用户名: 密码: 验证码:
多元林业信息融合的立地知识发现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立地作为森林生长外部环境的总和,直接影响到森林的生产力大小和健康状况。随着森林资源调查技术和数据获取手段的不断发展,森林资源数据已经具备了多元化、海量化和信息化的特点,更加丰富的森林资源数据中隐含着大量具有实用价值的森林立地信息和知识。但是长期以来,有关立地的大量研究(立地生产力,立地因子)仍然使用单一传统的森林资源小班调查数据,多元化的森林资源数据未得到综合和充分的利用,并且研究手段也较为单一,缺少多种方法的对比研究,使得海量森林资源数据面临着日益显著的“信息爆炸但知识匮乏”问题。为了充分利用多元化海量化的森林资源数据,发现其中隐含的信息知识,为立地研究提供新的方法、理论和参考依据。研究以森林资源小班调查数据、多光谱遥感数据、数字高程模型数据(DEM)为基础,采用空间数据挖掘技术,提取多元化的林业信息,以GIS为平台,实现了多元林业信息的融合和可视化表达;采用空间分析、决策树分类、神经网络预测、空间离散场相关分析等一系列数据挖掘理论和方法,对森林立地的环境因子、生产力知识、因子相关性知识进行提取研究和分析。具体研究内容如下:
     (1)立地空间数据挖掘
     研究基于内蒙古旺业甸林场的DEM数据和多光谱遥感影像,使用聚类、聚合、信息复合、追踪和窗口、光谱波段组合等空间数据挖掘技术进行森林立地微观地形因子、宏观地形因子以及生物因子进行提取和分析,得到海拔、坡度、坡向、坡度变率、坡向变率、地表粗糙度、地面起伏度、坡形、DVI、RVI、NDVI、TSAVI,12项立地环境因子指标,并实现成果因子统一平台的可视化表达。研究成果丰富了立地环境因子的考量范围,为低成本大面积的森林立地条件研究提供有效的方法途径,有助于更进一步的立地知识数据挖掘研究。
     (2)立地宜林性能预测研究
     基于上述提取的微观地形因子、宏观地形因子、生物因子结合森林资源小班调查数据构成的多元林业信息,本文使用决策树技术和人工神经网络技术对多项立地因子与立地宜林性能间的关系进行了分析,根据多元林业信息的结构特点,研究采用Boosting、交叉验证、Group symbolics以及局部修剪的机制改进了以往利用C5.0决策树,通过引入敏感度分析的机制并采用共轭梯度法改进了BP神经网络模型,以落叶松为例建立了立地宜林性能预测模型,形成8套不同的方案,对比研究了不同方案的预测结果和模型性能,并对结果进行可视化表达。研究结果表明,本文提出的两种改进算法最为适于立地宜林性能的预测,具有理想的预测性能:研究还发现通过空间数据挖掘技术提取的多项环境因子扩充了立地因子的信息量,提高了立地宜林性能的预测精度,并且具有大范围多时相预测的潜力,可为森林立地生产潜力评价提供有效依据。
     (3)立地空间离散场相关知识提取
     研究选取森林资源小班调查数据中10项典型的离散数据结合小班空间位置属性构成森林立地空间离散场,采用信息熵的理论方法,通过计算局部空间内离散场的信息量以及局部空间与整体的协调性,定量分析并提取多项离散型因子与立地质量等级间的相关指数。结果表明,在10项因子中不同的立地类型和小班内的优势树种与立地质量相关程度最高,森林起源则与立地质量等级表现出相互独立的关系。研究克服了以往使用统计学原理以及灰色系统理论均无法计算立地空间离散场相关性的缺陷,实现了对立地因子中的离散型属性间关系的定量计算和表达。
As the external environment of forest growth, Site directly affects forest productivity and health status. With the development of forest resources survey and data acquisition technology, forest resource data already has a diversified, sea quantization and information characteristics. More abundant forest resources data implies a large number practical information and knowledge of the forest site. But for a long time, a large number site research (site productivity, site factors) still use traditional forest resources survey data, a wide range of forest resource data have not been integrated and fully utilized, and research tools rather monotonous, lack comparison research of variety of methods. This makes the massive forest resources data facing an increasingly significant problem of information explosion but lack the knowledge. In order to take full use of the diversified sea quantified forest resource data, found implied information and knowledge, to provide new method, theory and reference for site research. Use forest resources survey data, multi-spectral remote sensing data, digital elevation model data (DEM), based spatial data mining technology to extract a wide range of forestry information, use GIS as platform achieved multi-forestry information fusion and visualization. Using spatial analysis, decision tree classification, neural network prediction, space discrete field analysis of a series of data mining theory and methods, extracted and analyzed environmental factors on forest site productivity knowledge, factors related knowledge. The specific contents are as follows:
     (1) Site spatial data mining
     The study based on DEM data and multi-spectral remote sensing image of the Neimengu Wangyedian forest farm. Using Clustering, aggregation, information composite, tracking and window spectral bands combination of spatial data mining technology. For forest site micro-topographic factors, macro topographic factors and biologicalfactor extracted and analyzed to obtain elevation, slope, aspect, slope variability, aspect variability, surface roughness, surface waviness, sloping, DVI, RVI, NDVI, TSAVI12site environmental factors. The research results enrich the site types of environmental factors, provide effective approaches for low-cost large area of forest site data mining researc.
     (2) Site barren performance prediction
     Based on the Micro-landform factor, macro-terrain factor and bio-factor extracted in the above part, binding the information of forest resources survey data constitutes multivariate forestry information. This article uses decision tree technology and artificial neural network technology analysis the relationship between the number of site factors and site barren performance. According to the structural characteristics of the multivariateforestry information, research using Boosting, Cross-validation, Group Symbolics, as well as local pruning mechanism improved C5.0decision tree, use the mechanism of the sensitivity analysis improved BP neural network model. Established the site barren performance prediction model, form8different experimental programs. The results show that the proposed two improved algorithms most suitable site barren performance prediction, the prediction performance is ideal. The study also found that number of environmental factors extracted by spatial data mining technology can expand the amount of site factors information, improve the prediction accuracy of the site barren performance, and provide potential for wide range of multi-temporal prediction.
     (3) Correlation knowledge extraction of site discrete space field
     Select10typical discrete data in forest resources sublot survey data combined with small class spatial location attributes formed forest site space discrete field. Use information entropy theory, by icalculating the local space and local space and the overall coordination of quantitative analysis and extracted a number of discrete factors and site quality rating index. The results showed that different site types and dominant tree species the highest degree of correlation between site quality in10factors, and origin of forest showed independent relationship. Research overcomed inadequate that conventional statistical principles and gray system theory can not calculated site space discrete field, Achieved calculation and expression of site discrete factors.
引文
1. 白降丽.森林资源管理信息系统建设相关规范的研究[D].北京林业大学研究生处,2007:35-36.
    2. 毕华兴,谭秀英,李笑吟.基于DEM的数字地形分析[J].北京林业大学学报,2005,27(2):49-53.
    3. 蔡毅,邢岩,胡丹.敏感性分析综述[J].北京师范大学学报(自然科学版),2008,44(1):9-16.
    4. 曾春阳,唐代生,唐嘉锴.森林立地指数的地统计学空间分析[J].生态学报,2010,30(13):3465-3471.
    5. 曾春阳.基于GIS的小班立地因子提取与立地评价研究[D].中南林业科技大学,2008.
    6. 曾伟生.云南省森林生物量与生产力研究[J].中南林业调查规划,2005,24(4):1-13.
    7. 陈薇,李健.数据挖掘在农村林业中的应用[J].森林工程,2007,23(4):82-84.
    8. 陈彦光,刘明华.城市土地利用结构的熵值定律[J].人文地理,2001,16(4):20-24.
    9. 成文丽.基于决策树的数据挖掘算法的技术研究[D].太原理工大学,2003.
    10. 段春香,董文渊,刘时才等.慈竹无性系种群生长与立地条件关系[J].林业科技开发,2008,22(3):42-4.
    11. 范大昭,张永生,雷蓉等.GIS数据自动更新技术的研究[J].测绘科学,2005,30(3):15-17.
    12. 范明,孟小峰.数据挖掘概念与技术[M].机械工业出版社,2007.3.
    13. 付晓,冯仲科,孟永庆.基于GIS的森林立地分析与评价研究[D].北京林业大学项士论文,2003.
    14. 高金萍.基于时态GIS的森林资源基础空间数据更新管理技术的研究[D].北京林业大学,2006.
    15. 顾云春.森林立地分类原理的探讨[J].林业科学,1991,27(3):246-252.
    16. 郭晋平,周志翔.景观生态学[M].中国林业出版社,2007.
    17. 郭仁忠.空间分析(第二板)[M].北京:高等教育出版社,2001.
    18. 郭艳荣,吴保国,刘洋,等.立地质量评价研究进展[J].世界林业研究,2012,25(5):47-52.
    19. 国家林业局科学技术司.我国的“数字林业”的建设与规划[J].林业科技管理,2001,(2):26-30.
    20. 国家林业局.数字林业技术体系标准规范[S].2003.
    21. 国家林业局.数字林业标准与规范[G].2008.
    22. 国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业人学学报,2003,31(2):13-16.
    23. 韩鹏,龚健雅,李志林.基于信息熵的遥感分类最优空间尺度选择方法[J].武汉大学学报信息科学版,2008,33(7):676-679.
    24. 韩松来,张辉,周华平.基于关联度函数的决策树分类算法[J].计算机应用,2005,25(11): 2655-2657.
    25. 贺瑜,刘刚.DEM与空间叠加分析在土地定量评价中的研究[J].计算机工程,2006,32(1):251-253.
    26. 贺中华,陈晓翔,梁虹,黄法苏,赵芳.基于植被指数的喀斯特流域赋水动态变化遥感监测研究——以贵州省为例[J].国土与自然资源研究,2012,4:0-21.
    27. 贺中华,陈晓翔,梁虹,黄法苏,赵芳.贵州省喀斯特流域赋水遥感定量研究[J].国土与自然资源研究,2012,4:4-8.
    28. 胡鹏,游莲,杨传勇.地图代数[M].武汉:武汉大学出版社,2002.
    29. 黄家荣,马天晓,王艳梅,等.基于BP网络的无林地立地质量评价模型研究[J].山地农业生物学报,2006,25(6):479-483.
    30. 贾永刚.造林决策与数据更新子系统的研究与开发[D].北京林业大学,2004.
    31. 江民锦.我国南方杉木文化现象探析[J].生态经济,2010,(11):117-193.
    32. 李德仁,王树良等.论空间数据挖掘和知识发现的理论与方法[J].武汉大学学报(信息版),2002,27(3):221-233.
    33. 李建松.地理信息系统原理[M].武汉:武汉大学出版社,2006.
    34. 李金铭,刘荣其,宁正元.基于贝叶斯算法的森林成熟预测研究[J].厦门大学学报(自然科学版),2009,48(3):342-346.
    35. 李强.创建决策树算法的比较研究——ID3,C4.5,C5.0算法的比较[J].甘肃科学学报,2006,18(4):84-87.
    36. 李仁璞,王正欧.一种结构自适应的神经网络特征选择方法[J].计算机研究与发展,2002,39(12):1.
    37. 李贤伟,李守剑,张健,四川盆周西缘水杉人工林林地立地质量评价研究[J].四川农业大学学报,2002,6(20):106-109.
    38. 李湘华.多源异构森林资源数据共享研究[D].中南林业科技大学,2009.
    39. 李新运.城市空间数据挖掘方法与应用研究[D].山东科技大学,2004.
    40. 李新运,郑新奇.基于信息墒的离散空间场相关指数计算方法[J].地理与地理信息科学,2003,19(6):35-37.
    41. 林业部调查规划院.森林调查手册[M].北京:农业出版社.1981.
    42. 刘金根,薛建辉.坡向对香根草护坡地植物群落特征的影响水[J].生态学杂志.2009,28(3):384-388.
    43. 刘平书.云南省普洱县森林立地质量评价[J].林业调查规划.2004,29(3):13-1.
    44. 刘庆连,宁正元.基于数据仓库的林业信息数据模型的设计[J].福建电脑,2006(2):3,2.
    45. 刘薇.数据挖掘中决策树方法研究及其在房地产中介的应用[D].西安电子科技大学,2006.
    46. 刘学军.基于DEM坡度坡向算法精度的分析研究[J].测绘学报,2004,33(3):258-263.
    47. 刘永杰.森林资源二类调查空间数据获取与更新的关键技术研究[D].北京林业大学,2009.
    48. 刘永军.大数据集的属性选择算法的研究与实现[D].东北大学,2005.
    49. 卢东标.基于决策树的数据挖掘算法研究与应用[D].武汉理工大学,2008.
    50. 陆宁.离散数据的连续函数拟合问题[J].西北建筑工程学院学报自然科学版,1993(1):41-46.
    51. 骆期邦.南岭山地森林立地分类评价研究[D].林业部中南林业调查规划设计院,1990.
    52. 马明东,江洪,刘世荣,等.森林生态系统立地指数的遥感分析[J].生态学报,2006,26(9):2810-2816.
    53. 马天晓.基于人工神经网络的森林立地分类与评价[D].河南农业大学,2006.
    54. 马秀红,宋建社,董晟飞.数据挖掘中决策树的探讨[J].计算机工程与应用,2004,1(18):5-186.
    55. 茆诗松等.高等数理统计(第二版)[M].北京:高等教育出版社,2009.
    56. 孟京辉.经营单位级森林经营数据仓库研建及应用研究[D].中国林业科学研究院,2011.
    57. 倪成才,于福平张玉学.差分生长模型的应用分析与研究进展[J].北京林业大学学报,2010,32(4):284-292.
    58. 庞新生.缺失数据处理中相关问题的探讨[J].统计与信息论坛,2004,19(5):29-32.
    59. 彭高辉,王志良.数据挖掘中的数据预处理方法[J].华北水利水电学院学报,2008,12:61-63.
    60. 邱尧荣,郑云峰.林地分等评级的背景分析与技术构架[.1].林业资源管理,2006(4):1-5.
    61. 曲凯.土地利用/土地覆被变化的遥感监测及空间动态预测[D].山东师范大学,2007.
    62. 屈志毅,周海波.决策树算法的一种改进算法[J].计算机应用,2008,28(6):141-143.
    63. 茹诗松等.高等数理统计(第二版)[M].北京:高等教育出版社,2009.
    64. 沈琛琛.气候敏感的长白落叶松立地指数模型研究[D].中国林业科学研究院,2012.
    65. 史忠植.知识发现[M].清华大学出版社,2002.
    66. 孙建国,艾廷华,帅赟,等.类型地图的空间相关关系[J].武汉大学学报:信息科学版,2008,33(1):101-104.
    67. 孙时轩.造林学[M].北京:中国林业出版社,2001.
    68. 苏强.基于DEM的黄土滑坡危险性评价研究[D].北京:中国地质大学,2006.
    69. 谭伟,冯仲科,张雁,等.基于组件GIS的造林小班地形分析的研究——以造林小班坡向为例[J].北京林业大学学报,2006,28(2):91-95.
    70. 谭永忠,吴次芳.区域土地利用结构的信息熵分异规律研究[J].自然资源学报,2003,18(1):112-117.
    71. 汤国安,龚健雅,陈正江,成燕辉,王占宏.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2001,32(4):362-365.
    72. 汤国安,杨玮莹,杨听,刘爱利,易红伟,李晓印.对DEM地形定量因子挖掘中若干问题的 探讨[J].测绘学报,2003,28(1):28-32.
    73. 汤国安,杨勤科,张勇.不同比例尺DEM提取地面坡度的精度研究[J].水土保持通报,2001,21(1):53-56.
    74. 汤玉喜,吴立勋,程政红.滩地杨树立地质量数量化评价研究[J].湖南林业科技,2001,28(1):8-11.
    75. 唐斌,凌旭峰,杨杰.基于模糊神经网的决策树生成[J].红外与激光工程,2000,29(5):52-55.
    76. 陶旸,汤国安,王春,孙京禄.DEM子集划分对地形信息量计算的影响研究[J].武汉大学学报(信息科学版),2009,34(12):1463-1466.
    77. 王光霞,朱长青,史文中,张国芹.数字高程模型地形描述精度的研究[J].测绘学报,2004,33(2):168-173.
    78. 王敏.使用广义多项分布估计离散数据的相关系数[D].大连理工大学,2012.
    79. 王璇,罗年学,张甜.1:1万不同分辨率DEM提取坡度精度分析[J].测绘信息与工程,2009,4:39-40
    80. 王艳.城市空间数据挖掘方法与应用研究[D].山东师范大学,2004.
    81. 王照利,黄生,张敏中等.森林资源调查中SPOTS遥感图像处理方法探讨[J].陕西林业科技,2005,(1):27-29.
    82. 魏宗舒等,概率论与数理统计教程[M].北京:高等教育出版社,2005.
    83. 文专.基于神经网络的分类数据挖掘属性选择和规则抽取研究[D].天津大学,2004.
    84. 吴达胜,范雪华,应志辉.空间数据挖掘技术在森林资源信息管理中的应用研究[J].浙江林业科技,2004,24(3):68-71.
    85. 吴见,彭道黎.高光谱遥感林业信息提取技术研究进展[J].光谱学与光谱分析,2011,31(09):2305-2312.
    86. 吴开亚,金菊良.区域生态安全评价的熵组合权重属性识别模型[J].地理科学,2008,28(6):754-758.
    87. 武文定,董文渊,郑进煊.不同坡向和海拔对撑绿杂交竹生长的影响研究[J].世界竹藤通讯,2008,6(6):14-16.
    88. 邢世和,刘春英,熊德中,等.不同改土物料对烤烟养分吸收及碳,氮代谢的影响[J].植物营养与肥料学报,2006,12(5):694-700.
    89. 徐建华,岳文泽,谈文琦.城市景观格局尺度效应的空间统计规律[J].地理学报,2004,59(6):1058-1065.
    90. 徐洁磐.数据仓库和决策支持系统[M].北京:科学出版社,2005.
    91. 徐天蜀,岳彩荣.基于印度遥感卫星IRS-P6的森林生物量估测模型研究[J].中南林业调查规划,2008,27(1):42-45.
    92. 杨晓娟,杨永春,张理茜,乔林凰,徐晓桃.基于信息熵的兰州市用地结构动态演变及其驱 动力[J].干旱区地理,2008,31(2):291-297.
    93. 杨族桥.DEM多尺度表达研究[D].武汉大学,2009.
    94. 姚山.基于数据挖掘技术的造林决策研究[D].北京林业大学,2008.
    95. 叶少珍,张钹,吴鸣锐,等.一种基于神经网络覆盖构造法的模糊分类器[J].软件学报,2003,14(3):429-434.
    96. 易浩若,纪平,张会儒,等.林业科学数据库和数据共享技术标准规范(第二辑)[G].中国林业出版社.2006.
    97. 游先祥.遥感原理及在资源环境中的应用[M].中国林业出版社,2003.
    98. 余坤勇.林地生产力演变遥感监测研究[D].福建农林大学,2012.
    99. 张怀清,鞠洪波,陈永富.森林资源环境网络在线决策支持系统研究[J].林业科学研究,2002,15(6):637,643.
    100.张爽,刘雪华,靳强.决策树学习方法应用于生境景观分类[J].清华大学学报(自然科学版),2006,46(9):1564-1567.
    101.张万儒,周政贤.中国森林立地分类系统[J].林业科学研究,1992,5(3):251-262.
    102.张兴科.基于决策树的应用研究[D].合肥工业大学,2007.
    103.张友静,方有清.KT变换的林学意义及其在森林蓄积量估算中的研究[J].环境遥感,1992,7(3):163-171.
    104.周成虎,张健挺.基于信息嫡的地学数据挖掘模型及其应用研究[J].中国图象图形学报,1999,1(11):946-951.
    105.周庆佐等.多信息系统数据交换的研究与实现[J].计算机工程与应用,2004(3):164-165.
    106.周荫清.信息理论基础[M].北京:北京航空航天大学出版社,2002.
    107.朱庆,赵杰,钟正,眭海刚.基于规则格网DEM的地形特征提取算法[J].测绘学报,2004,33(1):77-81.
    108.朱红春.数字高程模型空间数据挖掘研究[D].西安:西北大学,2003.
    109. Anttila P. Assessment of manual and automated methods for updating stand-level forest inventories based on aerial photography[J]. Diss. For,2005,9:1-42.
    110. Ashutosh S, Pandey D, Kaur T, et al. Knowledge-based remote sensing and GIS approach for forest type mapping in Kathua district, Jammu and Kashmir[J]. Tropical Ecology,2010, 51(1):1-21.
    111. Barros R.A.G. Assessment of erosion using the RUSLE with GIS tools application to a Microwater in the venezolana [J]. Revista Forest Venezolana.2000,34-36.
    112. Benassi F, Bocci C, Petrucci A. Spatial data mining for clustering:from the literature review to an application using RedCap[R]. Working paper 2010/2011, Universita degli Studi di Firenze,2010.
    113. Bi H, Li X, Guo M, et al. Digital terrain analysis based on DEM[J]. Frontiers of Forestry in China,2006,1(1):54-58.
    114. Bilgili A V, Cullu M A, van Es H, et al. The Use of Hyperspectral Visible and Near Infrared Reflectance Spectroscopy for the Characterization of Salt-Affected Soils in the Harran Plain, Turkey[J]. Arid Land Research and Management,2011,25(1):19-37.
    115. Bonino E E, Araujo P. Structural differences between a primary and a secondary forest in the Argentine Dry Chaco and management implications[J]. Forest ecology and management,2005,206(1):407-412.
    116. Brereton P, Budgen D. Component-based systems:A classification of issues[J]. Computer, 2000,33(11):54-62.
    117. Bruce D, Schumacher F X. Forest mensuration[J]. Forest mensuration,1942 (Ed.2).
    118. Cao L, Zhao Y, Zhang C. Mining impact-targeted activity patterns in unbalanced data[J]. Knowledge and Data Engineering, IEEE Transactions on,2008,20(8):1053-1066.
    119. Carmel Y, Kadmon R, Nirel R. Spatiotemporal predictive models of Mediterranean vegetation dynamics[J]. Ecological Applications,2001,11(1):268-280.
    120. Caurie M. Hysteresis phenomenon in foods[J]. International journal of food science & technology,2007,42(1):45-49.
    121. Chawla N V, Cieslak D A, Hall L O, et al. Automatically countering imbalance and its empirical relationship to cost[J]. Data Mining and Knowledge Discovery,2008,17(2): 225-252.
    122. Chayjan R A. Modeling of sesame seed dehydration energy requirements by a soft-computing approach[J]. Australian journal of crop science,2010,4(3):180-184.
    123. Chen S, Zeng S, Zhong E. The steps forward of GIS in China[J]. Chinese Geographical Science,2000,10(1):1-6.
    124. Chen H Y H, Krestov P V, Klinka K. Trembling aspen site index in relation to environmental measures of site quality at two spatial scales[J]. Canadian Journal of Forest Research,2002,32(1):112-119.
    125. Cherkauer K J, Shavlik J W. Growing simpler decision trees to facilitate knowledge discovery[C]. Proceedings of the second international conference on knowledge discovery and data mining.1996:315-318.
    126. Colby J D, Keating P L. Land cover classification using Landsat TM imagery in the tropical highlands:the influence of anisotropic reflectance[J]. International Journal of Remote Sensing,1998,19(8):1479-1500.
    127. Collins B M, Kelly M, van Wagtendonk J W, et al. Spatial patterns of large natural fires in Sierra Nevada wilderness areas[J], Landscape Ecology,2007,22(4):545-557.
    128. Crist E P, Cicone R C.A physically-based transformation of Thematic Mapper data---The TM Tasseled Cap[J]. Geoscience and Remote Sensing, IEEE Transactions on,1984 (3): 256-263.
    129. Curt T, Bouchaud M, Agrech G. Predicting site index of Douglas-fir plantations from ecological variables in the Massif Central area of France[J]. Forest ecology and management,2001,149(1):61-74..
    130. Demuth H, Beale M. MATLAB:Neural Network Toolbox:User's Guide[M]. Math Works, 1992.
    131. Demuth H, Beale M. Demuth H B. Neural network toolbox[J]. Neural Network Toolbox, The Math Works,1992:5.25.
    132. Freund Y, Schapire R, Abe N. A short introduction to boosting[J]. Journal-Japanese Society For Artificial Intelligence,1999,14(771-780):12-16.
    133. Gabas A L, Telis-Romero J, Menegalli F C. Thermodynamic models for water sorption by grape skin and pulp[J]. Drying technology,1999,17(4-5):962-974.
    134. Garcia-Alvarado M A, De la Cruz-Medina J, Waliszewski-Kubiak K N, et al. Statistical analysis of the GAB and Henderson equations for sorption isotherms of foods[J]. Drying technology,1995,13(8-9):2141-2152.
    135. Gehrke J, Ramakrishnan R, Ganti V. Rainforest-a framework for fast decision tree construction of large datasets[C]. Proceedings of the International Conference on Very Large Data Bases. INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS, 1998:416-427.
    136. Gehrke J, Ramakrishnan R, Ganti V. RainForest-a framework for fast decision tree construction of large datasets[J]. Data Mining and Knowledge Discovery,2000,4(2): 127-162.
    137. Gondra I. Applying machine learning to software fault-proneness prediction[J]. Journal of Systems and Software,2008,81(2):186-195.
    138. Goodchild M.F. Geographic Information Science[J]. International Jounal of Geographical Information Systems,1992,6(1):31-41.
    139. Goyal S, Goyal G K. Cascade and feedforward backpropagation artificial neural networks models for prediction of sensory quality of instant coffee flavoured sterilized drink[J]. Canadian Journal on Artificial Intelligence, Machine Learning and Pattern Recognition, 2011,2(6):78-82.
    140. Grossman R L, Hornick M F, Meyer G. Data mining standards initiatives[J]. Communications of the ACM,2002,45(8):59-61.
    141. Habib E A. Estimation of log-linear-binomial distribution with applications[J]. Journal of Probability and Statistics,2010,10:1-13.
    142. Hame T, Salli A, Andersson K, et al. A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data[J]. International Journal of Remote Sensing,1997,18(15):3211-3243.
    143. Han H, Wang W Y, Mao B H. Borderline-SMOTE:A new over-sampling method in imbalanced data sets learning[J]. Advances in Intelligent Computing,2005:878-887.
    144. Han J, Kamber M, Pei J. Data mining:concepts and techniques[M]. Morgan kaufmann, 2006.
    145. Hilker T, Wulder M A, Coops N C. Update of forest inventory data with lidar and high spatial resolution satellite imagery[J]. Canadian Journal of Remote Sensing,2008,34(1): 5-12.
    146. Hong Q, Su-fang Y, Wen-yi F. Development of component geographic information systems applying in forest resources management[J]..Journal of Forestry Research,2005,16(1): 47-51.
    147. Hosseini S A, Solaymani K. Investigation of effective factors for path tracing using GIS in Kheyroud Forest (Iran-Mazandaran Province)[J]. Pakistan Journal of Biological Sciences, 2006,9(11):2055-2061.
    148. Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote sensing of environment, 1988,25(3):295-309.
    149. J.S. Thomas.E. D. Diane. The Statistical Analsis of Discrete Data[M]. New York: Springer-Verlag,1989.
    150. J.Arifovic., R.Gencay. Using genetic algorithms to select architecture of a feedword artificial neural network[J]. Physica A,2001,289:574-594.
    151. Japkowicz N, Stephen S. The class imbalance problem:A systematic study[J]. Intelligent data analysis,2002,6(5):429-449.
    152. Kessler M, Kessler P J A, Gradstein S R, et al. Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia[J]. Biodiversity and Conservation,2005,14(3):547-560.
    153. Kohl M., Sutter R. Forest inventories in Europe with special reference to statistical methods[J]. Swiss Fed inst for Snow and Landscape Res.1992,176-191.
    154. Leckie D G. Synergism of synthetic aperture radar and visible/infrared data for forest type discrimination[J]. PE & RS, Photogrammetric Engineering & Remote Sensing,1990,56(9): 1237-1246.
    155. Lewis D. Development of a spatial database in GIS domain for natural resource assessment and management in Tadobaandhari [J]. India Forest.2000,126(10):1105-1119.
    156. Louw J H, Scholes M. Forest site classification and evaluation:a South African perspective[J]. Forest Ecology and Management,2002,171(1):153-168.
    157. McBratney A B, Mendonca Santos M L, Minasny B. On digital soil mapping[J]. Geoderma,2003,117(1):3-52.
    158. McLintock T F, Bickford C A. A proposed site index for red spruce in the Northeast[M]. Northeastern Forest Experiment Station,1957.
    159. McMinn W A M, Magee T R A. Moisture sorption characteristics of starch materials[J]. Drying technology,1997,15(5):1527-1551.
    160. Minowa Y. Classification rules discovery from selected trees for thinning with the C4.5 machine learning system [J]. Journal of Forest Research,2005,10(3):221-231.
    161. Mohapatra D, Srinivasa Rao P. A thin layer drying model of parboiled wheat[J]. Journal of food engineering,2005,66(4):513-518.
    162. Moisen G G, Frescino T S. Comparing five modelling techniques for predicting forest characteristics[J]. Ecological modelling,2002,157(2):209-225.
    163. Papadimitriou S, Brockwell A, Faloutsos C. Adaptive, unsupervised stream mining[J]. The VLDB journal,2004,13(3):222-239.
    164. Parmar R S, McClendon R W, Hoogenboom G, et al. Estimation of aflatoxin contamination in preharvest peanuts using neural networks[J]. Transactions of the ASAE, 1997,40(3):809-813.
    165. Pelz, D. R. National Forest Inventory System in Europ. Forest Inventories in Europe with Special Reference to Statistical Methods [J].Swiss Fed Inst for Snow and Landscape Res, 1992,59-65.
    166. Polharel B., Froese R., Representing site productivity in the basal area increment model for FVS-Ontario[J]. Forest Ecology and Management,2009,258:657-666.
    167. Prasad A M, Iverson L R, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction[J]. Ecosystems,2006,9(2):181-199.
    168. Prasad A M, Iverson L R, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction[J]. Ecosystems,2006,9(2):181-199.
    169. Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment,1994,48(2):119-126.
    170. Quinlan J R. C4.5:Programs for Machine learning[J].Morgan Kauffman,1993:23-30.
    171. Quinlan J R. Improved use of continuous attributes in C4.5[J]. arXiv preprint cs/9603103, 1996,(4):77-90.
    172. Quoc H P. Structure and Light Factor in Differently Logged Moist Forests in Vu Quang-Huong Son, Vietnam[M]. Cuvillier Verlag,2008.
    173. Rastogi R, Shim K. PUBLIC:A decision tree classifier that integrates building and pruning[C]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES. INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS,1998:404-415.
    174. Raymond J C, Smith B W. Soft X-ray spectrum of a hot plasma[J]. The Astrophysical Journal Supplement Series,1977,35:419-439.
    175. Romero-Calcerrada R, Novillo C J, Millington J D A, et al. GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain)[J]. Landscape Ecology,2008,23(3):341-354.
    176. Romero-Calcerrada R, Perry G L W. The role of land abandonment in landscape dynamics in the SPA'Encinares del no Alberche y Cofio, Central Spain,1984-1999[J]. Landscape and Urban Planning,2004,66(4):217-232.
    177. S. Ruggieri. Efficient C4.5. Draft, Available at. Http://www.kdd.di.unipi.it/software.
    178. Santner T J, Duffy D E. The statistical analysis of discrete data[M]. New York: Springer-Verlag,1989.
    179. Scott D., Burger J., Crane B., Expanding site productivity research to sustain non-timber forest functions[J]. Forest Ecology and Management,2006,227:185-192.
    180. Shashi S, SanjayC. Spatial Databases[M]. Prentice:Prentice Hall,2003.
    181. Stanley T R, Royle J A. Estimating site occupancy and abundance using indirect detection indices[J]. Journal of Wildlife Management,2005,69(3):874-883.
    182. Sullivan D G, Shaw J N, Rickman D, et al. Using remote sensing data to evaluate surface soil properties in Alabama Ultisols[J]. Soil Science,2005,170(12):954-968.
    183. Swenson J J, Waring R H, Fan W, et al. Predicting site index with a physiologically based growth model across Oregon, USA[J]. Canadian Journal of Forest Research,2005,35(7): 1697-1707.
    184. Tan P N. Introduction to data mining[M]. Pearson Education India,2007.
    185. Tesch S D. The evolution of forest yield determination and site classification[J]. Forest Ecology and Management,1980,3:169-182.
    186. Tomppo E., Sitonen, M. The national forest inventory of Finland [J]. Finland Forest Research.1991:1-8.
    187. Trotter C M, Dymond J R, Goulding C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM[J]. International Journal of Remote Sensing,1997, 18(10):2209-2223.
    188. Veltchev Z N, Menkov N D. Desorption isotherms of apples at several temperatures[J]. Drying Technology,2000,18(4-5):1127-1137.
    189. Verykios V S, Bertino E, Fovino I N, et al. State-of-the-art in privacy preserving data mining[J]. ACM Sigmod Record,2004,33(1):50-57.
    190. Waring R H, Milner K S, Jolly W M, et al. Assessment of site index and forest growth capacity across the Pacific and Inland Northwest USA with a MODIS satellite-derived vegetation index[J]. Forest ecology and management,2006,228(1):285-291.
    191. Weintraub A, Church R L, Murray A T, et al. Forest management models and combinatorial algorithms:analysis of state of the art[J].Annals of Operations Research,2000,96(1): 271-285.
    192. Wise S. Assessing the quality for hydrological applications of digital elevation models derived from contours[J]. Hydrological processes,2000,14(11-12):1909-1929.
    193. Yu C, Zelterman D. Sums of dependent Bernoulli random variables and disease clustering[J]. Statistics & probability letters,2002,57(4):363-373.
    194. Zarabi M. Determination of design parameter in grape drying[D]. MS Thesis. Tarbiat Modares Univ., Tehran, Iran,2000.
    195. Zomorodian, A. Investigation on drying property of thin layer Iranian paddy varieties for determination of equilibrium moisture content (in Persian)[J]. Agricultural Engineering Research Journal,2001,7:27-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700