用户名: 密码: 验证码:
吴茱萸种质资源遗传多样性及抗旱生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药吴茱萸来源于芸香科(Rutaceae)吴茱萸属(Evodia)植物吴茱萸Evodia rutaecarpa(Juss.) Benth.、疏毛吴茱萸Evoida rutaecarpa(Juss.) Benth.var.bodinieri(Dode) Huang和石虎Evodia rutaecarpa(Juss.)Benth.var.officinalis(Dode)Huang的干燥近成熟果实,是我国常用的大宗中药材。吴茱萸药材基原植物、自然资源丰富且分布较广,但由于各地吴茱萸生境差异很大,生态条件复杂,栽培广泛;数千年来各地间种质资源交流频繁;各地风俗迥异,用药习惯差别较大且吴茱萸属内种和变种较多等原因造成了吴茱萸遗传变异复杂,遗传背景不明确。至今人们对吴茱萸种内间的演化关系及栽培种间的亲缘关系以及不同基原的正品药材的质量评价尚不清晰。此外,吴茱萸生长过程中易受到干旱胁迫,导致植株体内活性氧累积过多,活性氧清除系统失调,对植物生长和药材品质带来严重的不良影响。所以,针对吴茱萸的种质资源多样性和抗旱生理进行基础研究,这对吴茱萸资源的保护和可持续利用、促进吴茱萸药材产业化生产的良好发展、保证吴茱萸药材质量以及临床用药的安全性等方面都具有重要的科学意义和现实意义。
     目的:
     尽管前人采用AFLP、RAPD等分子标记技术对吴茱萸种质资源遗传多样性进行了研究,但由于受到样本数量和样本来源地的限制,没有广泛收集其它吴茱萸主产区的种质,因此其遗传多样性分析具有一定的局限性。本研究广泛收集吴茱萸正品药材基源植物的栽培种和药材,分析了它们的种质资源遗传多样性,构建了HPLC化学指纹图谱,客观的评价了吴茱萸种质资源,进一步探讨了其遗传多样性,为阐明吴茱萸栽培种的亲缘关系提供了科学的实验依据。
     吴茱萸在生长过程中易受干旱胁迫,严重影响药材质量和产量。目前,干旱胁迫的抵御机制研究主要集中在农作物上,药用植物相关研究较少,还未见吴茱萸抗旱生理研究的报道。本实验利用人为模拟的干旱胁迫环境,研究了吴茱萸扦插苗在受到干旱胁迫和复水过程各项生理生化指标的变化规律并克隆了抗逆关键基因—Cu/Zn-SOD和Mn/Fe-SOD基因的全长序列,为下一步深入研究奠定了坚实的基础。
     方法:
     1.文献研究
     检索与本研究相关的古籍和国内外文献,并进行了总结和综述,概括了与本论文相关的研究动态。主要包括以下4个方面:
     (1)吴茱萸药用历史、资源分布、性味功效与应用、吴茱萸植物特征与品种鉴别等吴茱萸本草考证概况;
     (2)吴茱萸植物形态学标记、细胞学分析、DNA分子标记和DNA条形码等吴茱萸植物种质资源多样性研究进展;
     (3)干旱胁迫环境下植物细胞渗透调节物质和活性氧(ROS)清除系统及植物SOD研究进展;
     (4)吴茱萸化学成分、化学指纹图谱等吴茱萸化学质量评价研究进展。
     2.实验研究
     本文利用DNA分子标记技术、DNA条形码技术、分析化学方法对不同来源地和产地的吴茱萸种质资源及药材进行了多样性评价;并且,对吴茱萸扦插苗在人工模拟的干旱胁迫环境条件下,植株内多种生理生化指标变化规律及SOD基因的克隆进行了研究。本文研究内容包括:
     (1)采用ISSR分子标记技术对来源于贵州省、江西省、湖南省、湖北省、广东省的71份栽培吴茱萸属植物种质资源进行了遗传多样性研究分析。
     (2)采用ITS2DNA条形码技术分析了代表不同来源地、不同种的吴茱萸属植物样品18份。
     (3)使用HPLC法测定了绿原酸、异鼠李素-3-O-半乳糖苷、槲皮素、吴茱萸碱、吴茱萸次碱和吴茱萸新碱等6种有效成分的含量并构建了37个批次的吴茱萸药材HPLC化学指纹图谱。
     (4)使用不同浓度PEG—-6000溶液,经过不同时间处理吴茱萸扦插苗,测定可溶性蛋白、可溶性糖、游离脯氨酸、丙二醛(MDA)、过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)等生理生化指标。
     (5)采用同源克隆法克隆了吴茱萸Cu/Zn-SOD和Mn/Fe-SOD基因的核心片段,根据片段序列设计特异性引物。使用3’,5’-末端快速扩增(RACE)技术克隆了上述2个基因的全长cDNA序列。
     成果:
     通过完成上述实验研究后,本论文取得了以下成果:
     (1)吴茱萸栽培种种质资源遗传多样性ISSR分析实验获得了以下实验结果。贵州省吴茱萸居群的遗传多样性比江西省石虎居群的遗传多样性丰富;贵州省石虎居群的遗传多样性较高;不同产地居群遗传多样性从高到低依次为:7,10,1,11,9,3,6,2,4,吴茱萸药材3个基原品种群的遗传多样性从高到低依次为:吴茱萸,石虎和疏毛吴茱萸;不同产地及不同种群群体分化程度都较大,尤其是不同产地居群间,Gst达到了0.8164,不同品种群间的Gst为0.6898,而基因流的计算结果刚好相反,不同产地居群Nm小于不同种群,但是两者的基因流都较弱,可能与吴茱萸的繁殖方式多为扦插繁殖有关,同时生长环境的条件也有一定影响。UPGMA聚类表明,基于ISSR的遗传多样性分析不仅可以将正品吴茱萸基原植物与伪品—楝叶吴茱萸区分开,还能将不同吴茱萸药材不同基原种甚至是不同产地的样本进行有效分辨,显示了它们之间的亲缘关系,遗传距离和聚类分析表明,基于ISSR的遗传多样性分析是研究吴茱萸属植物栽培种亲缘关系和品种鉴定的可靠手段。
     (2)吴茱萸种质资源ITS2DNA条形码实验获得了以下实验结果。ITS2序列长度均为220bp,共产生了17个单核苷酸(SNP)变异位点,占序列总长的7.73%,其中特异性位点7个。石虎与吴茱萸的种间遗传距离最近为0.036,疏毛吴茱萸与石虎的种间遗传距离最远为0.039。基原物种与楝叶吴茱萸的K2-P距离分布在0.042—0.067之间,疏毛吴茱萸与楝叶吴茱萸遗传距离最远,吴茱萸与楝叶吴茱萸遗传距离最近。邻接法(NJ)构建的吴茱萸属植物系统聚类树显示:18个样品主要分成3大支,楝叶吴茱萸单独形成一个分支,亲缘关系与吴茱萸3个基原种植物较远。
     (3)药材含量测定实验获得了以下实验结果,吴茱萸和疏毛吴茱萸的吴茱萸碱、吴茱萸次碱、吴茱萸新碱等生物碱含量较石虎高,表现出与海拔高度呈正相关的趋势,而绿原酸、异鼠李素-3-O-半乳糖苷、槲皮素等非生物碱类物质则没有表现出上述的规律。HPLC化学指纹图谱实验获得了以下实验结果。10批次江西吴茱萸样品有19个共有峰,保留时间的RSD均小于0.4%,而峰面积的RSD比较大,说明江西省吴茱萸药材在化学成分的组成上基本一样,但是组分的量上存在差异。贵州省余庆县龙溪镇、贵州省石阡县白沙镇、贵州省石阡县白沙镇、贵州省松桃县正大乡、湖北、湖南样品指纹图谱与江西对照指纹图谱相似度为0.952、0.969、0.967、0.965,0.874,0.973,由此可知,吴茱萸和石虎两个不同种的相似度较高,说明两品种的吴茱萸药材品质较为一致。HPLC化学指纹图谱欧氏距离矩阵与ISSR分子标记遗传相似系数矩阵相关系数为0.469,相关性不显著。
     (4)吴茱萸扦插苗干旱胁迫实验获得了以下实验结果。叶片可溶性蛋白含量变化总体趋势为:随胁迫强度和时间延长而呈先上升后下降,复水过程中,可溶性蛋白含量缓慢下降,但均高于胁迫状态时的含量。叶片可溶性糖含量变化总体趋势为:随胁迫强度和时间延长一直呈上升趋势,复水过程中,可溶性糖含量呈明显下降趋势,但均比CK高,不能恢复到CK水平。叶片游离脯氨酸含量变化总体趋势为:随胁迫强度和时间延长一直呈上升趋势,复水过程中,其含量较胁迫时均呈迅速下降趋势,但随着复水时间延长,其含量又缓慢上升。叶片MDA变化总体趋势为:随胁迫强度和时间延长一直呈上升趋势,复水过程中,除了在重度胁迫时,胁迫7d后复水条件下,MDA含量继续上升外,MDA含量较胁迫时均呈下降状态。叶片SOD活性变化总体趋势为:随胁迫强度和时间延长一直呈上升趋势,复水过程中,前期SOD活性继续升高,后期活性缓慢下降。叶片CAT活性变化总体趋势为:随胁迫强度呈先上升后下降的趋势,复水过程中,随时间延长而缓慢上升。叶片POD活性变化总体趋势为:随胁迫强度和时间延长一直呈上升趋势,复水过程中,短时间迅速下降,随时间延长降幅减缓,但均不能恢复到CK水平。
     (5)吴茱萸Cu/Zn-SOD和Mn/Fe-SOD基因克隆实验获得了以下实验结果。吴茱萸Cu/Zn-SOD基因全长cDNA序列为717bp,开放阅读框长459bp,编码152个氨基酸,GenBank登录号为JQ285851。该基因编码的氨基酸分子量为15142.7Da,理论等电点pI为5.47,属亲水性酸性氨基酸,为稳定类蛋白。吴茱萸Mn/Fe-SOD基因全长cDNA序列为1048bp,开放阅读框长687bp,编码229个氨基酸,GenBank登录号为JQ285852。该基因编码的氨基酸分子量为25434.1Da,理论等电点pI为7.16,属亲水性碱性蛋白,为稳定类蛋白。
     结论:
     71份不同品种、不同来源地的吴茱萸属植物种质资源遗传多样性ISSR分析和DNA条形码ITS2区段分析的实验结果均证明了吴茱萸药材3个基原种中,石虎和疏毛吴茱萸的亲缘关系较为接近,但还是受到产地、环境和繁殖方式的影响而有所分化。ISSR标记和ITS2DNA条形码能作为吴茱萸及其种内变异种类有效鉴别的方法。吴茱萸药材HPLC化学指纹图谱证明了石虎药材和疏毛吴茱萸药材所含化学成分和含量相当,从化学成分方面证实了两者亲缘关系接近,与分子标记的实验结果一致。但HPLC指纹图谱聚类分析与ISSR聚类、ITS2聚类结果不完全一致,表明药用植物次生代谢产物积累可能受环境条件和种植水平等客观因素影响较大。HPLC含量测定结果表明,吴茱萸药材生物碱含量高低与栽培地海拔高度呈正相关趋势。
     石虎扦插苗干旱胁迫和复水过程中植株体内细胞渗透调节物质和活性氧清除系统变化规律的实验证明了在逆境条件下细胞渗透调节物质和活性氧清除系统并不是同步运行的,变化规律复杂,其中可溶性蛋白、可溶性糖、游离脯氨酸含量及POD活性呈先上升后下降的变化趋势,MDA含量和SOD活性一直呈上升趋势,CAT活性呈现“N”型变曲线变化,即先上升后下降再上升的趋势。
     吴茱萸SOD基因克隆实验证明了吴茱萸Cu/Zn-SOD和Mn/Fe-SOD基因与其他植物同类基因的相似度较高。该实验为下一步研究SOD基因调控对吴茱萸抗旱强弱的影响及抗旱优良品种选育打下基础。
Euodiae Fructus was a commonly used Chinese herbal medicine. Evoida rutaecarpas natural resources were rich and had a wide distribution but genetic variation were complex and genetic background was not clear because these reasons that the eclolgical environment very different,the ecological condition complicated,widely cultivated,for thousands of years all over the frequent exchanges between germplasm resources,drug habits vary greatly and had many species and varieties in Evodia.Now people about the phylogenetic evolution relationship between Evoida rutaecarpa of different species and cultivars and varieties and quality evaluation of genuine medicinal materials of different origin was not clear. In addition,drought stress susceptible to Evodia rutaecarpa during the growth of plants,resulting in excessive accumulation of active oxygen and active oxygen scavenging system disorders,caused serious adverse effects on the growth and quality of medicinal material plant.Therefore, studies on the diversity of germplasm resources of Evodia rutaecarpa and physiological drought has important scientific and practical significance.
     Objective
     Although molecular marker technique such as AFLP and RAPD on Evodia rutaecarpa germplasm genetic diversity study were used, but because of the number of samples and sample source, germplasm without extensive collection of other Evodia rutaecarpa advocate produce a division, so the genetic analysis had the certain limitation. In this study, Evodia rutaecarpa genuine medicine source plant cultivation and medicinal materials were collected extensively. The genetic germplasm resources and their diversity were analyzed and HPLC fingerprinting was construced. Germplasm resource of Evodia rutaecarpa was evaluated objectively. Its genetic diversity was discussed. These experiments could clarify the phylogenetic relationship of Evodia rutaecarpa cultivation. In addition, Evodia rutaecarpa in the growth process is vulnerable to drought stress, seriously affect the quality and yield of medicinal materials. At present, research on the mechanism of resistance to drought stress mainly concentrated on crops, and little study of medicinal plants, also study on drought resistance of Evodia rutaecarpa not been reported. This experiment using artificial simulated drought stress environment, study of Evodia rutaecarpa cuttings under variation of drought stress and rewatering during various physiological and biochemical indexes and cloned the full-length sequence of key resistance gene Cu/Zn-SOD and Mn/Fe-SOD genes, the next step for the research has laid a solid foundation.
     Methods
     1. Literature research
     The ancient books related to this study and the literature home and abroad were retrivealed and summarized. The research trends related to the paper was reviewed. Mainly includes the following four aspects:
     (1) Herbal research of Evodia rutaecarpa include Survey medical history, resource distribution, function and application, plant characteristics and variety identification.
     (2) Evodia rutaecarpa germplasm genentic diversity's research progress about morphological markers, cytological analysis, DNA molecurlar markers and DNA barcoding.
     (3) Evodia rutaecarpa s cell osmotic adjustment and Active Oxygen Scavenging system(ROS) and plant SOD progress in drought stress environment.
     (4) Research progress of Evodia rutaecarpa on chemical quality evaluation include chemical fingerprint and chemical composition.
     2. Experimenal research
     DNA molecular marker technology, DNA barcoding and chemical analysis method for the evaluation of germplasm resources and diversity of Evodia rutaecarpa herbs of different source and origin in this paper. The several physiological and biochemical indexes of cutting seedling in artifical simulated drought stress conditions were studied. Finally, Cu/Zn-SOD and Mn/Fe-SOD gene of Evodia rutaecarpa were cloned. The research contents of this paper include:
     (1) Seventy-one cultivars of Evodia on originates from Guizhou province, Jiangxi province, Hunan province, Hubei province and Guangdong province of plant germplasm resources were analyzed to study the genetic diversity by ISSR molecular markers.
     (2) The Evoida genus18samples of different varieties and different sources were analyzed using ITS2DNA barcoding technology.
     (3) The contents of six kinds of chlorogenic acid, isorhamnetin-3-O-galactoside,quercetin, evodiamine, rutaecarpine and evocarpine were determined in37batches of material medicines used HPLC method. HPLC chemical fingerpring on37batches of material medicines of Evodia rutaecarpa were constructed using HPLC method.
     (4) The Evodia rutaecarpa cutting seedlings were treated using different concentration of PEG-6000solution and different time. The physiological and biochemical indexes such as soluble protein, soluble sugar, praline, malondialdehyde(MDA), catalase(CAT), peroxidase(POD) and superoxide dismutase(SOD) were determinated.
     (5) By homology cloning method for cloning the core fragments of Evodia rutaecarpa's Cu/Zn-SOD and Mn/Fe-SOD genes, specific primers were designed according to the sequences.3,5-Rapid Amplification of cDNA Ends(RACE) technology was used to clone the full-length cDNA sequence of the two genes.
     Results
     Through the experimental study, this paper has made the following achievements:
     (1)ISSR genetic diversity of germplasm resources of Evodia rutaecarpa experiment has obtained the following results. The genetic divertiy of Wuzhuyu populations in Guizhou province than Shihu groups of Jiangxi province. The diversity of Shihu populations was higher. The genetic diversity of the populations of different regions are arranged from high to low is:7,10,1,11,9,3,6,2and4. Three genetic base original species of Evodia rutaecarpa medicine diversity from high to low for:Wuzhuyu>Shihu>Shumaowuzhuyu. Different areas and different varieties of groups differentiation are larger, especially the Gst reached0.8164that from different pophlations and different varieties of group Gst was0.6898, but gene flow calculation result was just the opposite. Different populations of Nm less than cultivars in different groups, but the gene flow were weak. The reasons are which reproduction of Evodia rutaecarpa are cutting propagation and growth environments conditions also had certain influence. UPGMA clustering showed that ISSR genetic diversity analysis can not only separate the genuine Evodia rutaecarpa original plant with fake-Evodia glabrifolia and Evodia rutaecarpa also would be different samples of different varieties or even different areas of original samples are effective resolution and shows the relationship between the species, the genetic distance and cluster analysis. ISSR genetic diversity analysis is a reliable means to study the Evodia rutaecarpa genus relationship and cultivar identification.
     (2) Evodia rutaecarpa germplasm resources ITS2DNA barcoding experiment has obtained the following experimental results. ITS2sequences length are220bp, yielding a total of17single nucleotide(SNP) sequence variation sites, accounting for7.73%of the total length, in which specific stie are seven. The interspecific genetic distance Shihu and Wuzhuyu recently0.036, interspecific genetic distance Shumaowuzhuyu and Shihu up to0.039. The K2-P distance distribution of base the original species and Evodia glabrifolia in the0.042to0.067. Evodia rutaecarpa and Evodia glabrifolia nearest genetic distance. Neighbor-joining(NJ) to construct that Evodia rutaecarpa genus system clustering tree display that18samples are divided into three branches which Evodia glabrifolia to form a single branch,phylogenetic relationships and Evodia rutaecarpa three base stock plant far.
     (3) The following experimental results of drug content determination were obtained that wuzhuyu and shumaowuzhuyu's contents of evodiamine, rutaecarpine and evocarpine were higher than shihu's. These alkaloids contents had the tendency that correlated with altitude while the contents of chlorogenic acid, isorhamnetin-3-O-galactoside and quercetin did not show the above rule.HPLC fingerprint experiment has obtained the following experimental results. Ten batches samples of Evodia rutaecarpa in Jiangxi has19common peaks and the retention time of RSD is less than0.4%and the peak area of RSD is large, which show that Jiangxi province medicinal Evodia rutaecarpa is basically the same as in the chemical composition of the components but the amount of different Guizhou province Yuqing country dragon town, Guizhou Shiqian baisha town, Guizhou Shiqian baisha town, Guizhou province Songtao country zhengda town, Hubei, Hunan and Jiangxi control sample fingerprint similarity was0.952,0.969,0.965,0.874,0.973. Therefore, two different varieties of Evodia rutaecarpa and Shihu similarity, two species of medicinal Evodia rutaecarpa quality more consistent. Study on HPLC fingerprint of the Euclidean distance martrix and ISSR molecular marker genetic similarity coefficient matrix of related coefficient was0.469that the correlation was not significant.
     (4) Drought stress experiment of Evoida rutaecarpa cutting seeding has obtained the following experimental results. Changes in the trend of the overall content of soluble protein in leaves is that increased first and then decreased with the increasing of stress intensity and time, the complex process of water, soluble protein content decreased slowly but higher than the content of stress state. Changes in the trend of overall soluble sugar content is that an upward trend with the stress intensity and time, the complex process of water, soluble sugar content was significantly decreased but higher than the CK can not be restored to the level of CK. Changes in the trend of overallproline content is that has been an upward trend with the stress intensity and time and at rehydration process that its content is stress showed the downtrend but with the rehydration time prolonging the content and slowly rising. Leaf blade MDA change the general trend is that has been an upward trend with the stress intensity and time and rehydration process, except in severe stress, seven days stress after rewatering conditions the content of MDA continues to rise the content of MDA is relatively stress showed decline. Change tendency of SOD activity in leaf is that has been an upward trend with the stress intensity and time and rewatering process its activity continues to rise and the late activity decreased slowly. Change tendency of CAT activity in leaf is that increased first and then decreased with increasing stress intensity and at rewatering process with the extension of time and slow rise. Change tendency of POD activity in leaf is that has been an upward trend with the stress intensity and time and at rewatering process decreased rapiadly in short time with the time prolonging fell down but could not recover to the level of CK.
     (5) Evoida rutaecarpa' s Cu/Zn-SOD and Mn/Fe-SOD gene cloning experiment has obtained the following experimental results. The full-length cDNA sequence of Cu/Zn-SOD gene is717bp and the open reading frame is459bp that encoding152amino acids. Its Genbank accession number is JQ285851This amino acid molecular weight is15142.7Da and isoelectric point is5.47, belonging to the hydrophilic acidic amion acid and stable protein. The full-length cDNA sequence of Mn/Fe-SOD gene is1048bp and the open reading frame is687bp that endoding229amino acids. Its Genbank accession number is JQ285852. This amino acid molecular weight is25434.1Da and isoelectric point is7.16, belonging to the hydrophilic basic protein and stable protein.
     Conslusion
     Analysis of senenty-one samples of germplasm of genus Evoida rutaecarpa in different varieties and different source of the genetic diversity of ISSR analysis and DNA barcoding region ITS2experiments proved that the genetic relationship of the original plants is closer but still affected areas, environment and reproduction method but has the differentiation. HPLC chemical fingerprint proved that Shihu and Shumuwuzhuyu contained in the chemical composition and content. The chemical composition of both confirmed the close genetic relationship. This result is common that the experimental result of molecular marker.But HPLC fingerprinting culster analysis and ISSR clustering and ITS2culstering results were not entirely consistent that showed themedicinal plant's secondary metabolite accumualtion may be affected by the objective factors such as environmental conditions and culture level.HPLC determination results showed that Evodia rutaecarpa's alkaloid content had the tendency that related to altitude and cultivation.
     The change of cell osmotic substances and ROS system in cutting seedling at drought stress and rewatering time proves that the permeability of the somotic and ROS system is not synchronous operation under adverse conditions and the changing law is complicated. Soluble protein, free proline content and POD activity were increased firstly and then decreased. MDA content and SOD activity were increased. CAT activity showed "N"type curve change, namely the first increase then decrease and increase trend.
     SOD gene cloning experiments proved that Cu/Zn-SOD and Mn/Fe-SOD gene have high similarity with other plants of similar genes. This experiment lays a foundation for breeding of drought resistance and SOD gene regulation.
引文
[1]国家药典委员会.中华人民共和国药典(一部)[S].北京:中国医药科技出版社,2010:160.
    [2]李时珍.本草纲目金陵版[M].北京:中医古籍出版社,1994:791.
    [3]陶弘景撰,尚志钧辑校.本草经集注辑校本[M].芜湖:芜湖医学专科学校,1961:58.
    [4]苏颂.图经本草辑复本[M].福州:福建科学技术出版社,1993:331.
    [5]陈藏器撰,尚志钧辑释.本草拾遗辑释[M].合肥:安徽科学技术出版社,2003:172.
    [6]黄胜白,陈重明.本草学[M].南京:南京工学院出版社,1988:104.
    [7]黄成就.中国芸香科植物初步研究(一)[J].植物分类学报,1957,6(1):109.
    [8]陶弘景撰,尚志钧辑校.名医别录辑校本[M].北京:人民卫生出版社,1986:114.
    [9]肖培根.新编中药志[M].北京:化学工业出版社,2002:291.
    [10]李紫薇,胡莹,秦松云.重庆地区吴茱萸属药用植物资源的调查研究[J].资源开发与市场,2006,22(5):472-474.
    [11]甄权撰,尚志钧辑释.药性论辑释本[M].合肥:安徽科学技术出版社,2006:76.
    [12]孟诜撰,尚志钧辑校.食疗本草[M].合肥:安徽科学技术出版社,2003:76.
    [13]杜文燮.药鉴[M].上海:上海人民出版社,1975:422.
    [14]叶桂.本草经解[M].上海:上海卫生出版社,1957:71-72.
    [15]周延清.遗传标记的发展[J].生物学通报,2000,35(5):17-18.
    [16]顾琳娜,严建民.吴茱萸与伪品臭辣树的生药鉴别[J].辽宁药物与临床,2000,3(4):163-164.
    [17]张杨红.道地药材吴茱萸的鉴别[J].贵阳中医学院学报,2006,28(5):47-49.
    [18]彭强,赵桦,陈曦.吴茱萸与小花吴茱萸的鉴别比较[J].中药材,2007,30(12):1507-1513.
    [19]刘炳仑.中国芸香科植物的花粉形态[J].植物研究,1987,7(3):11-56.
    [20]刘文哲,胡正海.中国芸香科植物叶分泌囊比较解剖学研究[J].植物分类学报,1998.36(2):119-127.
    [21]杨积慧,何结宝,陈庆文,等.吴茱萸及其伪品楝叶吴茱萸的鉴别[J].安徽中医学院学报,2000,19(6):35-36.
    [22]陈代贤,郭月秋,于黎明,等.商品吴茱萸的真伪质量检定考察报告(I)[J].中药材,2009,32(6):879-892.
    [23]刘勇,熊红红,胡生福.江西野生吴茱萸与石虎的花粉形态比较研究[J].安徽农业科学,2011,39(11):6380-6381.
    [24]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:19-22.
    [25]Wiliams CK, Kubellik AR, Livak KJ, et al.DNA polymorphism amplified by arbitrary primers are usefull as genetic markers[J].Nucleic Acide Research,1990,18(22):6531-6535.
    [26]Welsh J, MoColelland M.Fingerprinting genomes using PCR which arbitrary primers[J].Nucleic Acide Research,1990,18(24):7213-7218.
    [27]曹亮,李顺祥,魏宝阳,等.吴茱萸RAPD体系构建及道地性遗传背景研究[J].中草药,2010,41(6):975-978.
    [28]Vos P.AFLP a new technique for DNA fingerprinting[J].Nucleic Acids Reasearch,1995,23(21):4407-4414.
    [29]黄海,冉贵萍,刘杨,等.用AFLP分子标记探讨吴茱萸的遗传多样性[J].植物生理学通讯,2008,44(5):877-881.
    [30]Venter J C,Adamstn D,Myers E W,et al.The sequence of the human genome[J].Science, 2001,291:1304-1351.
    [31]Brookes A J.The essence of SNPs[J].Gene,1999,234:177-186.
    [32]闫双勇,谭振波,刘学军,等.水稻抽穗期控制候选基因的SNP/InDel多态性分析[J].分子植物育种,2005,3(3):225-341.
    [33]黄建安,黄意欢,罗军武,等.茶树多酚氧化酶基因的SNP分析[J].湖南农业大学学报,2007,33(4):454-458.
    [34]严明理,刘显军,官春云,等.芥菜型油菜TT1基因的克隆和SNP分析[J].作物学报,2010,36(10):1634-1641.
    [35]岳爱琴,李昂,毛新国,等.小麦果聚糖合成酶基因6-SFT-A单核苷酸多态性分析及其定位[J].中国农业科学,2011,44(11):2216-2224.
    [36]吴波,高丹,潘超美,等.吴茱萸SOD基因片段克隆和SNP分析[J].江西农业大学学报,2011,33(6):1206-1211.
    [37]Hebert D N,Cywinska A,Ball SL,et al.Biological identification through DNA barcodes[J].Proceedings of the Royal Society of London[J].Series B,Biological Sciences,2003,270:313-321.
    [38]CBOL Plant Working Group.A DNA barcode for land plants [J].Proceedings of the NationalAcademy of Sciences,2009,106:12794-12797.
    [39]Ning SP,Yan HF,Gang H,et al.Current advances of DNA barcoding study in plants [J].Biodiv Sci, 2008,16:417-425.
    [40]罗焜,陈士林,陈科力,等.基于芸香科的植物通用DNA条形码研究[J].中国科学:生命科学,2010,40(4):342-358.
    [41]Gao T,Yao H,Song J Y,et al.Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2 [J]. Ethnopharmacol,2010,130:116-121.
    [42]傅怡宁,薛华杰,印丽萍,等.数量分类学方法在曼陀罗属种子形态分类上的应用[J].植物检疫,2011,25(4):47-51.
    [43]崔大方,羊海军,赵业彬,等.紫花苜蓿复合体(Medicago sativa complex)叶片形态特征及数量分类研究[J].植物资源与环境学报,2010,19(3):1-9.
    [44]汪敏.干旱胁迫下链格孢菌对白车轴草生理生化特征的影响的研究[D].芜湖:安徽师范大学,2007.
    [45]申亚梅,童再康,蔡建国,等.植物抗旱机制的研究进展[J].安徽农业科学,2006,34(20):5214-5215.
    [46]张英普,何武权.水分胁迫对玉米生理生态特征的影响[J].西北水资源与水工程,1999,10(3):18-21.
    [47]杨帆,苗灵凤,胥晓,等.植物对干旱胁迫的响应研究进展[J].应用与环境生物学报,2007,13(4):586-591.
    [48]戴高兴,邓国富,周萌.干旱胁迫对水稻生理生化的影响[J].广西农业科学,2006,37(1):4-6.
    [49]师晨娟,刘勇,荆涛.植物激素抗逆性研究进展[J].世界林业研究,2006,19(5):21-26.
    [50]Morgan P W,Drew M C.Ethylene and plant responses to stress[J].Physiologia Plantarum,2006,100(3):620-630.
    [51]陈立松,刘星辉.水分胁迫对抗旱性不同的荔枝叶片细胞壁H~+-ATPase活性的影响[J].热带亚热带植物学报,2001,9(2):149-153.
    [52]Rhodes D,Handa S,Bressan R A. Metbabolic changes associated with adaptation of plant cells to water stress[J]. Plant Physiology,1986,82(4):890-902.
    [53]Delauney A J,Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. The Plant Jounal,2002,4(2):215-223.
    [54]Reddy A R,Chaitanya K V,Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology,2004,161(11):1189-1202.
    [55]李长明,蔡锡贵.水稻抗旱机理研究[J].西南农业大学学报,1993,15(5):409-413.
    [56]Mann T,Keilin D.Haemocuprein and hepatocuprein,copper protein compounds of blood and liver in manmals[J].Proc R Soc Ser B,1938,126:303-315.
    [57]彭昌操,孙中海,马湘涛.高温对柑橘超氧化歧化酶和过氧化氢酶的影响[J].湖北民族学院学报,1999,17(1):27-30.
    [58]罗华建,刘星辉,谢厚汊.水分胁迫对枇杷叶片活性氧代谢的影响[J].福建农业大学学报,1999,28(1):33-37.
    [59]叶国藩,郭文硕.锥栗对栗疫病抗性与超氧化物歧化酶之间的关系[J].福建林学院学报,1999,19(4):320-323.
    [60]Fridovich I.Superoxidase dismutase[M].Adv Enzymol,1974,41:35-97.
    [61]张博润,谭华荣.SOD研究进展与应用前景[J].微生物学通报,1992,19(6):352-357.
    [62]Asada K. Production and action of active oxygen in photosynthetic tissue[M]. CRC Press, Boca Raton. FL,1994,77-104.
    [63]罗广华,王爱国,邵从本等.超氧物歧化酶在植物细胞内的分布[J].植物生理与分子生物学学报,1985,2:16-22.
    [64]王爱国,罗广华,邵从本等.植物的氧化代谢及活性氧对细胞的伤害[A].中国科学院华南植物研究所刊集[C],广州:华南理工_大学出版社,1989,11-22.
    [65]陈淮扬,刘望荑.从SOD的分布与结构看其分子进化[J].生物化学与生物物理进展,1996,23(5):408-412.
    [66]程光宇,魏锦城,吴国荣等Fe-SOD在枸杞和何首乌体内的分布和何首乌体内的分布和细胞器中的定位[D].植物生理学会编印,1998,49-58.
    [67]周德庆,潘占钧.极谱氧电极法测定抗氧化剂清除超氧自由基作用的研究[J].海洋水产研究,2004,25(1):64-67.
    [68]蔡金腾,朱文适,兰顺锋等.NBT法测定刺梨饮品SOD活性的研究[J].食品研究与开发,1998,19(1): 21-24.
    [69]张凤翔.黄嘌呤氧化酶法测定血清中超氧化物歧化酶活力的影响因素[J].云南医药,2001,22(6):473-474.
    [70]蔡骏,李颖,尹宗宁.邻苯三酚法测定超氧化物歧化酶缓释片中SOD的活性[J].华西药学杂志,2005,20(1):54-55.
    [71]Helga S, Magnus H,Gunnar W. A small family of novel CuZn-superoxidase dismutases with high isoelectric points in hybrid aspen[J].
    [72]纪砚耘,化文平,王喆之.丹参铜锌超氧化物歧化酶(Cu/Zn-SOD)基因的克隆与生物信息学 分析[J].陕西师范大学学报,201 1,39(3):56-61.
    [73]王芳,董乐,戴聪杰,等.杨梅Cu/Zn超氧化物歧化酶基因(MrSOD1) cDNA的克隆及表达分析[J].中国农学通报,2010,26(22):27-33.
    [74]Lee HS, Kim KY, You SH. Molecular characterization and expression of a cDNA encoding copper/zinc superoxidase dismutase from cultured cells of cassava(Manihot esculenta Crantz)[J]. Mol Gen Genet,1999,262:807-814.
    [75]Aruna S A, Asko N, Baljeet K D et al. Gene structrue and expression of the aspen cytosolic copper/zinc-superoxide dismutase(PtSodCcl)[J]. Plant Science,1999,143:151-162.
    [76]F.Bagnoli, D. Giannino.S.Caparrini et al. Molecular cloning, characterisation and expression of a mangauese superoxide dismutase gene from peach(Prunus persica[L.] Batsch)[J]. Mol genet Genomics, 2002,267:321-328.
    [77]Josefina H N, Berta D, Emilia L. Cold and salt stress regulates the expression and acitivity of a chickpea cytosolic Cu/Zn superoxide dismutase[J]. Plant Science,2002,163:507-514.
    [78]Zhu D, Scandalios J G. Maize Mitochondrial Manganese Superoxide Dismutases are Encoded by a Differentially Expressed Multigene Family[J].Pans,1993,9310-9314.
    [79]Kim YC, Miller CD, Anderson AJ.Transcriptional regulation by iron of genes encoding iron-and manganese-superoxide dismutases from Pseudomonas putida[J].Gene,1999,239:129-135.
    [80]Kim, EJ, HP Kim, YC Hah, JH Roe. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor[J].J.Biochem,1996,241:178-185.
    [81]Herouart D. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana[J].Proc Natl Acad Sci USA,1993,90:3108-3122.
    [82]Perl Treves R, Galun E. The tomato Cu/Zn superoxide dismutase genes are developmentally regulated and respond to light and stress[J].Plant Mol Biol,1991,17:745-760.
    [83]Price A H. Oxidative signals in tobacco increase cytosilic calcium[J].Plant Cell,1994,6:1301-1310.
    [84]Perl A, Perl Treves R,Galili S et al. Enhanced oxidative stress defense in transgenic potato expressing tomato Cu/Zn superoxide dismutase[J].Theor Appl Genet,1993,85:568-576.
    [85]Mckersie B D, Chen Y, Beus M et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L.)[J].Plant Physiol,1993,103:1155-1163.
    [86]Foyer D P, Kunert K J. Protection against oxygen radicals:an important defense mechanism studied in transgenic plants[J].Plant Cell Environ,1994,17:507-523.
    [87]Tanaka Y, Hibino T, Hayashi Y et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts[J].Plant Science,1999,148:131-138.
    [88]Vance,C.and Miller,KA. Novel Insights Into the Basis for Escherichia coli Superoxide Dismutase's Metal Ion Specificity from Mn Substituted FeSOD and Its Very High Em[J], Biochemistry, 2001,40(43):13079-13087.
    [89]Li FM, Sun SY, Wang J,et al. Chromatography of medicinal plants and Chinese traditional medicines[J].Biomedical Chromatography,1998,12:78-85.
    [90]Pavel Dra-sar,Jitka Moravcova.Recent advances in analysis of Chinese medical plants and traditional medicines[J].Journal of Chromatography B,2004,812:3-21.
    [91]谢培山.中药色谱指纹图谱[M].北京:人民卫生出版社,2005,9-12.
    [92]邵建强.中药指纹图谱的研究进展[J].中草药,2009,40(6):994-998.
    [93]肖培根.新编中药志(第二卷)[M].北京:化学工业出版社,2002:290-303.
    [94]杨云云,郭惠,王昌利.吴茱萸生物碱及其主要成分吴茱萸次碱药理研究进展[J].中药药理与临床,2010,26(5):182-183.
    [95]许亚玲,田静.贵州地产吴茱萸药材薄层色谱的初步研究[J].药学研究,2008,21(6):714-716.
    [96]张丽艳,罗君,李健,等.吴茱萸药材薄层色谱指纹图谱研究[J].中国实验方剂学杂志,2011,17(12):72-75.
    [97]张进治,汪瑗,陈惠,等.吴茱萸生物碱的TLC-SERS研究[J].光谱学与光谱分析,2007,27(5):944-947.
    [98]段朝辉,张红梅,朱恩圆.吴茱萸质量标准研究——TLC指纹图谱鉴别及HPLC测定吴茱萸碱和吴茱萸次碱含量[J].上海中医药杂志,2008,42(5):86-88.
    [99]田静,陶金,许斌,等.吴茱萸药材的高效液相指纹图谱研究[J].中成药,2008,30(6):793-795.
    [100]赵平,许海玉,许浚,等.吴茱萸药材的HPLC指纹图谱研究[J].中国中药杂志,2010,35(23):3178-3183.
    [101]卢永飞,杨健,孙吉慧,等.不同产地吴茱萸有效成分指纹图谱研究[J].种子,2010,29(8):94-98.
    [102]罗秀琼,张丽艳,罗君,等.贵州余庆规范化种植吴茱萸药材HPLC指纹图谱研究[J].中国现代医学杂志,2011,21(17):1958-1961.
    [103]Federica P, Stefania B, Fumihiko Y, et al. Headspace solid-phase microextraction-gas chromatography-mass sepectrometry analysis of the volatile compounds of Evodia species fruits[J]. Journal of Chromatography A,2005,1087:265-273.
    [104]张慧芳,张志杰,武露凌,等GC-MS分析不同贮藏条件对吴茱萸挥发油成分的影响[J].中药新药与临床药理,2006,17(3):205-209.
    [105]宫海明,赵桦.不同产地吴茱萸果实挥发油成分的GC-MS分析及与小花吴茱萸的比较[J].西北植物学报,2008,28(3):595-605.
    [106]王坤,张桂菊,王宏.中药指纹图谱研究中面临的问题与思考[J].食品与药品,2010,12(3):117-110.
    [107]王关林,方宏筠主编.植物基因工程[M].北京:科学出版社,2004.2:370-376.
    [108]徐刚标.植物群体遗传学[M].北京:科学出版社,2009.
    [109]许树相.吴茱萸及其混淆品的鉴别[j].时珍国医国药,2002,13(11):664.
    [110]冯学峰,胡世林,郭宝林,等.黄芩种群遗传多样性初步研究[J].世界科学技术-中药现代化,2002,4(4):38-43.
    [111]姚玉璧,马鹏里,张秀云.道地与近道地当归栽培气候生态与土壤环境区划[J].中国农学通报,2011,27(27):156-160.
    [112]黄勤挽,周子渝,王瑾,等.附子道地性形成模式的梳理与考证研究[J]I中国中药杂志,2011,36(18):2599-2601.
    [113]中国科学院.中国植物志[M].北京:科学出版社,2004.
    [114]Hebert P D,Cywinska A,Ball S L, et al.Biological identifications through DNA barcodes.Proc R Soc Lond B Biol Sci,2003,270:313-321.
    [115]庞晓慧,徐海滨,韩建萍,等.中药材薄荷的DNA条形码鉴定研究[J].中国中药杂志,2012,37(8):1114-1117.
    [116]于华会,杨志玲,杨旭,等.药用植物种质资源ITS序列研究进展[J].中草药,2010,41(3):491-496.
    [117]庞晓慧,宋经元,徐海滨,等.应用1TS2条形码鉴定中药材麻黄[J].中国中药杂志,2012,37(8):1118-1121.
    [118]朱英杰,陈士林,姚辉,等.重楼属药用植物DNA条形码鉴定研究[J].药学学报,2010,45(3): 376-382.
    [119]姜帆,高慧颖,陈秀萍,等.龙眼属rDNA的ITS序列分析[J].果树学报,2008,25(2):262-268.
    [120]Kress W J, Wurdack K J, Zimmer E A, et al. Use of DNA barcodes to identify flowering plants[J]. Proc Natl Acad Sci USA,2005,102:8369-8374.
    [121]孙稚颖,陈士林,姚辉,等.基于ITS2序列的羌活及其混伪品的DNA条形码鉴定[J].中草药,2012,43(3):568-571.
    [122]黄海,刘杨,冉贵萍,等.基于ITS区和AFLP的吴茱萸分子鉴定方法[J].植物研究2010,30(3):273-277.
    [123]魏宝阳,曹亮,李顺祥,等.吴茱萸遗传多样性的SRAP分析[J].2011,42(12):2523-2538.
    [124]Catalina A, Juan A S. Phylogenetic hypotheses of Gorgoniid octocorals according to ITS2 and their predicted RNA secondary structures[J]. Molecular Phylogenetics and Evolution,2007,43(3): 774-786.
    [125]Miao M, Alan W,Weibo S, et al. Analysis of the Internal Transcribed Spacer 2 (ITS2) Region of Scuticociliates and Related Taxa (Ciliophora, Oligohymenophorea) to Infer their Evolution and Phylogeny[J]. Protist,2008,159(4):519-533.
    [126]Simon S, Renfu S, Rick A, et al. Phylogenetic and phylogeographic relationships in Ixodesholocyclus and Ixodescornuatus (Acari:Ixodidae) inferred from COX1 and ITS2 sequences[J]. Internation Journal for Parasitology,2011,41(8):871-880.
    [127]李顺祥,蔡光先,张平,等.吴茱萸超微饮片ITS序列指纹图谱的研究[J].科技导报,2007,25(5)::42-46.
    [128]申彦晶,严萍,赵翾,等ISSR和ITS标记在白木香遗传变异研究中的应用[J].华南理工大学学报,2008,36(12):128-132.
    [129]Hantula J, Dusabenyagasani M, Hamelin R C. Random amplified microsatellites(RAMS)-a novel method for characterizing genetic variation within fungi[J]. Europe Journal Forestry Pathology,1996, 26:59-166.
    [130]Lian C L, Zhou Z H, Hogetsu T. A simple method for developing microsatellite markers using amplified fragments of inter-simple sequence repeat(ISSR)[J]. Journal of Plant Research,2001,114:381-385.
    [131]詹雪艳,林兆洲.色谱指纹图谱相似度方法的适应性研究[J].中国中医药信息杂志,2012,19(5):61-64.
    [132]许禄.化学计量学[M].北京:科学出版社,2004.
    [133]宋小妹,杨新杰.珠子参的HPLC指纹图谱及模式识别[J].中国实验方剂学杂志,2011,17(11):59-61.
    [134]刘万仓,孙磊等.中药指纹图谱模式识别研究进展[J].国际药学研究杂志,2010,37(6):446.
    [135]王雅璕,龚慕辛,王智民,等.吴茱萸属植物化学成分研究概述[J].中国药学杂志,2010,45(9):641-646.
    [136]郭念欣,李颖春,蔡佳良,等.不同生长年限的巴戟天化学成分的指纹图谱[J].中国实验方剂学,2011,17(11):65-68.
    [137]谢洁娜,赵明波,吴凤薇,等.荒漠肉苁蓉的HPLC指纹图谱[J].中草药,2005,36(2):268-271.
    [138]盛云华,安锐,王新宏,等.川楝子色谱指纹图谱的研究[J].中成药,2009,31(2):168-171.
    [139]Rovesti P. Essential oils of some chemotypes of aromatic Eritrean labiates[J]. Pharm Weekbl,1957, 16(23):843.
    [140]张国防,陈存及,赵刚.樟树叶油地理变异的研究[J].植物资源与环境学报,2006,15(1):22-25.
    [141]顾洁,王俊,王鸿,等.伏毛铁棒锤不同器官生物碱含量动态变化研究[J].西北植物学报,2010,30(1):170-174.
    [142]杨仕兵,刘德铭,刘洋,等.青海省不同地区五脉绿绒蒿总生物碱含量的比较[J].中药材,2006,29(5):430-432.
    [143]谢培山.中药色谱指纹图谱鉴别的概念、属性、技术与应用[J].中国中药杂志,2001,26(10):653-655.
    [144]彭锐.川党参质量及影响其质量的遗传和环境因素研究[D].成都中医药大学,2008.
    [145]张文勇.秦艽及其近缘种的ISSR和HPLC研究[D].西北大学,2010.
    [146]郭丁丁.白芷种质资源调查及其评价的研究[D].成都中医药大学,2008.
    [147]Chen T H H,Murata N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and othercompatibale solutes[J].Current Opinion in Plant Biology,2002,5(3):250-257.
    [148]Kwon S Y,Lee H S,Kwak S S.Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes[J].The Plant Pathology Journal,2001,17(2):88-93.
    [149]彭立新,李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,2002,8(1):40-44.
    [150]Knipp G, Honermeier B. Effect of water stress on proline accumulation of genetically modified potatoes(Solanum tuberosum L.)generating fructans[J]. Journal of Plant physiology,2006,163(4):392-397.
    [151]Gill PK, Sharma AD, Singh P, et al. Changes in germination,growth and soluble sugar contents of Sorghum bicolor(L.)Moench seeds under various abiotic stress[J]. Plant Growth Regulation,2003,40(2):157-162.
    [152]Ashraf M, Iram A. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance[J]. Flora,2005,200(6):535-546.
    [153]Sandermann H.Molecular ecotoxicology of plants[J].Trends in Plant Science,2004,9(8):406-413.
    [154]Kwon S Y,Jeong Y J,Lee H S,et al. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stressfJ]. Pant, Cell & Enviroment,2002,25(7):873-882.
    [155]Lee S H,AhsanN,Lee K W,et al. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses[J]. Journal of Plant Physiology,2007,164(12):1626-1638.
    [156]李雪雁,张维,张秀兰,等.菊芋可溶性蛋白的提取及其分子质量的测定[J].食品与发酵工业,2010,36(3):184-186.
    [157]郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004:67-68.
    [158]李合生.植物生理生化实验原理和技术[J].北京:高等教育出版社,2000:164-165.
    [159]孙彩霞,沈秀瑛,刘志刚.作物抗旱生理生化机制的研究现状和进展[J].杂粮作物,2002,22(5):285-288.
    [160]张明生,谢波,谈锋,等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [161]岳桦,孙笑丛.PEG渗透胁迫对对开蕨生理特征影响[J].北方园艺,2011,1:91-94.
    [162]孙宗玖,李培英,阿不来提,等.干旱复水后4份偃麦草渗透调节物质的响应[J].草业学报,2009,18(5):52-57.
    [163]宫丽丹,田耀华,龙云峰,等.持续干旱胁迫及复水对橡胶树渗透调节能力的影响[J].中国农 学通报,2012,28(1):35-38.
    [164]周学洁,王改利,梁宗锁,等.干旱胁迫及复水对甘草幼苗生理特征和甘草酸积累的影响[J].西北农业学报,2011,20(7):64-70.
    [165]崔秀敏,王秀峰,许衡.甜椒对不同程度水分胁迫一复水的生理生化响应[J].中国农学通报,2005,21(5):225-229.
    [166]Rashmi P, Agarwai R M, Jeevaratam K, et al. Osmotic stress induced alteration in rice (Oryza sativa L.)and recovery on stress relase[J]. Plant Grovth Regulation,2004,42:79-87.
    [167]张莉,续九如.水分胁迫下刺槐不同无性系生理生化反应的研究[J].林业科学,2003,39(4):162-167.
    [168]王列富,雒红宇,杨玉珍,等.干旱胁迫下不同种源香椿苗可溶性糖的动态变化[J].林业科技开发,2008,22(4):53-56.
    [169]彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,18(4):80-83.
    [170]胡化广,张振铭,沈晓华.五种草坪草对水涝胁迫的反应及耐涝评价[J].草地学报,2011,19(2):253-256.
    [171]张晓磊,马凤云,陈益泰,等.水涝胁迫下不同种源麻栎生长与生理特性变化[J].西南林学院学报,2010,30(6):16-19.
    [172]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23-27.
    [173]张红萍,牛俊义,轩春香,等.干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响[J].甘肃农业大学学报,2008,43(5):50-54.
    [174]刘娟,董宽虎.干旱胁迫及复水处理对白羊草抗旱生理特性的影响[J].草原与草坪,2011,3(2):74-78.
    [175]户连荣,郎南军,郑科.植物抗旱性研究进展及发展趋势[J].安徽农业科学,2008,36(7):2652-2654.
    [176]Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling[J]. Current Opinion in Plant Biology, 2002,5 (5):388-395.
    [177]王晓冬,李长海,杜晓琪.干旱胁迫对真桦苗木抗氧化系统及脂质过氧化的影响[J].防护林科技,2011,3:31-33.
    [178]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的相应机制[J].西北植物学报,2005,25(2):413-418.
    [179]Diego A M, Marco A O, Carlos A M, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany,2003,49(1):69-76.
    [180]Dong Hee Lee, Chin Bum Lee. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays[J]. Plant Science,2000,159(1):75-85.
    [181]Sairam R J, Rao K V, Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration [J]. Plant Science,2002,163(5):1037-1046.
    [182]Ron M, Barbara A Z. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. The Plant Journal,1994,5(3):397-405.
    [183]Devarshi S S, Renu K C. Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings[J]. Physiologia Plantarum,2006,127:494-506.
    [184]Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidnium thiocyanate-phenol-chloroform extraction[J]. Anal Biochem,1987,162:156-159.
    [185]汤三妹,杨鹃,周秋莲,等.猕猴桃RNA提取与RT-PCR[J]生物技术通报,2005,5:67-71.
    [186]胡国斌,梅兴国,刘怡.改良异硫氰酸胍一步法提取红豆衫细胞RNA[J]生物技术,11(5):31-33.
    [187]张爱香,季静,王罡,等.枸杞果实cDNA文库的构建[J].生物技术,2004,14(4):18-20.
    [188]袁明珠,温柔,刘吉升,等.几种植物材料中总RNA的提取[J].分子植物育种,2005,3(2):285-292.
    [189]Tao Wang, Nianhui Zhang, Lingfang Du. Isolation of RNA of high quality and yield from Ginkgo biloba leaves[J]. Biotechnology Letters,2005,27:629-633.
    [190]杜中军,徐兵强,黄俊生,等.一种改进的富含多糖的芒果组织中完整总RNA提取方法[J].植物生理学通讯,2005,41(2):202-204.
    [191]张今今,王跃进,王西平,等.葡萄总RNA提取方法的研究[J].果树学报,2003,20(3):178-181.
    [192]Yuji S, Amane M,Tadahiko M. An effient method for extraction of RNA from rice leaves at different ages using benzyl chloride[J]. Journal of Experimental Botany,2001,52(360):1575-1579.
    [193]陈惠芳,王琦,付学池等.超氧化物歧化酶(SOD)的分子生物学[J].生命的化学,2003,23(4):291-293.
    [194]张博润,谭华荣.SOD研究进展与应用前景[J].微生物学通报,1992,19(6):352-357.
    [195]吴波,刘勇.柑橘类植物SOD基因片段的克隆和SNP分析[J].安徽农业科学,2010,38(22):11719-11721.
    [196]胡根海,喻树迅,范术丽,等.陆地棉叶绿体铜锌超氧化物歧化酶基因的克隆与表达[J].植物生理与分子生物学学报,2007,33(3):197-204.
    [197]Kota R, Varsheny R K, Thiel T, et al. Generation and comparison of EST-derived SSRs and SNPs in barley(Hordemu uulgare L.)[J]. Hereditas,2001,135:145-151.
    [198]米瑞,贾继增,韩德俊.小麦自主开花基因TaFLD单核苷酸多态性分析[J].麦类作物学报,201131(1):9-14.
    [199]李亚玲,李景富,康立功,等.番茄Mi-1基因的SNP分型[J].东北农业大学学报,2010,41(10):36-42.
    [200]王燕,刘艳艳,杨永清,等cDNA末端快速扩增技术研究进展[J].生命科学研究,2005,9(4):31-36.
    [201]Tainer J A, Getzoff E D, Beem K M, et al. Determination and analysis of the 2A structure of Copper, Zinc superoxide dismutase[J]. Journal of Molecular Biology,1982,160:181-184.
    [202]Sun M C, Suk W J, Won J J, et al. Chloroplast Cu/Zn-superoxide dismutase is a high sensitive site in cucumber leaves chilled in the light[J]. Planta,2002,216:315-324.
    [203]Josefina Hernandez-Nistal, Berta Dopico, Emilia Labrador. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase[J]. Plant Science, 2002,163:507-514.
    [204]吴波,刘勇.柑橘类植物和其它植物的GPAT和SOD基因分子进化分析[J].江西农业大学学报,2011,33(1):162-167.
    [205]高健,许晓风,陈学平.特异种质烟草HZNH的Fe-SOD基因的克隆与表达[J].中国生物化学与分子生物学报,2005,21(6):840-845.
    [206]陈莉.麝香百合和仙客来转Mn-SOD基因植株的获得及其耐热性鉴定[D].西北农林科技大学,2007.
    [207]张彩莹.不同来源的超氧化物歧化酶部分理化性质比较研究[J].安徽农业科学,2007,35(15):4426-4429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700