱小目标的精确检测,并利用检测概率、虚警概率和ROC曲线对目标检测算法性能进行了评价。为了实现对不同运动状态目标的可靠跟踪,提出了基于交互式多模型的卡尔曼-高斯粒子滤波(IMMK-GPF)的机动目标跟踪算法,该算法具有跟踪精度高、适应性强和实时性好等特点,具有良好的工程实用价值。
     4.研究了全向IRST系统中的信息融合技术,包括目标航迹融合与图像拼接。采用分布式航迹融合结构方案,研究了分布式航迹关联算法与航迹融合算法,通过理论分析与仿真,算法可满足系统的性能指标要求。另外,还研究了多路小视场图像生成全向视场图像的拼接算法,实现了红外图像的准确、快速拼接。
     5.为了实时实现全向IRST系统的图像与信息处理算法,设计并研制完成了一套基于FPGA与DSP的高速并行处理的硬件平台,给出了基于DSP/BIOS实时操作系统的RF5软件设计框架结构。硬件平台不仅功能和实时性均满足全向IRST系统的要求,而且还具有稳定性好、易于扩展和便于维护等优点。
     总之,通过研究,文中提出的全向IRST系统的图像与信息处理算法以及实时实现算法的软硬件平台,都满足研究项目的性能指标要求,从而为研制高性能的全向IRST系统探索出了一条有效的技术途径,也为全向IRST系统的工程化实现奠定了一定的基础。
Infra-red search and tracking (IRST) system is a kind of passive infra-red detectionsystems, and is one of the important units in defense system for modern war, which hasadvantages of good concealing, high angular resolution and high anti-EM interferencecapability. With the development and application of optoelectronic countermeasurestechnology, the flight velocity of fighters and missiles is significantly increased,operational modes for missiles show polymorphism(for example, one missile with multiwarhead, true or false missiles firing simultaneously and multi-azimuth group hair),and the operational war environment becomes more complicated. To meet these factorsrequirements, the IRST system must be improved in response speed,field of view andspatial resolution,etal. In this thesis, omni-directional IRST system based on spatialmultiplexing IRFPA staring imaging technology is put forward, which can meet aboverequirements. The proposed information processing algorithm and hardware realizationis researched for the omni-directional IRST system in the thesis.
     System structure and working principle for omni-directional IRST system basedIRFPA staring imaging technology are analyzed, then key technologies in informationprocessing algorithms, such as, infrared image preprocessing, weak target detection andtracking and information fusion for multi sensors, are further studied. Informationprocessing algorithms for the omni-directional IRST system are proposed. Thecorrectness and efficiency for above algorithms are verified with theory analysis andsimulation verification. Finally, hardware for realizing these algorithms is also provided.
     Main works in this thesis are list as follow:
     1. Based on analysis on the generation mechanism of non-uniformity in IRFPAstaring imaging algorithm and shortage for common non-uniformity correctionalgorithms, non-uniformity correction algorithm with multi-resolution wavelettransforms is researched. The gain and bias parameters of non-uniformity arecorrected by using this algorithm. More important, its efficiency is verified withexperimental results.
     2. According to complex background and interference of man-made targets inworking environment for IRST system, background suppression algorithm based on allphase non-subsampled contourlet transform is put forward. Combined phasenon-subsampled Contourlet transform with fuzzy theory and total variation model isrealized to improve the adaptability of the algorithm. Simulation results show that ahigh signal-to-noise ratio is achieved. This algorithm has advantages in simple structure, strong robustness and good real-time performance.
     3. By using auto-thresholding segmentation algorithm and inter-frame relatedsequence image detecting algorithm, weak target accurate detection is realized,and theperformance of target detection algorithms are evaluated by using the detectionprobability, false alarm probability and ROC curve. In order to realize In order to realizetarget tracking with many kinds of moving state, the maneuvering target tracking algorithmbased on the interacting multiple model Kalman-Gauss partice filter is proposed. Thisalgorithm has the characteristics of high precision,strong adaptability and goodreal-time, and has a good engineering application prospect.
     4. Information fusion technologies in omni directional IRST system areinvestigated with target tracking fusion and image mosaic algorithm. By adoptingdistributed tracking fusion structure, tracking association and fusion algorithm isproposed. To realize the combination small view field images originated from IRFPAsensors into one omni directional image, fast image mosaic algorithm based onimproved SURF feature detection, RANSAC feature points matching and weightedaverage pixel fusion is realized.
     5. To realize the proposed information processing algorithm in omni directionalIRST system, high speed parallel image processing hardware platform based on FPGAand multi DSP is obtained. RF5software framework for DSP/BIOS real-time operatingsystem is also achieved in thesis. The hardware platform has advantages, not only inhigh precision and real-time, but also in well stability, easy extension and co nvenientmaintenance.
     In a word, image information processing algorithm of omni-directional IRSTsystem and the software&hardware platform for real-time realized proposed algorithmin the thesis can satisfy the performance requirements of the research project. Theseresearch results explore an effective way to research high performance omni-directionalIRST system, and provide a certain foundation for the project implementation of theomni-directional IRST system.
引文
[1]舒金龙,陈良瑜,朱振福等.国外红外搜索跟踪系统的研制现状与发展趋势[J].现代防御技术,2003,第31卷第4期:47-51.
    [2]李富栋.机载红外搜索与跟踪系统的现状与发展[J].激光与红外,2008,38(5):409-412.
    [3]王泽和.舰用IRST系统的发展及应用前景.现代防御技术.2001,29(1):46-49.
    [4]李承选,朱斌.国外舰载红外搜索跟踪系统[J].国防科技,2005年第8期:38-41.
    [5]蒋鸿旺.法国―旺皮尔‖系列IRST系统.舰船光学.1998年第1期:20-24.
    [6]Steven R. Barrios, etal. Staring infrared panoram ic sensor(SIRPS) for surveillanceand threat detection[J]. SPIE,1997,3061:585-590.
    [7]James R Buss. Staring infra red panoramic sensor(SIRPS)[J]. SPIE,1998,3436:743-762.
    [8] Zvi Schne ider, etal. ELTAc s IRST defense and Self protection system[J]. SPIE,2007,6542:32.
    [9]王颖丽.第三代红外搜索与跟踪(IRST)系统[J].激光与红外,2009,30(9):1017-1021.
    [10]昌强.以色列研发新一代海上IRST系统[J].应用光学,2007,28(2):150.
    [11]Mark Eve re tt, e t a.l A naval infrared search and track demonstrator and its fusionwith other ship sensors[J]. SPIE,2006,6206:26-28.
    [12] Pierre Olivier Nougues, etal. Third generation naval IRST using the step and starearchitecture [J]. SPIE,2008,6940:1B.
    [13]吴晗平,易新建.红外搜索系统的现状与发展趋势[J].激光与红外,2003,33(6):403-405.
    [14]王春勇.红外系统中的扫描型和凝视型FPA[J].红外技术,2003,25(1):1-6.
    [15]罗军辉,姬红兵,王延光.全向红外搜索跟踪系统的设计与实现[J].红外与激光工程,2007,36(6):869-872.
    [16] D. A. Scribner, M. R. Kruer, C. J. Gridley, Physical Limitations to NonuniformityCorrection in Focal Plane Arrays, SPIE, Vol.865:185-201,1987
    [17] C. L. Carrison and N. A. Foss, Nonuniformity compensation for staring infraredfocal planes, SPIE, Vol.178:99-109,1979
    [18] To R. Hsing, Correction of pixel nonuniformity for solid-state imagers, SPIEVol.292:218-224,1981
    [19] A. F. Milton, F. R. Barone, M. R. Kruer, Influence of nonuniformity on infraredfocal plane array performance, SPIE Opt. Eng, Vol.24(5):855-865,1985
    [20]刘会通,易新建.红外焦平面阵列非均匀性的两点校正及依据[J].红外与激光工程,2004,33(1):76-78
    [21] June KeunJi, Jae Ryong Yoon, Kyuman Cho. Nonuniformity correction scheme foran infrared camera including the background effect due to camera temperaturevariation, SPIE Opt.2000,Vol.39,No.4:936-940.
    [22] P.M. Narendra, Scene-based nonuniformity compensation for imaging sensors,IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4(1):57-61,1982.
    [23] S. N. Torres, Esteban M. Vera, Rogrigo A. Reeves, et al, Adaptive scene-basednonuniformity correction method for infrared focal plane arrays, SPIE,Vol.5076:130-138,2003
    [24] P.M. Narendra. Reference free non-uniformity compensation for staring arrays,SPIE, Vol.252:10-17,1980
    [25] John G. Harris and Yu-Ming Chiang, Nonuniformity correction of infrared imagesequences using the constant-statistics constraint, IEEE Transactions on imageprocessing, Vol.8, No.8,August1999.
    [26] M. M. Hayat, S. N. Torres, E. E. Armstrong, B. Yasuda. Statistical algorithm fornonuniformity correction in focal-plane arrays, OSA Applied Optics,Vol.38:772-780,1999.
    [27] Sergio N. Torres, Esteban M. Vera, Rogrigo A. Reeves, et al, Adaptivescene-based nonuniformity correction method for infrared focal plane arrays, SPIE,Vol.5076:130-138,2003.
    [28] S. N. Torres, M. M. Hayat, E. E. Armstrong, B. Yasuda, A kalman-filteringapproach for nonuniformity correction in focal-plane arrays sensors, SPIE,Vol.4030:196-205,2000.
    [29] D.A. Scribner, K.A. Sarkady, M.R. Kruer, J.T. Caulfield, Adaptive nonuniformitycorrection for IR Focal Plane Arrays Using Neural Networks, Infrared Sensors:Detectors, Electronics, and Signal Processing, SPIE[C],1991,1541:100-109.
    [30] D.A. Scribner, K.A. Sarkady, M.R. Kruer, etal. Adaptive retine-like preprocessingfor imaging detectors arrays, Proc. Of the IEEE international conference on neuralnetworks, Vol.25:1955-1960,1993.
    [31]拜丽萍,刘上乾.基于小波分析的红外焦平面阵列非均匀性校正算法[J].红外与激光工程,2003,32(4):364-367.
    [32]张峰,刘上乾,汪大宝.一种新的基于平稳小波变换的红外焦平面非均匀性校正技术[J],光子学报,2009,38(8):2135-2138.
    [33]Wang J, Cohen P, Herniou M. Camera Calibration with Distortion Models andAccuracy Evaluation[J]. IEEE Trans On PAMI,1992,14(10):965-980.
    [34]Wang D, Wang L. Global Motion Parameters Estimation Using a Fast and RobustAlgorithm[J]. IEEE Trans On Circuits and Systems for Videl Technology,1997,7(5):823-826.
    [35]Hilliard C I. Selection of a Clutter Rejuection Algorithm for Real-Time TargetDetection from an Airborne Platform[J]. SPIE,2000,4048:74-84.
    [36]Xiong Yan, Peng Jiaxiong. An Effective Method for Trajectory Detection ofMoving Pixel-sized Target[C]. Proceed of IEEE Inter Confer on Systems, Man andCybernetics, Vancouver, Canada,1995,3:2570-2575.
    [37]陈颖.序列图像中微弱点状运动目标检测及跟踪技术研究[D].成都:电子科技大学博士学位论文.2003.
    [38]Pohlig S C, Spatial-Temporal Deteetion of Electro-Optic Moving Targets[J].IEEE Trans on Aerospace and Electronic System,1995,31(2):608-616.
    [39]艾斯卡尔.红外搜寻与跟踪系统关键技术研究[D].成都:电子科技大学博士学位论文.2003.
    [40]Boaz Porat, Benjamin Friedlander. A Frequency Domain Algorithm forMulti-Frame Detection and Estimation of Dim Targets[J]. IEEE Trans On PatternAnalysis and Machine Intelliqence,1990,12(4):398-401.
    [41]L Yang, J Yang, K Yang. Adaptive detection for infrared small target under sea-skycomplex background [J]. Electronics letters,2004,40(17):1083-1085.
    [42]Thayaparan T, Kennedy S. Detection of a Maneuvering Air Target in Sea-ClutterUsing Joint Time-Frequency Analysis Techniques[J]. IEE Processings, Radar, Sonarand Navigation,2004,151(1):19-30.
    [43] Chapa J Q, Rao R M. Algorithms for Designing Wavelets to mathca specifiedsignal[J]. IEEE Trans On Signal Processing,2000,48(12):3395-3406.
    [44]Daubechies I. The Wavelet Transform, Time-Frequency Localization and SignalAnalysis[J]. IEEE Trans On Information Theory,1990,36(5):961-1005.
    [45]D P Cassent, J S Smokelin, A Ye. Wavelet and Gabor Tranforms for Detection andRecovery[J]. Optical Engineering,1992,31:1893-1898.
    [46]R N Strickland, H I Hahn. Wavelet Transform Methods for Object Detection andRecovery[J]. IEEE Trans On Image Processing,1997,6(5):724:735.
    [47]D Daviesy, P Palmery, M Mirmehdiz. Detection and Tracking of Very Small LowContrast Objects[C]. British Machine Vision Conference,2001,599-608.
    [48]Sun Yuqiu, Tian Jinwen, Liu Jian. Background Suppression Based-on WaveletTransformation to Detect Infrared Target[C]. Prceedings of4th Conference onMachine Learning and Cybernetics,2005, Guangzhou,18-21.
    [49]叶增军,王江安,阮玉,等.海空复杂背景下红外弱小点目标的检测算法[J].红外与毫米波学报,2000,19(2):121-124.
    [50]刘瑞明,刘尔琦,杨杰,等.核Fukunage-Koontz变换检测红外弱小目标[J].红外与毫米波学报,2008,27(1):47-51.
    [51]Yong Yang, Yang Xinfang, Wang Bingxun, etal. A Small Target Detection MethodBased on Generalized S-Transform[C]. International Conference on ApperceivingComputing and Intelliqence Analysis,2008:189-192.
    [52]French P A, Zeidler J H, Ku W H. Enhanced detectability of small objects incorrelated clutter using an improved2-D adaptive lattice algorithm[J]. IEEETransactions on Image Processing,1997,6(3):383-397.
    [53]ZHANG Bi-yin, ZHANG Tian-xu, CAO Zhi-guo, etal. Fast new small-targetdetection algorithm based on a modified partial differential equation in infraredclutter [J]. Optical Engineering,2007,46(10):106401-1.
    [54]Barnett J. Statistical analysis of median subtraction filtering with application topoint target detection in inrfared background[J]. Proc. SPIE.1989,1050:10-18.
    [55]杨卫平,沈振康.红外图像序列小目标检测预处理技术[J].红外与激光工程,1998,27(l):23-28.
    [56]Gonzalez R C, Woods R E. Ditical Image Processing,2nd Edition[M]. USA:Prentice Hall,2003.
    [57]Fan H, Wen C. Two-dimensional adaptive filtering based on projection algorithm[J].IEEE Trans on Signal Proeessing,2004,52(3):832-838.
    [58] Azimi Sadjadi M R. Estimation and Identification for2-D block KalmanFiltering[J]. IEEE Trans On Signal Processing,1991,39(8):1885-1889.
    [59]Sang Hongshi, Shen Xubang, Chen Chaoyang. Architecture of a Configurable2-DAdaptive Filter Used of Small Object Detection and Digital Image Processing[J].Optical Eng,2003,43(8):2182-2198.
    [60]聂洪山,沈振康.一种基于Winer滤波的红外背景抑制方法[J].国防科技大学学报,2003,25(3):51-54.
    [61]P Wang, J W Tian, Ch Q Gao. Infrared Small Target Detection Using DirectionalHighpass Filters based on LS-SVM[J]. Electronics Letters,2009,45(3):156-158.
    [62]French P A. Enhanced Detect Ability of Small Objects in Correlated Clutter Usingan Improved2-D Adaptive Lattice Algorithm[J]. IEEE Trans on Image Processing,1997,6(3):383-397.
    [63]Youlal H, Janati M, Najim M. Two-Dimensional Joint Process Lattices forAdaptive Restoration of Images[J]. IEEE Trans on Image Processing,1992,1(3):366-378.
    [64]Tian Y, Tan T N. Do singular values contain adequate information for facerecognition [J]. Pattern recognition.2003,36(3):649-655.
    [65]Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony ofcooperating agents [J]. IEEE Trans Syst Man Cybern part B,1996,26(1):1-13.
    [66]Nezamabadi-Pour, S. Saryazdi, and E. Rashedi, Edge detection using ant algorithms[J]. Soft Computing,2006,10:623-628.
    [67]Jing Tian, Weiyu, Shengli Xie. An ant colony optimization algorithm for imageedge detection [C]//IEEE Congress on Evolutionary Computation (CEC),Hongkong,2008:751-756.
    [68]Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]. In: Proc.6th Int. Conf. Computer Vision. New Delhi, India.1998,839-846.
    [69]Cai Chao, Ding Mingyue Zhou Chengping. Bilateral filtering in the waveletdomain[J]. Proceedings of SPIE.2001,4552:246-252.
    [70]靳明,宋建中.一种自适应的图像双边滤波方法[J].光电工程.2004,31(7):65-72.
    [71]蔡超,丁明跃,周成平,等.小波域中的双边滤波[J].电子学报.2004,32(1):128-131.
    [72]王丽辉,袁保宗.鲁棒的模糊C均值和点云双边滤波去噪[J].北京交通大学学报.2008,32(2):18-21.
    [73]张直,陈刚.基于偏微分方程的图像处理[M].北京:高等教育出版社,2003.
    [74]吴迪光.变分法[M].北京:高等教育出版社,1987.
    [75]李荣华,冯国帧.微分方程数值解法[M].北京:人民教育出版社,1980.
    [76]I. Daubechies. Ten Lectrues on Wavelets[M]. SIAM, Philadelphia,1992.
    [77]崔锦泰著,程正兴译.小波导论[M].西安:西安交通大学出版社,1995.
    [78]李世雄.小波变换及其应用[M].北京:高等教育出版社,1997.
    [79]Stephane Mallat, Gabriel Peyre. A wavelet tour of signal processing: the sparseway[M].3nd Ed, San Diego: Academic Press,2009.
    [80]焦李成,侯彪,王爽,等.图像多尺度几何分析理论与应用[M].西安:西安电子科技大学出版社.2008.
    [81]秦翰林.红外监视告警系统中复杂背景抑制算法研究[D].西安电子科技大学博士学位论文,2010.
    [82]李凡.复杂背景抑制及弱小目标检测算法研究[D].西安电子科技大学博士学位论文,2010.
    [83]林颖.基于非采样Contourlet与全变差的图像去噪研究[D].汕头大学硕士学位论文,2009.
    [84]汪国有,陈振学,李乔亮.复杂背景条件下的红外弱小目标检测的方法研究综述[J].红外技术,2006,28(5):287-292.
    [85]杨磊.复杂背景条件下的红外弱小目标检测与跟踪算法研究[D].上海交通大学博士论文.2006.
    [86]张惠娟,梁彦,程咏梅,等.运动弱小目标先跟踪后检测技术的研究进展[J].红外技术.2006,28(7):423-430.
    [87]Zhu Fengyun, Qin Shiyin. A Detection Alogrithm for Maneuvering IR Point Targetand Its Performance Evaluation[C]. International Coference on Machatronic andEmbedded System and Application,2006:1-5.
    [88]王广君,田金文,柳健.基于局部熵的红外图像小目标检测[J].红外与激光工程,2000,29(4):26-29
    [89]Wang G D, Chen C Y, Shen X B. Facet-Based Infrared Small Target DetectionMethod[J].2005,41(22):1244-1246.
    [89]Zheng Shen, Xiong Chengyi, Tian Jinwen, et al. One Efficient Facet-based SmallTarget Detection Technigue[J].2004, International Conference On SignalProcessing,2004,1:885-888.
    [90]Cao Lanying. An Unsupervised Target Detection Algorithm in SAR Images[J].Conference on Synthetic Aperture Radar,2007:529-532.
    [91]Leung H, Dubash N, Xie N. Detection of Small Objects in Clutter Using a Ga-RBFNeural Network[J]. IEEE Trans. On Aerospace and Electronic Systems,2002,38(1):98-118.
    [92] Wang G, Rafact I M, McVey E S. A Pipeline Algorithm for Detection andTracking of Pixel-Sized Target Trajectories[A]. SPIE[C].1990,1305, pp:167-176.
    [93] Diani M, CorsiniG Baldacci A. Space-time processing for the detection of airbornetargets in IR image sequences LEE Proceedings of Vision[J]. Image and SignalProcessing.2001,148(3),:151-157.
    [94] Silverman J, Caefer C. E. and Vickers V. E. Temporal filtering for point targetdetection instaring IR iagery; II. Recursive variance filter[C]. Proc. SPIE.1998,3373, pp:45-53.
    [95] Xiong Yan, Peng Jiaxiong et al. An Effective Method for Trajectory Detection ofMoving Pixel-sized Target[C]. Proceed. of IEEE Inter. Confer. on System s, Manand Cybernetics, Vancouver, Canada.1995,3, pp:2570-2575.
    [96]刘靳,姬红兵.基于移动式加权管道滤波的红外弱小目标检测[J],西安电子科技大学学报2007,34(5), pp:743-747.
    [97]Liou R.,Azimi MR.Dim target deteetion using high order correlation method. IEEETransactions on Aeros Paceand Eleetronic Systems.1993,29(3):841-856.
    [98]Liou R.,Azimi MR..Dim target deteetion and cluttered rejeetion using modifiedhigh ordereor relation neural network, Proeeedings of the DCNN Baltimore(IV).1992:289-294.
    [99]Uras S, Girosi F, Verri A. A computational approach to motion perception[J].BiolCybern.1988,60, pp:79-87.
    [100] Markandey V. Motion estimation for moving target detection[J]. IEEE Trans onAES.1996,32(3):866-874.
    [101]Reichardt W E, Schlogl R W. A two dimensional field theory for motioncomputation[J]. Biol Cybern.1988,60, pp:23-25.
    [102]Shan Fu. Pridmore, T. Image flow field detection[J]. Signal Processing.1996,2(3):1090-1093.
    [103] Bimbo A D, Nesi P, Jorge L C Sanz. Optical flow computation using extendedconstraints[J].IEEE Trans Image Processing.1996,5(5):720-739.
    [104] Ruiming Liu, Erqi Liu, Jie Yang, et al. Automatically detect and track infraredsmall targets with kernel Fukunaga–Koontz transform and Kalmanprediction[J].APPLIED OPTICS.2007,46(31):7780-7791.
    [105] Yuan Cao, RuiMing Liu, Jie Yang. Infrared Small Target Detection UsingPPCA[J]. Int J Infrared Milli Waves.2008,29,pp:385-395.
    [106] Delian Liu, Jianqi Zhang, Weike Dong. Temporal Profile Based Small MovingTarget Detection Algorithm in Infrared Image Sequences[J]. Int J Infrared MilliWaves.2007,28, pp:373-381.
    [107] Zhenming Peng, Qiheng Zhang, Jinru Wang, Qinping Zhang. Dim targetdetection based on nonlinear multifeature fusion by Karhunen-Loeve transform[J].Opt.Eng.2004,43(12):2954-2958.
    [108]刘瑞明,刘尔琦,杨杰等.核Karhunen-Loeve变换红外小目标检测[J].红外与毫米波学报,2008,27(1):47-50.
    [109] BARNIV Y. Dynamic programming solution for detecting dim movingtargets[J].IEEE Trans. on AES.1985,21(1):144-156.
    [110] Tonissen S. M., Evans R. J. Performance of Dynamic Programming Techniquefor Track-before-detect[J]. IEEE Trans on AES.1996,32(4):1444-1450.
    [111] James A., Henry P. Detection and Tracking of Low-observable Targets throughDynamicProgramming[J]. SPIE Signal and Data Processing of Small Targets.1990,1305, pp:206-217.
    [112] Arnold, J., Shaw, Sand Pasternack H. Efficient target tracking using dynamicprogramming[J]. IEEE Trans. Aerospace and Electrical Systems,1993,29(1):44-56.
    [113]Liou R.,Azimi MR.Dim target deteetion using high order correlation method.IEEE Transactions on Aeros Paceand Eleetronic Systems.1993,29(3):841-856.
    [114]Liou R.,A zimi MR..Dim target deteetion and cluttered rejeetion using modifiedhigh order correlation neural network, Proeeedings of the DCNN Baltimore(IV).1992:289-294.
    [115] Ren-jean liou, Mahmood R, Azimi-sadjadi. Multiple Target Detection UsingModified High Order Correlations[J]. IEEE Trans. on AES.1998,34(2):553-567.
    [116]Steven D Blostein, Thomas S Huang. Detection of small moving objects in imagesequences using multistage hypothesis testing[J]. IEEE Trans. On Signal Processing,1991,39(7):1611-1629.
    [117]Blackman, S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEEAerospace and Electronic Systems Magazine,2004,19(1):5-18.
    [118]宋柳平.图像序列中小信杂比点目标的检测方法研究[D].国防科大博士论文,1992.
    [119]C. E. Caefer, J. Silverman, J. M. Mooney, et al. Temporal filtering point targetdetection in staring IR imagery: I. damped sinusoid filters[C]. Proc. SPIE.1998,3373:111-122.
    [120]Koch W., Van K. G. Multiple hypothesis track maintenance with possiblyunresolved measurements[J]. IEEE Trans on AEIS.1997,33(3):883-892.
    [121]Alexis P. T., Dana H. B. Detection of point targets in image sequences byhypothesis testing a temporal test fist approach[C]. IEEE Conference on Acoustics,Speech and Signal Processing[C].1999,6:3377-3380.
    [122]D J C Andrew, et al. Inexact Graph Matching Using Genetic Search[J]. PatternRecognition,1997,30(7):953-970.
    [123]Roth M W. Neural Network for Extraction of Weak Target in High ClutterEnvironments[J]. IEEE Trans. on Sys. Man. Cyber.,1989,19(5):1210-1217.
    [124]Bronskill J F, et al. A Knowledge-Based Approach to the Detection, Tracking andClassification of Target Formations in Infrared Image Sequences[C]. IEEEConference on CVPR,1989:153-158.
    [125]Irani M, Anandan P. A Unified Approach to Moving Object Detection in2D and3D Scences[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(6):577-589.
    [126]Y Z.Cheng.Mean shift,mode seeking,and clustering.IEEE Transactions onPattern Analysis and Machine Intelligence,1995,17(8):790-799.
    [127]D.Comaniciu,E Meet.Mean shift analysis and applications.Proceedings of theIEEE International Conference on Computer Vision,1999,2:1197-1203.
    [128]D.Comaniciu,P.Meet.Mean shift:a robust approach toward feature spaceanalysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
    [129]D.Comaniciu,V Ramesh,P.Meer.Real-time tracking of non-rigid objects usingmean shift.Proceedings of the IEEE Conference on Computer Vision and PatternRecognition,2000.2:142-149.
    [130]D.Comaniciu,V Rarnesh,E Meer.The variable bandwidth mean shift anddata-driven scale selection.Proceedings of the IEEE Intemational Conference onComputer Vision,2001,I:438-445.
    [131]T.Kailath.The Divergence and Bhattacharyya Distance Measures in SignalSelection.IEEE Transactions on Communication Technology,1967,15(1):52-60.
    [132]Z.Li,Q.L.Tang,N.Sang.Improved mean shift algorithm for occlusionpedestrian tracking.Electronics Letters,2008,44(10):622-623.
    [133]连洁洁,韩传久.Mean Shift的红外目标自动跟踪方法[J].微计算机信息,2008,24(1):279-281.
    [134]高国旺,刘上乾,秦翰林,等.强背景噪声下红外目标的鲁棒性跟踪算法[J].西安电子科技大学学报,2010,37(6):1098-1102.
    [135]D.Comaniciu,V Ramesh,P Meer.Kernel-based object tracking.IEEETransactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
    [136]R.E.Kalman.A new approach to linear filtering and prediction problems.Transactions of ASME-Journal of Basic Engineering,1960,82,pp:35-45.
    [137]R.E.Kalman,R.S.Buoy.New results in linear filtering and prediction theory.Transactions of the ASME-Journal of Basic Engineering,1961,83,pp:95-107.
    [138]B.F.La Scala,R.R.Bitmead.Design of an extended Kalman filter frequencytracker.IEEE Transactions on Signal Processing,1996,44(3):739-742.
    [139]C.S.Hsieh.General two-stage extended Kalman filters.IEEE Transactions onAutomatic Control,2003,48(2):289-293.
    [140]S.J.Julier,J.K.Uhlmann,H.F.Durrant-Whyte.A new approach for filteringnonlinear systems.Proceedings of the American Control Conference,1995,3:1628-1632.
    [141]S.J.Julier,J.K.Uhlmann.Consistent debiased method for convening betweenpolar and Cartesian coordinate systems.Proceedings of SPIE,1997,3086:110-121.
    [142]S.J.Julier,J.K.Uhlmann.A new extension of the Kalman filter to nonlinearsystems.Proceedings ofSPIE,1997,3068:182-193.
    [143]E.A.Wan,R.Van Der Merwe.The unscented Kalman filter for nonlinearestimation.Proceedings of the IEEE Symposium on Adaptive Systems for SignalProcessing,Communications,and Control,2000,153-158.
    [144]D.J.Salmond,H.Birch.A particle filter for track—before-detect.Proceedingsof the2001American Control Conference,200l,5:3755-3760.
    [145]M.Rollason,D.Salmond.A particle filmr for track-before-detect of a targetunknown amplitude.Proceedings of IEE Seminar-Target Tracking:AlgorithmsandApplications,2001,1:1-4.
    [146]M.S.Arulampalam,S.Maskell,N.Gordon,et a1.A tutorial on particle filtersfor online nonlinear/non-Gaussian Bayesian tracking.IEEE Transaction on SignalProcessing,2002,50(2):174—188.
    [147]张惠娟.基于贝叶斯滤波的先跟踪后检测算法研究.西安:西北工业大学硕士学位论文,2006.
    [148]R.van der Merwe,N.de Freitas,A.Doucet,et a1.The unscented particlefilter.Technical Report CUED/F-INFENG/TR380of Cambridge UniversityEngineering Department,2000.
    [149]W.Y Guo,C.Z.Han,M.Lei.Improved unscented particle filter for nonlinearBayesian estimation.Proceedings of the International Conference on InformationFusion,2007.
    [150]R.H.Zhan,Q.Xin,J.W.Wan.Modified unscented particle filter for nonlinearBayesian tracking.Journal of Systems Engineering and Electronics,2008,19(1):7-14.
    [151]Q.Cheng,P.Bondon.A new unscented particle filter.Proceedings of the IEEEInternational Conference on Acoustics,Speech and Signal Processing:3417-3420.
    [152]Boers Y, Driessen J N. Interacting Multiple Model Particle Filter[J]. IEE Proc.Radar Sonar Navig.,2003,150(5):344-349.
    [153]刘贵喜高恩克范春宇.改进的交互式多模型粒子滤波跟踪算法[J].电子与信息学报,29(12):2810-2813
    [154]齐立峰,冯新喜,李峰.多速率交互式多模型粒子滤波研究[J].指挥控制与仿真,2008,30(2):5-7.
    [155]汪大宝.复杂背景下的红外弱小目标检测与跟踪技术研究[D].西安电子科技大学博士学位论文,2010.
    [156]Varad R. Scalar correlation algorithm: multi-target multiple sensor data fusion[C].Proceeding of the first National Symposium on Sensor Fusion, GACIAC,1988,433-441.
    [157]何友,王国宏,陆大琻,等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [158]程铮.多传感器目标跟踪中的数据融合理论与算法[D].西北工业大学硕士论文,2007.
    [159]Bar-Shalom Y, Li X R. Multitarget-multisensor tracking: Principles andtechniques,Storrs,CT:YBS,1995.
    [160]Bar-Shalom Y. on track-to track correlation Problem,IEEE TransactionsonAutomatic Control,1981,26(2):571-573.
    [161]张丙军,何红,张冲.分布式多传感器多目标航迹关联处理算法研究[J].武器装备自动化,2008,27(12):24-27.
    [162]何友,彭应宁.分布式多传感器系统航迹关联算法评述[J].系统工程与电子技术,1998,21(10):15-18.
    [163]何友,彭应宁,陆大等.分布式多传感器数据融合中的双门限航迹相关算法[J].电子科学学刊,1997,19(6):721-728.
    [164]何友,彭应宁,陆大等.多传感器数据融合中两种新的航迹相关算法[J].电子学报,1997,25(9):10-14.
    [165]何友,陆大,彭应宁.一种多目标多传感器航迹相关算法[J].清华大学学报,1997,37(9):108-113.
    [166]毛一凡,饶士钧.对修正的K近邻域关联算法的仿真与可信性评估[J].计算机仿真,2004,21(7):112-113.
    [167]何友,彭应宁,陆大.多目标多传感器模糊双门限航迹相关算法[J].电子学报,1998,26(3):15-19.
    [168]何友,陆大,彭应宁等.基于模糊综合函数的航迹相关算法[J].电子科学学刊,1998,20(5):.91-96.
    [169]杨春玲,刘国岁等,非线性系统中多传感器目标跟踪融合算法研究[J].航空学报,2000,(6):512-515
    [170]罗晓清.多传感器图像融合理论及其应用研究[D].江南大学博士学位论文,2010.
    [171]李晖晖.多传感器图像融合算法研究[D].西北工业大学博士学位论文,2006.
    [172]杨斌.像素级多传感器图像融合新方法研究[D].湖南大学博士学位论文,2010.
    [173]杨宜禾,邱敏.红外系统[M].北京:国防工业出版社,1985.
    [174]徐南荣,瞿荣贞.飞行器的红外特性[J].红外与激光工程,1999,(2):8-14.
    [175]陈炳峰,方亦浩,徐晓刚.飞机的红外辐射特征研究[J].航空兵器,2005,(5):30-32.
    [176]张海兴,张建奇,杨威.飞机红外辐射的理论计算[J].西安电子科技大学学报,1997,24(1):
    [177]韩玉阁,宣益民.目标与背景的红外辐射特研究及应用[J].红外技术.2002,24(4):16-19.
    [178]冯艳华,岳慧.海天背景红外辐射特性研究.制导与引[J].2010.31(4):39-42.
    [179]寇小明.红外成象观测系统性能评价方法研究.西安电子科技大学博士论文[D],2011年.
    [180]张峰.红外成像ATR系统中的数字图像处理及识别检测分类技术研究[D].西安电子科技大学博士学位论文,2010年.
    [181]李庆.基于成像制导状态的自适应IRFAP非均匀性校正技术研究[D].西安电子科技大学博士学位论文,2006年.
    [182]高国旺,刘上乾,秦翰林等.基于高性能DSP的红外焦平面阵列非均匀性实时校正[J].光电子·激光,2010,21(5):664-667.
    [183] M.N.Do,Martin Vetterii.The contourlet transform:An efficient directionalmulti resolution image representation. IEEE Trans.on Image Processing,2005,14(12):2091-2106.
    [185]ArthurL.da Cunha,Jianping Zhou,etal.The nonsubsampled contourlet transformtheory,design,andapplications[J].IEEE.Trans.ImageProc,2006,15(10):3089-3101.
    [184]郭旭静,王祖林,侯正信.乘性噪声消除的全相位分级非下采样Contourlet算法[J].电子测量与仪器学报,2008,22(2):86-90.
    [186]李莉.图像的多尺度几何分析与内插研究[D].天津大学博士学位论文,2009.
    [187]侯正信.三种2维重叠数字滤波器的构造[J].天津大学学报,1985,1:29-49.
    [188]侯正信.全相位列率滤波器的设计与实现[J].信号处理,2001,17(增刊):132-135.
    [189]侯正信,王兆华,杨喜.全相位DFT数字滤波器的设计与实现[J],电子学报,2003,31(4):539-543.
    [190]王宁.基于高斯粒子滤波的红外点目标跟踪算法研究[D].南京航空航天大学硕士学位论文,2007.
    [191]陈艳.基于高斯粒子滤波的水下目标跟踪技术[D].哈尔滨工程大学,2010.
    [192]韩松,张晓林,陈雷,等.基于改进高斯粒子滤波器的目标跟踪算法[J].2010,30(6):191-194.
    [193]陈非石.双红外传感器分布式信息融合的研究[D].大连理工大学硕士学位论文,2004.
    [194]纪慧泉,黎宁.一种基于投影不变量的目标交接改进方法[J].计算机与数字工程,2012,40(4):78-80.
    [195]陈守熠,赵瑛琪.模糊优选(优化)理论与模型[J].应用数学,1993,6(1):1-6.
    [196]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1986:1-35页
    [197]何友,彭应宁,陆大.多目标多传感器模糊双门限航迹相关算法[J].电子学报,1998,26(3):15~19.
    [198]何友,陆大,彭应宁等.基于模糊综合函数的航迹相关算法[J].电子科学学刊,1998,20(5):.91-96.
    [199]李志刚.边界重叠图像的一种快速拼接算法[J].计算机工程.2000,26(5).37-38.
    [200] David G.Lowe,Distinctive Image Features from Scale·Invariant Key points,International Journal ofComputer Vision,v01.2,no.60,PP:91-110,2004
    [201] Forssen P,Lowe D。Shape descriptors for maximally stable extremal regions [C]。IEEE International Conference on Computer Vision,2007
    [202] David G.Object Recognition from Local Scale-invariant Features[J].InternationalConference on Computer Vision,1999,9(2):1150-1157.
    [203]刘立,彭复原.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1):181-184.
    [204] Bay Herbert,Tuyte laars Tinne,Gool Luc Van.SURF:Speeded Up RobustFeatures[J].Computer Vision and Image Understanding,2008,110(3):346-359.
    [205] Christ offer Valgren, Aehim Lilienthal. SIFT,SURF and Seasons:Long-termOutdoor Localization Using Loeal Features.[C].Proe.European Conference onMobileRobots,Freiburg,Germany,ECMR,2007:253-258
    [206] Arturo Gil,Osear Mozos, MonieaBallesta, Osear Reinoso. A comparativeevaluation of interest point detectors and local descriptors for visualSLAM[J].Machine Vision and Applications,2009, Published on line.
    [207]周军太,龙永红.一种改进SURF算法的图像配准[J].湖南T业大学学报,2010,25(3):95-99.
    [208] M.Fischier,R.Bolles.Random sample consensus:A Paradigm for model fittingWith application to image analysis and automated cartography. Communcations oftheACM.1981,24.381-395.
    [209]王海鹰.基于FPGA+DSP的模块化红外图像实时处理系统的研制[D].南京理工大学硕士学位论文,2003.
    [210] TMS320DM642Video/Imaging Fixed-Point Digital Signal ProcessorData Manual[Z]. Texas Instruments,2004.
    [211]曹治国,王岳环,左峥嵘,等.多总线多DSP实时图像处理操作系统的设计与实现[J].计算机学报,2002,25(7):708-715.
    [212]石岩,毛海岑,张天序,等.面向并行图像处理的实时分布式操作系统的设计与实现[J].小型卫星计算机系统,2005,26(10):1821-1827.
    [213] Michael J Flynn, Kevin W Rudd. Parallel Architectures[J]. ACM ComputingSurveys,1996,28(1):67-70.
    [214] TI TMS320C64X DSP Video Port/VCXO Interpolated Control(VIC) PortReference Guide[Z].2003-04.
    [215] TI TMS320DM64X DSP Video Port to Video Port Communication [Z].2006-09.
    [216]刘鹏,姚庆栋.实时图像处理并行操作系统的微内核设计与实践[J].电子学报,1999,27(7):42-46.
    [217]M Cvihovic, M Kune. An Approach to The Design of Distributed Real-TimeOperating Systems[J]. Microprocessors and Microsystems,1992,16:81-90.
    [218]Reference Frameworks for eXpressDSP software: RF5, An Extensive,High-Density System[Z]. TI Inc,2003.
    [219] Mullanix T, Magdic D, Wan V, et al. Reference Frameworks fore Xpress DSPSoftware:RF5,an Extensive, High-density System [R]. Texas Instruments.2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700