用户名: 密码: 验证码:
植物源性物质对生长湖羊瘤胃发酵和肉品质的影响及其作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物源性物质由于含有多种具有抗菌、抗氧化等生物活性成分而越来越受到动物营养学家的关注。本研究以皂甙类物质茶皂素、富含不饱和脂肪酸的豆油和含有黄酮类和挥发油类物质的杭白菊茎叶等植物源性物质为材料,分三部分六个试验研究了其对湖羊断奶羔羊胴体品质、瘤胃发酵以及肌肉脂肪酸组成的影响,并利用荧光定量PCR等分子生物学技术,研究瘤胃微生物数量的变化以及与肌肉脂肪酸合成相关酶基因mRNA丰度的变化,揭示植物源性物质影响湖羊肌肉脂肪酸组成的机理。
     第一部分植物源性物质对生长湖羊胴体品质的影响(试验一和试验二)
     试验一研究了日粮中添加茶皂素和豆油对生长湖羊血清生化指标和胴体品质的影响。选择健康湖羊断奶羔羊32只(14.2+1.38kg),随机分为四个日粮处理组:不加茶皂素也不加豆油组(NTNS);茶皂素组(TS);豆油组(SO);茶皂素和豆油混合添加组(TS-SO).试验采用二因素随机试验设计。茶皂素的添加量为每只羊3g/d,豆油的添加量为日粮干物质的3%。动物接近自由采食,但在组间控制采食量,以减少因采食和增重差异造成的肉质差异。饲养试验结束后,将羊放入呼吸代谢室进行甲烷测定。甲烷排放测定结束后,所有动物颈静脉采血,用于测定血清生化指标。然后每组取4组羊进行屠宰试验。结果发现,TS和SO的添加可显著降低甲烷的产量(P<0.05),与NTNS组相比,TS,SO和TS-SO组每千克干物质采食量所产生的甲烷量分别降低了27.7%,18.9%和13.9%。添加TS对羔羊血清生化指标不产生显著影响,但是SO和TS-SO组的总蛋白,高密度脂蛋白胆固醇,胆固醇和游离脂肪酸的含量显著高于NTNS组,葡萄糖的含量则显著低于NTNS组(P<0.05)。SO组的低密度脂蛋白胆固醇含量显著高于TS组(P<0.05)。各组间胴体品质没有显著差异(P>0.05)。这些结果表明:添加TS和SO可显著降低甲烷排放,减少饲料能的损失,但对羔羊胴体品质没有影响,SO的添加可影响羔羊血清生化指标。
     试验二研究了杭白菊茎叶对湖羊断奶羔羊生长性能、血清生化指标和胴体品质的影响。试验选取健康断奶湖羊羔羊36只(16+2.6kg),依据随机区组设计和同栏大小相近原则,根据体重分成4个处理,每个处理3个重复(栏),每个栏3只羔羊。试验采用精粗比为30:70的全混合颗粒饲粮,四组粗料中稻草和杭白菊茎叶(CSL)的比例分别为70:0 (CSLO),45:25 (CSL25),25:45 (CSL45)和0:70(CSL70)。试验结果,随着CSL饲喂比例的增加,羔羊的平均日增重增加,血清尿素氮(BUN)含量提高,CSL0.组和CSL70组间差异达显著水平(P<0.05)。CSL对羔羊血清过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活力、总抗氧化能力(T-AOC)和血清丙二醛(MDA)含量均有不同程度的影响。随着CSL饲喂比例增加,羔羊血清中CAT和T-AOC增加,CSL45组和CSL70组与CSLO组相比,差异显著(P<0.05);CSL45组GSH-Px活力显著高于其余各组(P<0.05);MDA随CSL饲喂比例的增加而减少,CSLO和CSL70组间差异显著(P<0.05)。CSL的饲喂对羔羊胴体品质不存在显著影响,但是屠宰率CSL70组显著高于CSLO组(P<0.05)。上述结果表明,CSL用作粗料饲喂断奶湖羊可以提高抗氧化能力,促进生长。
     第二部分植物源性物质对生长湖羊瘤胃发酵的影响(试验三和试验四)
     试验三研究茶皂素和豆油对羔羊瘤胃发酵参数以及瘤胃微生物区系的影响。待饲养试验结束后,动物屠宰后取瘤胃液样品,测定瘤胃发酵参数及瘤胃微生物区系。结果显示:与NTNS组相比,TS,SO和TS-SO组的瘤胃pH值均显著降低(P<0.05)。添加TS和SO显著提高总挥发性脂肪酸(VFA)含量(P<0.05),但是对单独的VFA不存在显著影响(P>0.05)。氨态氮的含量在SO和TS-SO组显著低于NTNS组(P<0.05),但是TS组变化不大。与NTNS组相比,TS,SO和TS-SO组的微生物蛋白的含量均显著提高。添加TS和SO对真菌数量没有显著影响(P>0.05),TS作为主效应对原虫数量影响不显著,但是通过二次分析发现,TS对原虫的作用取决于SO,单独添加效果是显著的(P=0.04),但是与SO同时添加效果则不显著(P=0.68)。添加SO显著降低甲烷菌的数量(P<0.05)。SO的添加显著降低黄色瘤胃球菌和产琥珀酸丝装杆菌的数量(P<0.05),但是TS对这两个纤维菌没有影响。从DGGE图谱来看,日粮中添加TS和SO对瘤胃细菌、原虫以及甲烷菌区系有一定的影响,但是各组间条带数、多样性指数不存在显著差异(P>0.05)。结论:添加茶皂素和豆油对羔羊瘤胃微生物数量和微生态区系均有一定影响。
     试验四研究杭白菊茎叶对湖羊瘤胃发酵参数以及氢化相关微生物的影响。瘤胃液取自试验二。试验结果显示:CSL70组湖羊瘤胃氨态氮的含量显著高于其余各组(P<0.05),微生物蛋白的含量CSL45组和CSL70组显著高于CSLO组和CSL25组(P<0.05)。瘤胃液相中,CSL的饲喂降低瘤胃原虫的数量,且在CSLO组和CSL70组间差异达显著(P<0.05);溶纤维丁酸弧菌的数量CSL25组显著高于CSLO组和CSL70组(P<0.05);蛋白溶解梭菌的数量CSL45组显著高于CSLO组(P<0.05)。瘤胃固相中,瘤胃原虫的数量也随着CSL的饲喂而减少,CSLO组和CSL45组间差异显著(P<0.05);溶纤维丁酸弧菌的数量CSLO组显著高于CSL70组(P<0.05),但是蛋白溶解梭菌没有显著的变化。结果表明,杭白菊茎叶可影响瘤胃氨态氮和微生物蛋白的含量,以及瘤胃氢化菌的生长,这些影响可能与其所含有的黄酮类和挥发油类物质相关。
     第三部分植物源性物质对生长湖羊肌肉脂肪酸组成及相关酶基因表达的影响(试验五和试验六)
     试验五研究茶皂素和豆油对羔羊肌肉脂肪酸组成以及相关酶基因表达的影响。肝脏和肌肉样品取自试验一。试验结果显示:与NTNS组相比,各处理组肌肉组织中饱和脂肪酸(SFA)含量均有所降低,其中TS组和TS-SO组的C14:0与C15:0达显著水平(P<0.05)。各处理组肌肉组织中不饱和脂肪酸(UFA)的含量均有所增加,t11C18:1显著高于NTNS组(P<0.05);SO组的cis-9, trans-11共轭亚油酸(CLA)显著高于其余各组(P<0.05);SO组的多不饱和脂肪酸(PUFA)高于NTNS组(P<0.05)。日粮中添加TS和SO对羔羊肝脏中脂蛋白酯酶(LPL)基因的mRNA丰度不存在显著影响(P>0.05),但与NTNS组相比,TS和SO组肝脏组织中硬脂酰辅酶A去饱和酶(SCD)基因的mRNA丰度降低(P<0.05)。与NTNS组相比,TS和SO组肌肉组织中LPL基因mRNA丰度显著上升(P<0.05),且显著高于TS-SO组。肌肉组织中SCD基因mRNA丰度在SO组的表达显著高于其余各组(P<0.05)。因此推测添加SO对肌肉组织cis-9, trans-11CLA的影响受到SCD基因的调控。
     试验六研究杭白菊茎叶对羔羊皮下脂肪和肌肉脂肪酸组成以及乙酰辅酶A羧化酶(ACC)基因在肝脏、皮下脂肪和肌肉组织中表达的影响。肝脏、皮下脂肪和肌肉样品取自试验二。结果显示:饲喂CSL可以提高羔羊皮下脂肪C16:1的含量,其中与CSLO组相比,CSL25组达显著水平(P<0.05)。C18:2的含量在CSL70组含量最高,显著高于CSLO组和CSL45组。总饱和脂肪酸和总不饱和脂肪酸随着CSL饲喂比例的增加而降低和增加,其中在CSLO组和CSL70组间差异达显著水平(P<0.05)。而饲喂CSL对羔羊肌肉中总不饱和脂肪和总饱和脂肪酸均没有显著影响(P>0.05)。CSL对肝脏、皮下脂肪和肌肉组织中ACC基因的表达均不存在显著影响(P>0.05)。ACC基因在肝脏中的表达量较少,比在脂肪和肌肉组织中表达量小2个数量级。结果表明:杭白菊茎叶的饲喂可影响动物脂肪和肌肉组织中脂肪酸的组成,但对ACC基因的表达没有影响。
     综上所述,茶皂素和豆油的添加可以降低湖羊羔羊甲烷排放,从而减少饲料能的损失。日粮中添加茶皂素可能通过降低原虫数量从而降低羔羊肌肉组织中CLA的含量。添加豆油可降低肌肉组织中饱和脂肪酸,提高不饱和脂肪酸和CLA的含量,豆油对肌肉组织中cis-9, trans-11 CLA的合成可能是通过SCD基因调控实现。杭白菊茎叶饲喂羔羊可提高抗氧化能力,促进生长,且可通过杭白菊茎叶中的黄酮成分作用于瘤胃氢化菌而影响脂肪和肌肉组中的脂肪酸的组成,降低羔羊皮下脂肪组织中总饱和脂肪酸,增加不饱和脂肪酸含量,及影响肌肉组织中C18:0和C18:2的含量。
The components of plant orgin have many active properties, such as antibacterial and antioxidant. Thus, they couled be used in animal feed to replace the antibiotic. This study contained three parts including six experiments and it was conducted to investigate the effect of tea saponins (TS), soybean oil (SO) and chrysanthemun stem-leaf (CSL) on carcass quality, rumen fermentation and fatty acid profiles of muscle in growing lambs and approach to the mechanism involved.
     Part I:Effect of components of plant origin on carcass quality of growing lambs. (Expt.1 and 2)
     Experiment 1 was carried out to investigate the effects of TS, SO, and TS-SO on serum parameters and carcass quality of growing lambs. Thirty-two Huzhou lambs weaned at the age of 50 days, with an initial body weight of 14.2±1.38 kg, were assigned to four dietary treatments in a 2×2 factorial arrangement with TS (0 or 3g/d) and SO (0 or 3% of DM). The diet without additives was considered as NTNS (no TS or SO). Feed intake was controlled to be similar among the four groups to minimize the meat differences resultant from growth rate. After the feeding trial, four lambs from each treatment were moved to simple open-circuit respiratory chambers (two animals per chamber) to measure methane production. At the end of methane measurement, blood samples of all animals were taken via jugular vein puncture and serums were separated from the blood samples for analysis. Then animals were slaughtered and carcasses were weighed and dissected. No differences were observed in animal growth performances, carcass qualities among four treatments (P> 0.05). Addition of tea saponins had no effect on the serum parameters. Compared with NTNS, the contents of serum total protein, high density lipoprotein-cholesterol, cholesterol and non-esterified fatty acid were higher but the concentration of glucose was lower in SO and TS-SO groups than in NTNS group (P< 0.05). The content of low density lipoprotein-cholesterol was higher in SO group than in TS group (P< 0.05). These results indicated that addition of TS and SO can suppress the methane emission to improve the efficiency of feedstuff utilization, but have little effect on the carcass qualities of lambs.
     Experiment 2 was conducted to determine the effect of feeding CSL on growth performance, serum parameters and carcass quality of growing lambs. Thirty-six Huzhou growing lambs were assigned to four groups of nine lambs each, and allotted to three units of three lambs at similar weight. The ratio of roughage to concentrate in all the diets was 70:30. Proportion of rice straw to CSL in roughage was 70:0 (CSLO),45:25 (CSL25),25:45 (CSL45), and 0:70 (CSL70) in diets, respectively. The trial lasted for 72 days with the first 12 days for adaptation. Feed ingested and refused were recorded every week, and body weight gain was measured every two weeks. At the end of the trial, serum biochemical and antioxidant parameters and carcass quality were determined. With increasing levels of CSL, average daily gain and serum urea nitrogen increased, with a significant difference between diets CSLO and CSL70 (P< 0.05). Serum catalase and total antioxidant capacity were significantly higher (P <0.05) in lambs on diets CSL45 and CSL70 than those on diet CSLO. The level of serum glutathione peroxidase was highest in animals on diet CSL45 (P< 0.05). Compared to that in diet CSLO, serum malondialdehyde was decreased in diet CSL70 (P< 0.05). Chrysanthemum stem-leaf had no effect on the carcass quality, but the dressing percent was higher in group CSL70 than in group CSLO (P< 0.05). From the present study, it is inferred that inclusion of CSL in the diets could increase antioxidant ability in growing lambs and improve growth performance.
     Part II:Effect of components of plant origin on rumen fermentation and microbial populations in the rumen of lambs. (Expt.3 amd 4)
     In Experiment 3, rumen fluids were sampled from the sheep used in Expt. 1 to determine the effects of addition of TS and SO on rumen fermentation and microbial populations in the rumen of growing lambs. The microbial communities were analyzed by real-time PCR and denaturing gradient gel electrophoresis technique. Populations of rumen methanogens, protozoa, fungi, Ruminococcus flavefaciens, and Fibrobacter succinogenes were expressed as a proportion of total rumen bacterial 16S rDNA. Ruminal pH was decreased (P< 0.05) for lambs fed diets with TS, SO, and TS-SO, vs. the NTNS, and ammonia N concentration was reduced by SO (P< 0.05). Concentrations of total volatile fatty acids were increased in all groups (P< 0.05), with no significant differences in proportions of individual acids among diets. Microbial protein was increased (P< 0.05) with TS, SO, and TS-SO. Addition of TS, SO, and TS-SO had little effect on fungal population (P> 0.05), but protozoa populations relative to total bacterial 16S rDNA were decreased (P< 0.05) for lambs fed diets with TS, SO, and TS-SO, with the lowest value in lambs fed the diet containing SO only. Population of methanogens was inhibited by SO (P< 0.05), but not by TS. Addition of SO and TS-SO had an inhibitory effect on the population of fibrolytic microbes including R. flavefaciens and F. succinogenes. Addition of TS and SO has an effect on the communities of bacterial, protozoa and methanogens. However, the diversities of bacterial, protozoa and methanogens were not affected by TS and SO. From the present study, it is inferred that the rumen microbial communities could be affected by addition of tea saponin and soybean oil.
     Experiment 4 was conducted to determine the effect of feeding CSL on rumen fermentation and microbial populations in the rumen of growing lambs. The rumen samples both liquid and solid were taken from the animals in experiment 2. Ammonia N concentration was lowest in CSL70 (P< 0.05) and microbial protein was higher in CSL45 and CSL70 than in CSL0 and CSL25 (P < 0.05). In the liquid of rumen fluid, CSL decreased the protozoa populations; the population of B.fibrisolvens was higher in CSL25 than in'CSLO and CSL70 (P < 0.05); the C.proteoclasticum population was greater in diet CSL45 than in diet CSL0 (P< 0.05). In the solid of rumen fluid, the population of protozoa was decreased in diet CSL45 as compared to in the diet CSL0 (P< 0.05); the B.fibrisolvens population was larger in diet CSL0 than in diet CSL70 (P< 0.05); But the population of C.proteoclasticum was uninfluenced by CSL. It is inferred that the rumen fermentation and microbial populations could be affected by the flavone and naphtha components of CSL.
     Part III:Effect of components of plant origin on fatty acid composition in longissimus dorsi muscle and expression of related enzyme gene. (Expt.5 and 6)
     In Experiment 5, the longissimus dorsi (LD) muscle and liver tissuses were taken from the animals in Experiment 1 to determine the effects of addition of TS and SO on fatty acid profile in LD muscle, gene expression of lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) both in liver and muscle of growing lambs. Vaccenic acid percentage was enhanced (P< 0.05) in muscle of lambs fed TS and SO. The proportion of cis-9, trans-11 conjugated linoleic acid (CLA) was increased (P< 0.05) by SO, but decreased (P< 0.05) by addition of TS in LD muscle. The percentage of total saturated fatty acids (SFA) in muscle was decreased (P< 0.05) by addition of TS and SO, while addition of SO increased (P< 0.05) the percentage of total polyunsaturated fatty acids (PUFA). The ratio of cis-9, trans-11 CLA to vaccenic acid was decreased (P< 0.05) by TS, but increased (P< 0.05) by SO. Addition of TS and SO had no effect on the LPL gene expression in liver (P> 0.05). Compared with NTNS, the SCD mRNA expression in liver was increased in group TS and SO. The LPL mRNA expression in muscle was higher in group TS and SO than in NTNS. Addition of SO could increase the SCD mRNA expression (P< 0.05). These results indicated that inclusion of TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and/or SO, may be regulated by SCD gene.
     Experiment 6:This study was conducted to determine the effect of feeding CSL on fatty acid profile in LD muscle and subcutaneous fat, Acetyl CoA carboxylase (ACC) mRNA expression in liver, subcutaneous fat, and LD muscle. The liver, subcutaneous fat and LD muscle were taken from the animals in Experiment 2. In subcutaneous fat, the content of C 16:1 was increased by CSL; there was a highest proportion of C18:2 in diet CSL70 (P< 0.05); with increasing levels of CSL, the total SFA were decreased but the total undaturated fatty acids (UFA) were increased (P< 0.05). However, CSL did not affect the total SFA and total UFA in LD muscle. Inclusion of CSL had no effect on ACC mRNA expression in liver, subcutaneous fat, and LD muscle (P> 0.05). The ACC gene expression in liver was lower than in subcutaneous fat, and LD muscle. These results indicated that the fatty acid composition of subcutaneous fat and LD muscle could be affected by CSL, which may not be related to the ACC gene expression.
     In summary, addition of TS and SO could reduce methane production to enhance the efficiency of feedstuff utilization. The intramuscular fat of lambs fed a diet containing TS had lower proportion of CLA. Dietary addition of linoleic acid-rich SO was effective in decreasing SFA proportion and increasing the proportion of PUFA and cis-9 trans-11 CLA in the LD muscle, which may be mediated through the expression of SCD gene. Inclusion of CSL in the diets could increase antioxidant ability in growing lambs and improve growth performance. The CSL could reduce the proportion of total SFA and increase the percentage of total UFA in subcutaneous fat, which may be related to the biohydrogenation associated bacteria in rumen affected by flavone in CSL,
引文
Bauchart D, Legay F, Doreau M, et al.1990. Lipid metabolism of liquidassociated and soil-adherent bacterial in rumen contents of dairy cows offered lipidsupplemented diets. Br. J. Nutr.,63:563-571.
    Beauchemin KA, Kreuzer M, O'Mara F, et al.2008. Nutritional management for enteric methane abatement:a review. Aust. J. Exp. Agric.48,21-27.
    Beaulieu AD, Drackley JK, Merchen NR.2002. Concentration of conjugated linoleic acid are not increased in tissure lipids of cattle fed a high-concentrate diet supplemented with soybean oil. J. Anim. Sci.80:847-861.
    Bessa RJB, Santos-Silva J, Ribeiro JMR, et al.2000. Reticulo-rumen biohydrogenation and the enrichment of ruminant edible products with linoleic acid conjugated isomers. Livest.Prod. Sci.,63:201-211.
    Bhattacharya SK, Bhattacharya A, Sairam K.2002. Effect of bioactive principles of Emblica offcinalis on ischemia-reperfusion-induced oxidative stress in rat heart. Phytomedicine,9(2):171-174.
    Boles JA, Kott RW, Hatfield PG, et al.2005. Supplemental safflower oil affects the fatty acid profile, including conjugated linoleic acid, of lamb. J. Anim. Sci.83,2175-2181.
    Boone C, Mourot J, Gregoire F, et al.2000. The adipose conversion process:regulation by extracellular and intracellular factors. Repro. Nutr. Deve.,40:325-358.
    Broudiscou L, Pochet S, Poncet C.1994. Effect of linseed oil supplementation on feed degradation and microbial synthesis in the rumen of ciliate-free and refaunated sheep. Anim. Feed Sci. Technol.49:189-202.
    Broudiscou L, Van Nevel CJ, Demeyer DI.1990. Incorporation of soya oil hydrolysate in the diet of defaunated or refaunated sheep:effect on rumen fermentation in vitro. Arch. Anim. Nutr.40:329-337.
    Chen XJ, Mao HL, Ma XM, et al.2010. Effects of dietary corn oil and vitamin E supplementation on fatty acid profiles and expression of acetyl CoA carboxylase and stearoyl-CoA. Ani.Sci. J. (accepted).
    Choi SH, Lim KW, Lee HG, et al.2007. Supplementation effects of C18:2 or C18:3 rich-oil on formation of CLA and TVA, and lipogenesis in adipose tissues of sheep. Asian-Aust. J. Anim. Sci.20:1417-1423.
    Chung CS, Kim NS, Song MK, et al.2000. Effects of age and feeding level of concentrates on adipose tissue lipogenesis and adipocyte size in Hanwoo bull. Kor. J. Anim. Sci. Technol.42(4):459-466.
    Cole MD, Bridge PD, Dellar JE.1991. Antifugal activity of neoclerodane diterpenoids from Scutellaria. Phytochemistry,30(4):1125-1127.
    Cosgrove GP, Waghorn GC, Anderson CB, et al.2008. The effect of oils fed to sheep on
    methane production and digestion of ryegrass pasture. Aust. J. Exp. Agric. 48:189-192.
    Czerkawski JW, Blaxter KL, Wainman FW.1966. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. Br. J. Nutr.20:349-362.
    Czerkawski JW.1986. An Introduction to Rumen Studies. Pergamon Press, Oxford (UK)/New York (NY, USA).
    Demirel G, Ozpinar H, Nazli B, et al.2006. Fatty acids of lamb meat from two breeds fed different forage:concentrate ratio. Meat Sci.,72:229-235.
    Denman SE, McSweeney CS.2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations with in the rumen. FEMS Microbiol Ecol,58:572-582.
    Denman SE, Tomkins NW, McSweeney CS.2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol,62:313-322.
    Durand D, Scislowski V, Gruffat D, et al.2005. High-fat rations and lipid peroxidation in ruminants:consequences on the health of animals and quality of their products. In J. F. Hocquette & S. Gigli (Eds.), Indicators of milk and beef quality. EAAP publication no. 112 (pp.151-162). Wageningen, The Netherlands:Wageningen Academic Publishers.
    Enser M, Hallett K, Hewitt B, et al.1999. Fatty acid content and composition of English beef, lamb and pork at retail. Meat Sci.,42:443-456.
    Faulconnier Y, Bonnet M, Bocquier F, et al.2001. Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase activity and mRNA level in dry non-pregnant sheep. Bri. J. Nutr.,85:299-306.
    French P, Stanton C, Lawless EG, et al.2000. Fatty acid composition, including conjugated linoleic acid of intramuscular fat from steers offered grazed grass, grass silage or concentrate-based diets. J. Anim. Sci.78,2849-2855.
    Galbraith H, Miller TB, Paton AM, et al.1971. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J. Appl.Bact.34,803-813.
    Gillis MH, Duckett SK, Sackmann JR.2004. Effects of supplemental rumen-protected conjugated linoleic acid or corn oil on fatty acid composition of adipose tissues in beef cattle. J. Anim. Sci.82:1419-1427.
    Givens DI, Cottrill BR, Davies M, et al.2000. Sources of n-3 polyunsaturated fatty acids addition to fish oil for livestock diets-a review. Nutr. Abstract. Rev.,70:1-32.
    Hanson RS, Hanson TE.1996. Methanotrophic bacteria. Microbiol Rev,60(2):439-471.
    Hassig CA.1997. Fiber-derived butyrate and the prevention of colon cancer. Chem Biol,4: 783-789.
    Hegarty RS,1999. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Exp. Agric 50:1321-1327.
    Henderson C,1973. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci.,Camb.81:107-112.
    Hess HD, Kreuzer M, Diaz TE, et al.2003. Saponin rich tropical fruits affect fermentation and methanogens in faunated and defuanted rumen fluid. Anim. Feed Sci. Technol. 109:79-94.
    Hocqutte JF, Graulet B, Olivecrona T.1998. Lipoprotein lipase activity and RNA levels in bovine tissues (Abstract). Comparative Biochem. Phy.,121(2):201-212.
    Hristov AN, Kennington LR, McGuire MA, et al.2005. Effect of diets containing linoleic acid-or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of adipose and muscle tissues of finishing cattle. J. Anim. Sci.83:1312-1321.
    Hu WL, Liu JX, Wu YM, et al.2006. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Arch. Anim. Nutr.60: 89-97.
    Hu WL, Liu JX, Ye JA, et al.2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol.120:333-339.
    Ivan M, Mir PS, Koenig KM, et al.2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rum. Res.41:215-227.
    Jordan E, Kenny D, Hawkins M, et al.2006. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. J. Anim. Sci.84:2418-2425.
    Jump DB, and Clarke SD.1999. Regulation of gene expression by dietary fat. Annu. Rev. Nutr.19:63-90.
    Kaiserova H, Simunek T, Van der vijgh W J F,et al.2007. Flavonoids as protectors against doxorubicin cardiotoxicity:Role of iron chelation, antioxidant activity and inhinition of carbonyl reductase. Biochimica et Biophysica Acta,1772:1065-1074.
    Kemp P, Lander DJ.1984. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria. Bri. J. Nutr., 52:171-177.
    Kim SC, Adesogan AT, Badinga L, et al.2007. Effects of dietary n-6:n-3 fatty acid ratio on feed intake, digestibility, and fatty acid profiles of ruminal contents, liver, and muscle of growing lambs. J. Anim. Sci.85:706-716.
    Klita PT, Mathison GW, Fenton TW, et al.1996. Effects of alfalfa root saponins on digestive function in sheep. J. Anim. Sci.74:1144-1156.
    Knight R, Sutton JD, Storry JE.1979. Rumen microbial sybthesis of long-chain fatty acids. Proc. Nutr. Soc.
    Knobloch K, Weis N, Weigand H.1986. Planta Medica.6:556
    Lake SL, Weston TR, Scholljegerdes EJ, et al.2007. Effects of postpartum dietary fat and body condition score at parturition on plasma, adipose tissue, and milk fatty acid composition of lactating beef cows. J. Anim. Sci.85:717-730.
    Latham MJ, Storry JE, Sharpe ME.1972. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol.,24:871-877.
    Lee JH, Waller JC, Yilmaz Y, et al.2007. Effect of feeding rumen-protected dietary protein-oil supplements on fatty acid composition and α-tocopherol content of blood serum and muscle lipids of lambs. Sma. Rum. Res.72,101-110.
    Lennarz WJ.1966. Lipid metabolism in the bacteria. Adv. Lipid Res.4:175-185.
    Lough DS, Solomon MB, Rumsey TS, et al.1993. Effects of high-forage diets with added palm oil on performance, plasma lipids, and carcass characteristics of ram and ewe lambs. J. Anim. Sci.,71:1171-1176.
    Luo DQ, Wang H, Tian X.2005. Antifungal properties of pristmerin and celastrol isolated from Celastrus hypoleucus. Pest Manag Sci,61(1):85-90.
    Mader TL, Brumm MC.1987. Effect of feeding sarsasaponin in cattle and swine diets. Journal of Animal Science 65:9-15.
    Madron MS, Peterson DG, Dwyer DA, et al.2002. Effect of extruded full-fat soybeans on conjugated linoleic acid content of intramuscular, intermuscular and subcutaneous fat in beef steers. J. Anim. Sci.,80:1135-1143.
    Makkar HPS, Becker K.1998. Alfalfa saponins and their implication in animal nutrition. Journal of Agricultural and Food Chemistry 46:131-140.
    Matsumoto M, Kobayashi T, Takenaka A, et al.1991. Defaunation effects of medium-chain fatty acids and their derivates on goat rumen protozoa. J. Gen. Appl. Microbiol.37:439-445.
    Menke KH, Raab L, Salewski A, et al.1979. The estimation of the digestibility and metabolisable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor. J. Agri. Sci.93:217-222.
    Mir PS, Mir Z, Kuber PS, et al.2002. Growth, carcasscharacteristice, muscle conjugated linoleic acid content, and response to intravenouse glucose challege in high percentage steers fed sunflower oil-containing geits. J. Anim. Sci.80:2996-3004.
    Mir Z, Rushfeldt ML, Mir PS, et al.2000. Effect of dietary supplementation with either conjugated linoleic acid (CLA) or linoleic acid rich oil on the CLA content of lamb tissues. Small Rum. Res.36:25-31.
    Mosley EE, Shafii B, Moate PJ, et al.2006. Cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. J. Nutr.136:570-575.
    Muetzel S, Hoffmann EM, Becker K.2003. Supplementation of barley straw with Sesbania pachcarpa leaves in vitro:effects on fermentation variables and rumen microbial
    concentration structure quantified by ribosomal RNA-targeted probes. Br. J. Nutr.89, 445-453.
    Noci F, Monahan FJ, French P, et al.2005. The fatty acid composition of muscle fat and subcutaneous adipose tissue:influence of the duration of grazing. J. Ani. Sci., 83:1167-1178.
    Ntambi JM,1999. Regulation of stearoyl-CoA desaturases (SCD) by polyunsaturated fatty acids and cholesterol. J. Food Sci.59:1262-1266.
    Nuernberg K, Dannenberger D, Nuernberg G, et al.2005. Effect of a Grass-based and a Concentrate Feeding System on Meat Quality Characteristics and Fatty Acid Composition of Longissimus Muscle in Different Cattle Breeds, Livestock Prod. Sci. 94:137-147.
    Nuernberg K, Fischer A, Nuernberg G, et al.2008. Meat quality and fatty acid composition of lipids in muscle and fatty tissue of Skudde lambs fed grass versus concentrate. Small Rum. Rese.74:279-283.
    Or-Rashid MM, Odongo NE, McBride BW.2007. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids. J. Anim. Sci.85:1228-1234
    Pavan E, Duckett SK.2007. Corn oil supplementation to steers grazing endophyte-free tall fescue. II. Effects on longissimus muscle and subcutaneous adipose fatty acid composition and stearoyl-CoA desaturase activity and expression. J. Anim. Sci.85: 1731-1740.
    Peterson DG, Kelsey JA, Bauman DE.2002. Analysis of variation in cis-9, trans-11 conjugated linoleic acid in milk fat of dairy cows. J. Dairy Sci.85:2164-2172.
    Raes K, Smet SD, Demeyer D.2004. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat:a review. Ani.Feed Sci. and Tech.,113:199-221.
    Richardson RI, Costa P, Nute GR, et al.2005. The effect of feeding red clover silage on polyunsaturated fatty acid and vitamin E content, sensory, colour and lipid oxidative shelf life of beef loin steaks. In Proceedings of the 51st international congress of meat science and technology, Baltimore, USA, M50.
    Robinson PH, Wiseman J, Uden P, et al.2006. Some experimental design and statistical criteria for analysis of studies in manuscripts submitted for consideration for publication. Anim. Feed Sci. Technol.129,1-11.
    Rule DC, Smith SB.1995. Fatty acid composition of muscle and adipose tissue of meat animals. In:Smith. S.B., Smith, D.R. (Eds.). The Biology of Fat in Meat Animals, Current Advances. Am. Soc. Anim. Sci., Champaign, IL, USA, pp.144-165.
    Salah N.1995. Polyphe-nolic flavanols as scavengers of apueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys,322(2):339-346.
    Sano M.1995. Effect of tea on lipid peroxidation in rat liver and kidney:a comparison of green and black tea feeding. Biolpharm Bull,18(7):1006-1008.
    Santos-Silva J, Bessa RJB, Mendes IA.2003. The effect of supplementation with expanded sunflower seed on carcass and meat quality of lambs raised on pasture. Meat Sci., 65:1301-1308.
    Santos-Silva J, Mendes IA, Portugal PV, Bessa RJB.2004. Effect of particle size and soybean oil supplementation on growth performance, carcass and meat quality and fatty acid composition of intramuscular lipids of lambs. Livest. Prod. Sci.90:79-88.
    SAS, Version 8.0.1999. SAS Inst Inc, Cary, NC, USA.
    Scollan ND, Choi NJ, Kurt E, et al.2001. Manipulating of fatty acid composition of muscle and adipose tissue in beef cattle. Bri. J. Nutr.,85:115-124.
    Scollan ND, Enser M, Gulati S, et al.2003. Effect of including a ruminally protected lipid supplement in the diet on the fatty acid composition of beef muscle in Charolais steers. Bri. J. Nutr.,90:709-716.
    Shao ZH, Vanden HTI, Qin Y.2002. Baicalein attenuates oxidant stress in cardiomyocytes. Am J Physiol Heart Circle Physiol,282(3):H999-H1006.
    Solomon MB, Lynch GP, Lough DS.1992. Influence of dietary palm oil supplementation on serum lipid metabolites, carcass characteristics, and lipid composition of carcass tissues of growing ram and ewe lambs. J. Anim. Sci.,70:2746-2751.
    Stackebrabdt E, Goebel BM.1994. Taxonomic note:a place for DNA-DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. International J Systematic Bacteriol,44:846-849.
    Sylvester JT, Karnati SKR, Yu Z, et al.2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr.134:3378-3384.
    Van Nevel CJ, Demeyer DI,1996. Control of rumen methanogenesis. Environ, Monit, Assessm.42:73-97.
    Varela A, Oliete B, Moreno T, et al.2004. Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Callega breed. Meat Sci.,67:515-522.
    Wallace RJ, Chaudhary LC, McKain N, et al.2005. Biohydrogenation of fatty acids in the rumen:how, why and how to change it. in The 5th Joint Symposium of Japan-Korea-China on Rumen Metabolism and Physiology. Huhhotm Inner Mongolia, China.
    Wang YH, Byrne KA, Reverter A, et al.2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Geno.,16:201-210.
    Wang YX, McAllister TA, Yanke LJ, et al.2000. In vitro effects of steroidal saponins from Yucca Schidiigera extract on rumen microbial protein synthesis and ruminal fermentation. J. Sci. Food Agri.80,2114-2122.
    Warren HE, Scollan ND, Enser M, et al.2007. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I:Animal performance, carcass quality and muscle fatty acid composition. Meat Sci.,78:256-269.
    Waylan AT, Dunn JD, Johnson BJ, et al.2004. Effectof flax supplementation and growth promotants on lipoprotein lipase and glycogenin messenger RNA concentrations in finishing cattle. Journal of Animal Science,82:1868-1876.
    Wei T, Sun H, Zhao X.2002. Scavenging of reactive oxgen species and prevention of oxidative neuronal cell damage by a novel gallotannin:pistafolia A. Life Sci, 70(6):1889-1899.
    Williams CM.2000. Dietary fatty acids and human health. Annales de Zootechnie, 49:165-180.
    Wina E, Muetzel S, Hoffmann E, et al.2005. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol.121:159-174.
    Wood JD, Enser M.1997. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Bri. J. Nutri.,78:49-60.
    Yanez-Ruiz DR, Williams S, Newbold CJ,2007. The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle. Br. J. Nutr.97: 938.
    Yang YT, Baldwin RL, Garrett WN.1978. Effects of dietary lipid supplementation on adipose tissue metabolism in lambs and steers. J. Anim. Sci.47:686-690.
    Yuan ZP, Zhang CM, Zhou L, et al.2007. Inhibition of methanogenesis by tea saponin and tea saponin plus disodium fumarate in sheep. J. Anim. Feed Sci. (Suppl.2) 7:560-565.
    Zhang CM, Guo YQ, Yuan ZP, et al.2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Technol.146(3-4):259-269.
    Zheng HC, Liu JX, Yao JH, et al.2005. Effects of dietary sources of vegetable oils on performance of high-yielding lactating cows and conjugated linoleic acids in milk. J. Dairy Sci.88:2037-2042.
    Zoetendal EG, Akkermans ADL, de Vos WM.1998. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol,64:3854-3859.
    陈雪君.2008.日粮添加植物油和VE对湖羊肉质调控及机理的研究.浙江大学博士学位论文.
    陈银基,鞠兴荣,周光宏.2008.饱和脂肪酸分类与生理功能.中国油脂,33(3):35-39.
    单体中,汪以真,李民.2006.猪脂蛋白脂酶基因片段的克隆及不同体重的表达差异.农业生物技术学报,14:151-155.
    董永军,王丽荣,胡建和,等.2009.植物多糖生物活性的研究进展.中国牧业通讯,4: 5-6.
    杜蕙.2003.我国植物源农药的研究进展.甘肃科技,19(9):147-148.
    范文珠,刘建新,叶均安.2002.茶皂素作为瘤胃发酵调控剂的研究.饲料博览,9:4-5.
    方雪玲,王锡田,黄淑如,等.2002.杭白菊对小牛血管平滑肌细胞凋亡及其抗氧化性研究.浙江大学学报(医学版),31(5):347-350.
    冯俊涛,苏祖尚,王俊儒,等.2007.大花金挖耳花蕾中精油的化学组成及其杀菌活性研究.西北植物学报,27(1):156-162.
    葛长荣,田允波,段纲,等.1998.中草药饲料添加剂研究现状与发展趋势.云南畜牧兽医,4:10-16
    管敏强,毛华明,易礼胜,等.2001.生物活性物质——皂甙.国外畜牧科技,28(5):12-15.
    郭志坚,郭书好,何康明,等.2002.黄柏叶中黄酮醇甙含量测定及其抑菌试验.暨南大学学报(自然科学与医学版),23(5):64-66
    韩春春,王继文,魏守海.2006.乙酰辅酶A羧化酶(ACC)的结构与功能.安徽农业科学,34(3):413-414.
    胡伟莲.2005.皂甙对瘤胃发酵与甲烷产量及动物生产性能影响的研究.浙江大学博士论文.
    黄雪泉,廖智标.2001.大蒜素替代土霉素对断奶仔猪生产性能的影响.江西畜牧兽医杂志.2:32-33.
    姜宁华,朱山寅,吴素香.2003.杭白菊挥发油成分分析.浙江中医学院学报,27(5):83-84.
    姜淑贞,杨在宾,杨维仁,等.2001.瘤胃脂肪酸代谢研究进展.黄牛杂志,27(4):40-42.
    蒋兆春,苏德辉.1999.奶牛繁殖障碍中草药防治技术与作用机理.中兽医学杂志.2:23-27.
    金继曙,都述虎.1993.油茶籽饼抗真菌活性成分的研究.天然产物研究与开发,15(2):48-51.
    李红霞,钟芳芳,陈玉,等.2006.灯心草抗菌活性成分的研究.华中师范大学学报:自然科学版,40(2):205-208.
    李玲,陈常秀.2009.陈皮提取物对肉鸡生长性能、血脂指标和抗氧化功能的影响.黑龙江畜牧兽医,9:104-106.
    刘金旗,王兰,刘劲松,等.2002.菊花叶黄酮类化合物的实验分析.中国中医药科技,9(4):226-227.
    吕林,计成,罗绪刚,等.2004.锰对肉仔鸡胴体性能、肉品质及相关酶活性的影响.中国农业科学,37:1917-1924.
    马惠玲,弓弼.1998.不同蒜素制剂对果实病原菌抑菌能力的研究.西北农业大学学 报,26(3):81-85.
    彭建农.2009.月见草的现在研究概况.中国民康医学,21(13):1576-1578.
    乔永,黄治国,李齐发,等.2007.绵羊肌肉LPL基因表达的发育性变化及其对肌内脂肪含量的影响.中国农业科学,40(10):2323-2330.
    任保平,李福琴.2009.大蒜素在养殖业中的应用.中国畜禽种业,8:39-40.
    沈伟桥,孙海燕,汪俏梅,等.2006.杭白菊生物活性成分及药理研究进展.茶叶,32(3):141-144.
    苏祝成,朱加进.1996.杭白菊浸出物清除活性自由基的研究.特产研究,2:1-3
    孙德成,王旭东,王辉,等.2005.天然植物中草药添加剂对奶牛生产性能的影响.内蒙古民族大学学报:自然科学版,20(5):533-536.
    孙文基,绳金房.1998.天然活性成分简明手册.北京:中国医药科学出版社.
    汤银根,杨继峰,陈兴龙.2009.杭白菊茎叶配合饲料饲喂獭兔的效果试验.浙江畜牧兽医,1:23-24.
    田允波,葛长荣,高士争.2003.天然植物中草药对生长育肥猪生长性能胴体品质和肉质特性的影响.中国畜牧杂志,39(1):22-23.
    田允波,葛长荣,高士争.2006.天然植物提取物对生长猪的促生长作用及其内分泌机制的研究.粮食与饲料工业,7:10-12.
    王淑如,章云涛,方雪玲,等.2004.杭白菊提取液对血管平滑肌细胞培养液SOD、MDA的影响.浙江预防医学,16(6):13-14.
    王小梅,李英霞,彭广芳.1996.野菊花挥发油抑菌实验研究.山东中医杂志,15(9):412.
    夏道宗,吕圭源,于新芬,等.2008.杭白菊总黄酮对铅诱导小鼠氧化损伤的拮抗效应研究.中国中药杂志,33(23):2803-2808.
    夏鲁青,赵博光,巨云为,等.2001.双稠哌啶类生物碱对5个环境细菌菌株的抑制作用。南京林业大学学报,25(5):81-84.
    萧家捷.1996.DHA和EPA的功能综述.中国食物与营养学,2:8-11.
    谢克勤,陈丽宇.1998.多烯脂肪酸药理研究综述.天津药学,10(2):1-5.
    徐宁迎,赵兴波,蒋思文.2004.猪鸡肉质性状分子标记及主效基因的研究进展.中国畜牧杂志,4:42-44.
    杨小燕,林跃鑫,李焰.2007.银杏叶对肉鸡生长性能、免疫功能和血清生化指标的影响.中国兽医杂志.43(2):37-39.
    杨旭辉,朱敏恒,吴越.2004.植物源性天然抗氧化成分研究进展.农垦医学,26(4):298-200.
    姚文,朱伟云,韩正康,等.2004.应用变性梯度凝胶电泳和16S rDNA序列分析对山
    羊瘤胃细菌多样性的研究.37(9):1374-1373.
    叶汉侠,王甫才.2004.18种中草药抗氧化活性的比较研究.浙江万里学院学报,17(5):111-113.
    叶均安,板桥久雄,刘建新,等.2001.茶皂素对瘤胃培养物发酵的影响.中国畜牧杂志,37(5):29-30.
    叶明福,文亦蒂,刘子昆,等.2009.天然植物功能性成分的研发与思考.草业与畜牧,2:50-53.
    于善凯,张英,吴小琴.2002.杭白菊的营养成分及其生物活性.膳食指南,2.
    于善凯,张英.2001不同品种杭白菊中酚类物质含量和清除自由基活性的比较.食品科学,22(4):84-87.
    苑志朋.2007.茶皂素及其与延胡索酸钠混合物对瘤胃发酵和甲烷产量的影响.浙江大学硕士学位论文.
    张春梅.2008.植物油及十八碳不饱和脂肪酸对瘤胃甲烷生成和微生态的影响.浙江大学博士学位论文.
    赵克然,杨毅军,曹道俊.2000.氧自由基与临床.北京:中国医药科技出版社,529-538.
    钟美,陈黄锰,刘浩丹,等.2008.茶叶中咖啡碱的功效与提取方法概述.中国民族民间医药,16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700