用户名: 密码: 验证码:
Al、Ag对Zn-Al钎料性能的影响及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯铝及3003铝合金钎焊通常采用Al-Si钎料,此类钎料润湿性好、强度高,缺点是熔点高,容易导致母材过烧甚至熔化,研发熔点较低的中温铝钎料是目前铝及铝合金钎焊的发展趋势。另外,由于铜的资源性短缺及铜价的居高不下,使以铝代铜成为当前研究的热点之一,研制性能优良的铜-铝钎焊用钎料亦是目前亟待解决的问题。本文以Zn-Al钎料为研究对象,旨在研究开发新型性能优良的铝-铝钎焊及铜-铝钎焊材料。
     Zn-Al钎料由于其独特的熔化温度范围(381℃~500℃),在铝-铝钎焊、铜-铝钎焊领域将具有广阔的应用前景。本文研究了Al元素和Ag元素对Zn-Al钎料性能的影响,综合考虑钎料的熔化温度、铺展性能以及钎焊接头力学性能,研究了Zn-Al钎料在纯铝、3003铝合金、紫铜表面的铺展性能以及纯铝钎焊接头、3003铝合金钎焊接头、紫铜-纯铝钎焊接头的力学性能。在此基础上对钎料合金成分进行了优化,并分析了Al元素和Ag元素影响Zn-Al钎料性能的作用机理。
     本文首先研究了Al元素对Zn-Al钎料钎焊纯铝性能的影响,分析了Al元素对Zn-Al钎料显微组织、在纯铝表面铺展性能以及纯铝钎焊接头力学性能的影响。研究表明,随着钎料中Al含量的增加,钎料在纯铝表面的铺展面积增大,当Al含量为15wt.%时,铺展面积达到最大,继续增加Al元素含量,铺展性面积减小。纯铝钎焊接头力学性能试验研究结果表明,搭接钎焊接头均断裂于母材,对接钎焊接头部分试件断裂于钎缝。随着钎料中Al含量的增加,对接接头的抗拉强度增大,当Al含量为15wt.%时抗拉强度达到最高,继续增加Al含量,钎缝显微组织变得粗大,钎焊接头抗拉强度降低。由此得出结论,85Zn-15Al钎料钎焊纯铝时,综合性能最好。
     采用不同Al含量的Zn-Al钎料钎焊3003铝合金,铺展性能试验结果表明,随着钎料中Al含量的增加,钎料在3003铝合金表面的铺展性能提高,当Al含量为15wt.%时,铺展性能最佳,继续增加Al含量,铺展性能下降。3003铝合金钎焊接头力学性能试验研究结果表明,搭接钎焊接头均断裂于母材,对接钎焊接头部分试件断裂于钎缝。Al含量低于等于15wt.%时,对接钎焊接头均断裂于母材处。当Al含量超过15wt.%后,钎缝显微组织变得粗大,钎焊接头抗拉强度降低,部分试件断裂于钎缝处。综合考虑钎料铺展性能及钎焊接头力学性能,85Zn-15Al钎料钎焊3003铝合金性能最佳。
     Al元素对Zn-Al钎料铜-铝钎焊过程中的铺展性能、钎焊接头力学性能及钎缝显微组织影响显著。研究结果表明,随着钎料中Al含量的增加,钎料在紫铜表面的铺展性能提高,但Zn-Al钎料在紫铜表面的铺展性能显著低于其在纯铝表面的铺展性能。因此,在铜-铝异种材料钎焊过程中,Zn-Al钎料在钎缝中的流动主要依赖于钎料在纯铝表面的润湿、铺展。钎焊接头力学性能试验结果表明对接与搭接钎焊接头均断裂于钎缝。随着钎料中Al含量的增加,铜-铝钎焊接头强度提高,当Al含量为15wt.%时钎焊接头力学性能最佳,继续增加Al含量,钎缝内的CuAl2化合物数量显著增加且变得粗大,粗大的CuAl2化合物与其周围组织之间容易产生应力集中而萌生裂纹,导致钎焊接头强度降低。综合考虑钎料铺展性能及钎焊接头力学性能,在不添加其他合金元素的情况下,钎焊铜-铝异种材料时,85Zn-15Al钎料较好。
     然而,85Zn-15Al钎料在铜-铝钎焊中仍然存在一些缺点,特别是钎焊接头力学性能有待于进一步提高。本文以85Zn-15Al作为基体钎料,着重研究了Ag元素对Zn-Al钎料显微组织、熔化温度、铺展性能、铜-铝异种材料钎焊接头力学性能以及钎缝显微组织的影响。研究结果表明,随着钎料中Ag含量的增加,钎料的熔化温度显著提高,钎料在纯铝及紫铜表面的铺展面积均呈上升趋势。铜-铝钎焊接头力学性能试验结果表明,搭接与对接钎焊接头均断裂于钎缝处。随着Ag含量的增加,钎缝内部块状CuAl2相尺寸变得细小,产生应力集中的倾向减小,对应的钎焊接头力学性能显著提高。当Ag的添加量为3.3wt.%时,钎焊接头的力学性能最佳,继续增加Ag含量,钎焊接头强度变化不大。铜-铝异种材料钎焊用Zn-Al钎料的最佳Ag含量为3.3wt.%。上述研究结果已经指导实际生产,新配方钎料已经在五金、电力、制冷等行业广泛应用,效果良好。
Pure aluminium and3003Al-alloy are usually brazed by Al-Si filler metal. The spreadability ofAl-Si filler metal is excellent, and the strength of the joint brazed by Al-Si filler metal is good.However, the melting point of Al-Si filler metal is too high to handle, for example, the base metalmight be overheated and even melt during the brazing process. Novel filler metals are in great needfor brazing pure aluminium and Al-alloy at the middle temperature. In addition, because the price ofCu soared in recent years, it also becomes a hotspot to substitute Al for Cu. More and moreproblems exist and need to be solved in Cu/Al brazing before new filler metals for brazing Cu/Al jointdeveloped. In order to solve the problems as mentioned above, the Zn-Al alloy is studied for brazingAl/Al joint and brazing Cu/Al joint in this thesis.
     The range of the melting temperature of Zn-Al alloy may keep within381℃~500℃, which isvery suitable to braze Al/Al joint and to braze Cu/Al joint at the middle temperature. The effects of Aland Ag addition on Zn-Al filler metal were studied deeply and systematically in this thesis and thecomprehensive properties of the Zn-Al filler metal were invesigated including the meltingtemperature of the filler metal, the spreadability and the brazed joint mechanical properties. On thebasis of studing and analyzing the mechanism of Al and Ag effects on the joints including purealuminium brazed joint,3003Al-alloy brazed joint, Cu/Al brazed joint, the compositionof the Zn-Alfiller metal were optimized.
     The effects of Al on the spreadability of Zn-Al filler metal on pure aluminium surface werestudied, moreover, the mechanical properties and microstructures of the brazed joints also have beenstudied by brazing pure aluminium joints. The results indicate that the spreadability on purealuminium surface enhances with the increase of Al content in the Zn-Al filler metal. The filler metalgets the best spreadability on pure aluminum surface when Al content in the Zn-Al filler metal is15wt.%. However, the spreadability decreases when Al content in the Zn-Al filler metal exceeds15wt.%.Furthermore, the mechanical property tests indicate that all pure aluminium lap joints fracture on thebase metal. But some of pure aluminium butt joints fracture on the brazing seam. The strength of thepure aluminium butt joint enhances with the increase of Al content in the Zn-Al filler metal. Thehighest strength of the pure aluminium butt joint is obtained when Al content is15wt.%. However,when Al content exceeds15wt.%, the microstructures of the brazed joint become coarse, thecorresponding strength of brazed joint decreases. For comprehensive consideration,85Zn-15Al filler metal possesses the best comprehensive properties.
     3003Al-alloy were brazed by the different Al content Zn-Al filler metals. The effects of Al onthe spreadability of Zn-Al filler metal were investigated on3003Al-alloy surface, and the mechanicalproperties and microstructures of the brazed joints were also studied. Results indicate that thespreadability on3003Al-alloy surface enhances with the increase of Al content in the Zn-Al fillermetal. The filler metal presents the best spreadability on3003Al-alloy surface when Al content inZn-Al filler metal is about at15wt.%. However, the spreadability gradually deteriorates when Alcontent exceeds15wt.%. Furthermore, the mechanical property tests indicate that all3003Al-alloylap joints fracture on the base metal. But some of3003Al-alloy butt joints fracture on the brazingseam. When Al content in the Zn-Al filler metal are less than or equal to15wt.%, the3003Al-alloybutt joint fracture on the base metal. However, when the Al content exceeds15wt.%, themicrostructures of the brazed joint become coarse and the strength of the brazed joint decreases. Thensome butt joints fracture on the brazing seam. According to the spreadability and the brazed jointstrength,85Zn-15Al filler metal possesses the best comprehensive properties for brazing3003Al-alloy.
     Effects of Al on the spreadability of Zn-Al filler metal on pure copper surface were alsoinvestigated, moreover, the mechanical properties and microstructures of the brazed joints have beenstudied by brazing Cu/Al joints. Results indicate the spreadability on pure copper surface is improvedwith the increase of Al content in Zn-Al filler metal. It also has been found that the spreadability onpure copper surface is much lower than that on pure aluminum surface, so the filler metal flow in thebrazing seam depends mainly on its spreadability on the pure aluminium surface in the courese ofbrazing Cu/Al joints. Furthermore, the mechanical property tests indicate that all the Cu/Al brazedjoints fracture on the brazing seam including lap joints and butt joints. The strength of the Cu/Al jointsincluing lap joints and butt joints enhances with the increase of Al content in Zn-Al filler metal. Thepeak strength of the brazed joints presents when Al content is15wt.%. However, when Al contentexceeds15wt.%in Zn-Al filler metal, the CuAl2phase becomes coarse in the brazing seam. Stressconcenstration is easy to occur on the boundary of the coare CuAl2phase, which leads thecorresponding strength of the brazed joint to decrease, so far as we know,85Zn-15Al filler metal isthe better metal for brazing Cu/Al joint.
     Some shortcomings of85Zn-15Al filler metal brazing Cu/Al joint have been found, especially,the mechanical properties of the Cu/Al brazed joints are not very high, so on the basis of85Zn-15Alfiller metal, the effects of Ag on the melting temperature of Zn-Al filler metal, spreadability, andmechanical property of the Cu/Al brazed joint as well as the brazing seam microstructure were studied respectively. Results show that the melting temperature rises with the addition of Ag, meanwhile, theaddition of Ag improves the spreadablity on the pure aluminium surface and on pure copper surface.Furthermore, the mechanical property tests indicate that all the Cu/Al brazed joints fracture on thebrazing seam including lap joints and butt joints. The microstructures of the brazed joints areimproved significantly with the addition of Ag. The addition of Ag can refine the CuAl2brittle phasein the brazing seam, which decreases the stress concentration and enhances the brazed joint strength.And the strength of the Cu/Al joints incluing lap joints and butt joints enhances with the increase ofAg content in Zn-Al filler metal. The Zn-Al filler metal with3.3.wt.%Ag shows the best mechanicalproperty when applied in the Cu/Al brazed joint. When the content of Ag exceeds3.3wt.%, themechanical properties of the brazed joints remain stable, the Zn-Al filler metal with3.3wt.%Agpossesses the best comprehensive properties, and the optimal composition of the Zn-Al filler metalhas been successfully applied in the hardware industry, electricity industry, refrigeration industry, andso on.
引文
[1]吴岳明,周定东.铝制汽车空调配件无腐蚀性钎剂火焰钎焊工艺[J].焊接,2000(1):39~40.
    [2] Lacaze J, Tiece S, Lafont M C, and et al. Study of the microstructure resulting from brazedaluminum materials used in heat exchangers [J]. Materials Science and Engineering A,2005,(413~414):317~321.
    [3] Chuang T H, Tsao L C, Tsai T C, et al. Development of a low-melting-point filler metal forbrazing aluminum alloys [J] Metallurgical and Materials Transactions A,2000,31(9):2239-2245.
    [4] Tsao L C, M.J. Chiang, W.H. Lin, et al. Effects of zinc additions on the microstructure andmelting temperatures of Al–Si–Cu filler metals[J]. Materials Characterization,2002,48(4):341-346.
    [5]中国有色金属工业信息中心.世界铜铝铅锌产量、消费量统计[J].世界有色金属,2008(7):68-69.
    [6] Kawas H, Takemoto T, Asano M, and et al. Study of a method for evaluating the brazeability ofaluminum sheet [J]. Welding Journal,1989,68(10):396~403.
    [7] Hattori T, Sakai S, Sakamoto A, and et al. Brazeability of aluminum in vacuum-nitrogenpartial-pressure atmosphere brazing [J]. Welding Journal,1994,73(10):233~240.
    [8]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,2008:52~56.
    [9] Cadirh E, Kaya H, Gümüs A, and et al. Temperature-dependence of electrical resistivity of Cd-Sn,Bi-Sn, and Al-Si eutectic and-3wt.wt.%Si hypoeutectic alloys[J]. Journal of Materials Engineeringand Performance,2006,15(4):490~493.
    [10] Lee S H, Yoon J S, Kim M S, et al. Effects of cold rolling parameters on sagging behavior forthree layer Al-Si/Al-Mn(Zn)/Al-Si brazing sheets[J]. Metals and Materials International,2002,8(3):227~232.
    [11]黄伯云.我国有色金属材料现状及发展战略[J].中国有色金属学报,2004,14S1:122~127.
    [12]夏春智,李亚江,王娟. Cu/Al异种金属连接的研究现状[J].焊接,2008(1):17~20.
    [13]中国机械工程学会焊接学会.焊接手册[M].北京:机械工业出版社,2008
    [14]赵越,邹增大,王岩.冰箱制冷系统铜铝管的连接方法[J].焊接,2003(9):5-8.
    [15] Ouyang J, Yarrapareddy E, Kovacevic R. Microstructural evolution in the friction stir welded6061aluminum alloy (T6-temper condition) to copper[J]. Journal of Materials Processing Technology,2006,172(1):110-122.
    [16] Abdollah-Zadeh A, Saeid T, Sazgari B. Microstructural and mechanical properties of friction stirwelded aluminum/copper lap joints[J]. Journal of Alloys and Compounds,2008,460(1-2):535-538.
    [17] Liu P, Shi Q Y, Wang W, et al. Microstructure and XRD analysis of FSW joints for copperT2/aluminium5A06dissimilar materials[J]. Materials Letters,2008,62(25):4106-4108.
    [18]张启运,刘淑祺.高温铝钎料的选择及其母材的相互作用[J].金属学报,1981,17(3):300-303.
    [19]张启运,刘淑祺,胡佳. Al-Si共晶合金变质机理的探讨[J]金属学报,1984,20(2): A138-140.
    [20]张启运,郑朝贵,韩万书.稀土元素对Al-Si共晶合金的变质作用[J].金属学报,1981,17(2):130-132.
    [21] Weng W P, Chuang T H. Interfacial characteristics for brazing of aluminum matrix compositeswith Al-12Si filler metals[J]. Metallurgical and Materials Transactions A,1997,28(12):2673~2682.
    [22] Hoke W H, Amenheuser C. Techniques for aluminium brazing in vacuum furnaces[J]. WeldingJournal,1993,72(10):65-67.
    [23] Bobzin K, Zhao L D, Schlaefer T, et al. Influence of the filler materials on flux-free brazing ofpure aluminium (1050)[J]. Frontiers of Mechanical Engineering in China,2010,5(1):47~51.
    [24]邹家生.用氟化物钎剂钎焊6063铝合金的试验研究[J].华东船舶工业学院学报,1994,8(3):38~42.
    [25] Peaslee R L. Brazing yesterday’s art has become today’s science[J]. Welding Journal,1992,71(10):25~31.
    [26]何鹏,冯吉才,钱乙余等.铝钎料膏的研制及其在钎焊中的应用[J].中国有色金属学报,2002,12(6):1113-1118.
    [27]陈根宝,吴锦华,李戈扬. Al-Si钎料与母材的相互作用[J].金属学报,1984,20(3):B171~B173.
    [28]王冠,俞伟元,陈学定,等.快冷与普通Al-Si钎料中Si的扩散行为研究[J].兰州理工大学学报,2005,31(3):14~17.
    [29] Schmatz D J. Grain boundary penetration during brazing of aluminium [J]. Welding Journal,1983,62(10):267~271.
    [30] Suroda S, Itagaki T, Tohma K. Electrochemical property of Al-Si alloy filler [J]. Journal JapanInstitute of Light Metals,1996,46(3):113~118.
    [31] Suroda S, Itagaki T, Tohma K. Effect of heat treatment on electrochemical property of Al-Si alloyfiller [J]. Japan Institute of Light Metals,1996,46(6):286~291.
    [32]高强.最新有色金属金相图谱大全[M].北京:中国冶金工业出版社,2005:78.
    [33] Mcgurran B, Nicholas M G. A study of aluminium brazes using hot-stage scanning electronmicroscopy [J]. Journal of Materials Science,1984,19(8):2713-2718.[16] B. Mc GURRAN, M. G.NICHOLAS. A study of aluminium brazes using hot-stage scanning electron microscopy [J]. Journalof Materials Science,1984,19(8):2713-2718.
    [34] Bobzin K, Zhao L, Schlaefer T, and et al. Application of cold spraying for flux-free brazing ofaluminium alloy6060[J]. Frontiers of Mechanical Engineering in China,2010,5(3):256~260.
    [35] Shin S Y, Ko M W, Cho M W, and et al. Microstructure and mechanical properties of Al6061joints diffusion brazed using Cu interlayer [J]. Journal of Materials Science Letters,2002,21(12):903~906.
    [36]薛松柏. LY12铝合金中温钎焊技术[J].焊接学报,2003,24(3):49~51.
    [37] Nayeb-Hashemi H, Lockwood M. The effect of processing variables on the microstructures andproperties of aluminum brazed joints [J]. Journal of Materials Science,2002,37(17):3705~3713.
    [38]虞觉奇,陈明安,高香山.快速凝固Al-Si基钎料性能的研究[J].焊接学报,1994,15(2):67~72.
    [39]于文花,肖爱群,庄鸿寿.铝合金真空钎焊用低温铝钎料的研究[J].航天制造技术,2005,12(6):10~12.
    [40]于文花,朱颖,康慧等. Al-Si-Cu-Ni低熔点钎料中合金元素对其性能的影响[J].焊接,2002,(11):21~23.
    [41]朱颖,于文花,康慧等. Al-Si-Cu-Ni低熔点钎料中合金元素含量对其接头强度的影响[J].焊接,2003,(3):13~16.
    [42] Tao L C, Weng W P, Cheng M D, and et al. Brazeability of a3003aluminum alloy withAl-Si-Cu-based filler metals [J]. Journal of Materials Engineering and Performance,2002,11(4):360~364.
    [43] Tao L C, Tsai T C, Wu C S, and et al. Brazeabiliy of the6061-T6aluminum alloy withAl-Si-20Cu-based filler metals [J].2001,10(6):705~709.
    [44] Humpston G, Sangha S P S, Jacobson D M. New filler metals and process for fluxless brazing ofaluminium alloys [J]. Materials Science and Technology,1995,11(11):1161~1168.
    [45] Jacobson D M, Humpston, Sangha S P S. A new low-melting-point aluminum braze [J]. WeldingJournal,1996,75(8):243~250.
    [46]俞伟元,陈学定,路文江.快速凝固Al-Si-Cu系钎料的性能[J].焊接学报,2004,25(2):69~72.
    [47]邹家生,吕思聪,赵宏权等. Al-Si-Cu-Zn急冷钎料钎焊铝及铝合金的界面结构及强度[J].焊接学报,2008,29(3):77~80.
    [48]张新平,史耀武,任耀文.镍基非晶态及晶态钎料真空钎焊工艺性能[J].焊接学报,1996,17(4):205~211.
    [49] Cooper K P, Jones H N. Micro structural evolution in rapidly solidified Al-Si-Cu ternary alloys[J]. Journal of Materials Science,2001,36(22):5135~5323.
    [50] Ryou M, Kim C H, Kim M H. Microstructure and mechanical properties of hyper-eutectic Al-Sialloys fabricated by spray casting [J]. Journal of Materials Science and Technology,2008,24(1):48~50.
    [51] Rajendra S, Prasad S N. Development of aluminum alloys with rare earth additions [J]. LightMetal Age,1989,47(1~2):23~26.
    [52] Tang D X, Wang L Q, Zhao H Y, and et al. Rare earth aluminium alloys in China [J]. Journal ofRare Earth,1992,10(1):66~71.
    [53] Nie Z R, Jin T N, Zou J X, and et al. Development on research of advanced rare-earth aluminumalloy [J]. Transaction Nonferrous Metals Society of China,2003,13(3):509~514.
    [54] Noqita K, McDonald S D, Dahle A K, and et al. Eutectic modification of Al-Si alloys with rareearth metals [J]. Materials transactions,2004,45(2):323~326.
    [55] Nie Z R, Li B L, Wang W, and et al. Study on the erbium strengthened aluminum alloy [J].Materials Science Forum,2007,2,623~628.
    [56]王丽萍,康福伟,郭二军,等.单一稀土Ce, La和混合稀土在工业纯铝中的作用[J].中国稀土学报,2003,21(2):218~221.
    [57]孙宝德,李克,王俊.镧、钇稀土在共晶铝硅合金中的应用[J].上海交通大学学报,1999,33(7):795~798.
    [58] Zhang Y H, Xiao Y Z, Ma H S. Effect of trace Sc on recrystallization of industrial purealuminium [J]. The Chinese Journal of Nonferrous Metals,1998,8(1):85~88.
    [59]杨军军,聂祚仁,金头男.微量稀土金属Er对高纯铝再结晶行为的影响[J].稀有金属材料与工程,2003,32(1):37~40.
    [60] Wang S H, Zhou H P, Kang Y P. The influence of rare earth elements on microstructuresproperties of6061aluminum alloy vacuum-brazed joints [J]. Journal of Alloys and Compounds,2003,352(24):79~83.
    [61] Shi Y W, Yu Y, Li Y P, and et al. Study on the microstructure and wettability of an Al-Cu-Si brazecontaining small amounts of rare earth erbium [J]. Journal of Materials Engineering and Performance,2009,18(3):278~281.
    [62]董仕杰,史耀武,匡一心等.稀土元素对低温铝基钎料性能的影响[J].稀土,1996,17(4):15~19.
    [63]张国伟,包晔锋,蒋永锋等. Al-Si-Cu基钎料钎焊6063铝合金钎焊接头显微组织及剪切性能[J].上海交通大学学报,2010,44(增刊):66~69.
    [64] Xue S B, Dong J, Lu X C, and et al. Reaction behavior between the oxide film of LY12aluminum alloy and the flux [J]. China Welding,2004,13(1):36~40.
    [65] Ning Y T, Zhou X M, Dai H. Metastable extension of solid solubility of rare earth elements in Al[J]. Acta Metallrugica Sinica,1992,28(3):95~100.
    [66] Chen Z, Shi Y, Xia Z, and et al. Properties of lead-free solder SnAgCu containing minuteamounts of rare earth [J]. Journal of Electronic materials,2003,32(4):235~243.
    [67] Ferreira I L, Garcia A, Nestler. On macraosegregation in ternary Al-Cu-Si alloys: Numerical andexperimental analysis [J]. Scripta Materialia,2004,50(2):407~411.
    [68] Zhang D F, Peng J, Huang G J, and et al. Microstructure evolution of cast Al-Si-Cu alloys insolution treatment [J]. Journal of Wuhan University of Technology--Materials Science Edition,2008,23(2):184~188.
    [69] Gao F, Zhao H, Sekulic D P, and et al. Solid state Si diffusion and joint formation involvingaluminum brazing sheet[J]. Materials Science and Engineering A,2002,337(1~2):228~235.
    [70]高祺.快速凝固钎料提高钎焊接头致密性机理[J].焊接,2001,(3):25~27.
    [71]邱小明,殷世强,孙大谦等. Al共晶接触反应钎焊热力学分析[J].中国有色金属学报,2011,11(6):1017~1020.
    [72] Byczynski G E, Kierkus F. The effect of quench rate on mechanical-properties of319-aluminum-alloy castings [J]. Materials Science Forum,1996,(217~222):783~788.
    [73] Crepeau P N, Antolovich S D, Worden J A. Structure-property relationships in aluminum alloy339-T5: tensile behavior at room and elevated temperature [J]. Transactions of the AmericanFoundrymen’s Society,1990,(98):813~822.
    [74] Wang G, Bin X. Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg castalloys [J]. Materials Letters,2003,(80):1~5.
    [75]陈学定,宋强,俞伟元等.铝基钎料真空钎焊接头的腐蚀性[J].焊接学报,2003,24(1):40~43.
    [76] Su T L, Wang S S, Tsao S Y, and et al. Corrosion behaviors of Al-Si-Cu-based metals and6061-T6brazements [J]. Journal of Materials Engineering and Performance,2002,11(2):187~193.
    [77] Suzuki K, Kagayama M, Takeuchi Y. Eutectic phase equilibrium of Al-Si-Zn system and itsapplicability for lower temperature brazing [J]. Journal Japan Institute of Light Metals,1993,43(10):533~538.
    [78] Ohnishi T, Okamura A, Nakayama T. Production of Al-Zn-Si alloy wires by the horizontalin-rotating-water spinning method[J]. Nippon Kinzoku Gakkai-si,1990,54(6):706-712.
    [79]俞伟元,路文江,陈学定等.快速凝固Al-Zn-Si基钎料性能的研究[J].兰州理工大学学报,2004,30(6):13-15.
    [80] Hayes H F, Longbottom R D, Ahmad E, and et al. On the Al-Si, Al-Ge, and Al-Ge-Si systems andtheir application to brazing in high power semiconductor devices [J]. Journal of Phase Equilibria,1993,14(4):425~431.
    [81]刘淑祺,孙国平,张启运. Al-Si-Ge三元合金相图的研究[J].金属学报,1982,18(4):451~455.
    [82] Kayamoto T, Kim J H, Saito S, and et al. Brazing of Al-Mg alloy and Al-Mg-Si alloy with Al-Gebased filter metals[J]. Proceedings of Workshop of the Japanese Welding Society,1994(12):495~501.
    [83] Osintsev O E, Betsofen S Y, Konkevich V Y, and et al. Study of the phase composition ofAl-Si-Ge alloys for designing solders for aluminum alloys [J]. Russian Metallurgy(Metally),2009,2009.
    [84] Bauer H D, L ser W, Schubert T, and et al. In situ tempering of melt spun AlGeSi-foils [J].Mikrochim Acta,1997,125(1~4):25~31.
    [85] Schubert T H, L ser W, Teresiak A, and et al. Preparation and phase transformations of melt-spunAl-Ge-Si brazing foils [J]. Journal of Materials Science,1997,32(8):2181~2189.
    [86]韩宪鹏,薛松柏,顾立勇等.镓对Ag-Cu-Zn钎料组织和力学性能的影响[J].焊接学报,2008,29(2):45~48.
    [87]陈荣,张启运. Sn-Zn钎料与Al的作用机制[J].金属学报,1996,32(1):80~84.
    [88] Nagaoka T, Morisada Y, Fukusumi M, and et al. Ultrasonic-assisted soldering of5056aluminumalloy using quasi-melting Zn-Sn alloy [J]. Metallugical and Materials Transactions B,2010,41(4):864~871.
    [89]刘亮岐,徐金华,陈胜等.添加Ag元素对铝软钎焊用Sn-1.5Zn系钎料性能的影响[J].材料工程,2010,(10):22~26.
    [90] Song J M, Luits, Lan G F, and et al. Resonant vibration behavior of Sn-Zn-Ag solder alloys[J].Journal of Alloys and Compounds,2004,379(1~2):233~239.
    [91] Chen K I, Cheng S C, Wu S, and et al. Effects of small additions of Ag, Al, and Ga on thestructure and properties of the Sn-9Zn eutectic alloy[J]. Journal of Alloys and compounds,2006,416(1):98~105.
    [92]钱乙余,毛建英.铝软钎焊时钎料元素的化学选择吸附作用[J].电子工艺技术,1986,(7):15~18.
    [93] Stephens J J, Frear D R. Time-dependent deformation behavior of near-eutectic60Sn-40Pbsolder [J]. Metallugical and Materials Transactions A,1999,30(5):1301~1313.
    [94]赵振清,王春青,杜淼等. LD31铝合金电刷镀SnPb钎料合金软钎焊[J].焊接学报,2005,26(7):67~70.
    [95] Ding M, Zhang P L, Zhang Z Y, and et al. Wetting characteristics of novel-type63Sn-29.2Pb-6Zn-1Ag-0.38Cu-0.42Bi solder alloy [J]. Journal of Materials Engineering andPerformance,2010,19(5):728~731.
    [96] Ding M, Zhang P L, Zhang Z Y, and et al. A novel assembly technology of aluminum alloyhoneycomb structure[J]. The International Journal of Advanced Manufacturing Technology,2010,46(9~12):1253~1258.
    [97]邹禧.钎焊[M].北京:机械工业出版社,1989,104~105.
    [98] Chen W X, Xue S B, Wang H, and et al. Effects of rare earth Ce on properties of Sn-9Znlead-free solder[J]. Journal of Materials Science: Materials in Electronics,2010,21(7):719~725.
    [99] Baker H, Okamoto H, Scott D. Alloy Phase Diagrams, Volume3[M]. USA: ASM International,1992:321~1442.
    [100] Gulenc B. Investigation of interface properties and weldability of aluminum and copper platesby explosive welding method[J]. Materials and Design,2008,29(1):275~278.
    [101]冲田富晴. Al—Cu系合金の溶接(2)[J].轻金属溶接,1995,33(3):11~18.
    [102]李志春.空调换热器的钎焊[J].焊接,2000(9):25~28.
    [103]邹家生,韩逸生,冯学东.空调器的钎焊技术[J].焊接,1999(4):14~16.
    [104]刘会杰,沈俊军.铝/铜异种材料的焊接研究[J].焊接,2009(3):14~17.
    [105] Xia C Z, Li Y J, Puchkov U A, et al. Microstructure and phase constitution near the interface ofCu/Al vacuum brazing using Al–Si filler metal[J]. Vacuum,2008,82(8):799-804
    [106]赵越.冰箱管路系统铜-铝管钎焊研究,[硕士学位论文].济南,山东大学,2004.
    [107] Song J M, Lan G F, Luit S, et al. Microstructure and tensile properties of Sn-9Zn-xAg lead-freesolder alloys [J]. Scripta Materialia,2003,48(8):1047~1051.
    [108] Chang T C, Wang M C, Hon M H. Effect of Ag addition on the structures of intermetalliccompounds and the adhesion strength of the Sn-9Zn-xAg/Cu interface [J]. Journal of Crystal Growth,2003,252(1~3):391~400.
    [109] Chang T C, Wang M C, Hon M H. Microstructure and thermal behavior of Sn-Zn-Ag solders[J].Journal of Crystal Growth,2003,32(12):1496~1500.
    [110] Tchang T C, Chou S M, Hon M H, et al. Microstructure and adhesion strength of Sn-9Zn-xAglead-free solders wetted on Cu substrate[J]. Materials Science Engineering,2006,429(1~2):36~42.
    [111]吴文云,邱小明,殷世强等. Bi、Ag对Sn-Zn无铅钎料性能与组织的影响[J].中国有色金属学报,2006,16(1):158~163.
    [112]王慧.微合金化对Sn-9Zn无铅钱料性能影响及相关机理研究,[博士学位论文],南京航空航天大学,2010.
    [113] Huang M L, Huang Y Z, Ma H T, et al. Mechanical properties and electrochemical corrosionbehavior of Al/Sn-9Zn-xAg/Cu joints [J]. Journal of Electronic Materials,2011,40(3):315~323.
    [114]胡玉华,薛松柏,陈文学等. Sn-9Zn-xCe钎料显微组织及钎焊性能的分析[J].焊接学报,2010,31(6):77~80.
    [115] Wang H, Xue S B, Zhao F, and et al. Effect of Ga, Al, Ag and Ce muti-additions on theproperties of Sn-9Zn lead-free solder[J]. Journal of Materials Science: Materials in Electronics,2010,21(2):111~119.
    [116]刘永红,张忠明,刘宏昭等.锌铝合金的研究现状及应用概况[J].铸造技术,2001(1):42~44.
    [117]中国机械工程学会焊接学会.焊接手册第2卷材料的焊接[M].北京:机械工业出版社,2001:823.
    [118]张启运,吴轮中.中温铝钎焊[J].热处理,1996(4):60~64.
    [119]安百刚,张学元,韩恩厚.铝和铝合金的大气腐蚀研究现状[J].中国有色金属学报,2001,11(2):11~15.
    [120]韩万书,林千善,刘玉生等.少量金属元素对Al-Zn共晶合金钎料抗腐蚀性能的影响[J].中国腐蚀与防护学报,1982,2(2):59~63.
    [121]孙连超,田荣璋,魏克泰等.锌及锌合金物理冶金学[M].长沙:中南工业大学出版社,1994.
    [122]张启运,陈荣,高苏. NOCOLOK铝钎剂研究的进展与延伸[J].焊接,1998(11):15~18.
    [123]薛松柏,陈文华,吕晓春等. LY12铝合金氧化膜与钎剂的反应机制[J].中国有色金属学报,2004,14(4):543~547.
    [124]薛松柏,董健,吕晓春等. Al/Cu管异种材料火焰钎焊连接[J].焊接,2003(12):23~25.
    [125]鲍俊娟,高志广,李川等.2A50铝合金钎焊钎料与钎剂的选择[J].机械工程学报,2006,30(12):40~43.
    [126]虞觉奇,陈永泰. Y-2型中温锌基铝钎料的研究[J].焊接,1997(8):11~13.
    [127] Xu Zhiwu, Yan Jiuchun, Wang Cheng, etc. Substrate oxide undermining by a Zn–Al alloyduring wetting of alumina reinforced6061Al matrix composite [J]. Materials Chemistry and Physics,2008,112(3):831~837.
    [128]逯允海,赵品,沈焕祥.添加Mn、Ni对ZA27合金组织与性能的影响[J].中国有色金属学报,2005,15(12):1960~1966.
    [129] Pang S P, Shi Y B, Li J, et al. Effects of Cerium on Microstructures and Mechanical Propertiesof Zn-22wt.%Al Vibration Damping Alloy[J]. Journal of Rare Earths,2000,18(4):344.
    [130] Rosalbino F, Angelini E, Macciò D, et al. Application of EIS to assess the effect of rare earthssmall addition on the corrosion behaviour of Zn–5wt.%Al (Galfan) alloy in neutral aerated sodiumchloride solution. Electrochimica Acta,2009,54(4):1204~1209.
    [131] Zhu Y H, To S, Lee W B, etc. Effects of dynamic electropulsing on microstructure andelongation of a Zn–Al alloy. Materials Science and Engineering A,2009,501(1-2):125~132.
    [132] Kawasaki M, Langdon T G. Flow behavior of a superplastic Zn–22wt.%Al alloy processed byequal-channel angular pressing [J]. Materials Science and Engineering A,2009,503(1-2):48~51.
    [133]赵丹.储存时间和环境对锌铝钎料显微组织和力学性能的影响,[硕士论文].郑州,郑州大学,2011.
    [134]陈文学,薛松柏,王慧,等. Sn-9Zn-xAg无铅钎料润湿性能及焊点力学性能[J].焊接学报,2009,30(6):75-78.
    [135]马力,贺定勇,李晓延,等. Zn基钎料钎焊镁合金AZ31B接头的钎缝物相及力学性能[J].稀有金属材料与工程,2009,38(增刊3):210-214.
    [136] Belov N A, Eskin D G, Aksenov A A. Multicomponent Phase Diagrams: Applications forCommercial Aluminum Alloys[M]. Great Britain,2005:197~198.
    [137]周公度,段连运.结构化学基础[M].北京:北京大学出版社,2002:377.
    [138]王章忠.材料科学基础[M].北京:机械工业出版社,2005:51~270.
    [139]余永宁.材料科学基础[M].北京:高等教育出版社,2006:520.
    [140]杨部正,戴永年,杨斌,等.加锌连续除银[J].有色金属,1996,48(3):84~87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700