用户名: 密码: 验证码:
含砂原油介质中螺杆泵定子橡胶摩擦磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜油螺杆泵采油系统作为一种实用有效的机械采油设备,具有结构简单、体积小、耗能低、投资少,以及使用、安装、维修、保养方便等特点,它兼有离心泵和柱塞泵的优点,适宜于斜井、水平井、沼泽地区以及海上平台采油作业,且不存在断杆和管漏故障等,并在高粘度稠油、大油气比油和含砂油的开采作业中体现出了较好的性能和效益。目前,该技术在国内外油田已得到了普遍重视,并有望成为油田主要机采方式之一。橡胶材料因具有良好的耐油、耐磨和耐高温等性能,被用来作为采油螺杆泵的定子材料,由于油井实际工况环境常为掺杂磨粒的腐蚀性介质,使动态密封过程中的橡胶材料易发生过早的磨损失效,极大地影响了螺杆泵橡胶定子的使用性能和工作寿命,这也是导致螺杆泵失效的主要原因之一。然而,迄今为止尚缺乏为选择此类橡胶材料所必须的磨损机理研究和普适性指导原则。因此,研究采油螺杆泵定子橡胶的磨损机理,不仅对生产有实际应用价值,也将十分有益于丰富和发展橡胶摩擦学理论与实践知识。
     针对现今采油螺杆泵定子橡胶磨损机理研究不足的问题,本文以采油螺杆泵的金属转子与橡胶定子摩擦配副为研究对象,在实验室中模拟螺杆泵实际工况,建立定子橡胶磨损试验分析程序,构建试验平台,对橡胶试块在除砂原油润滑介质、含砂原油介质及液体石蜡润滑等条件下进行磨损试验。从磨粒磨损、侵蚀磨损以及腐蚀磨损等方面对采油螺杆泵定子橡胶摩擦磨损行为进行较全面的研究。
     首先基于对采油螺杆泵工作特性的充分认识,详细分析了螺杆泵螺杆在橡胶衬套副中的运动特性,推导出单螺杆泵转子与定子间的最大滑动速度以及接触压力计算公式。根据采油螺杆泵运动学的分析方法及计算公式,以GLB120-27型采油螺杆泵的结构参数为例,确定金属转子和橡胶定子间的滑动速度和载荷数据范围,进而确定了实验室环境下模拟螺杆泵工况条件的磨损试验中钢轮的转速和载荷参数值。
     论文阐述了橡胶摩擦磨损的复杂性,探讨了原油在螺杆泵定子橡胶摩擦磨损过程中的影响及基本润滑机理,并深入分析了橡胶摩擦磨损理论,明确了除砂原油介质中螺杆泵定子橡胶的摩擦磨损行为、橡胶摩擦磨损主要机理、磨损类型及其影响因素。在此基础上通过对采油螺杆泵定子橡胶本身的材料性能和使用环境进行分析,系统地研究含砂原油介质中螺杆泵定子橡胶的磨损行为及其机理。
     研究发现,采油螺杆泵正常工作中的磨损形式主要有磨粒磨损、侵蚀磨损、疲劳磨损及腐蚀磨损等。针对这些磨损行为,采用MPV-600型微机控制磨粒磨损试验机,选取常用的丁腈橡胶(NBR)和氟橡胶(FPM)试块与45#钢在除砂原油润滑、原油含砂介质以及液体石蜡润滑条件下进行采油螺杆泵定子橡胶衬套副的摩擦磨损模拟试验,测定其摩擦系数和磨损量,分析得到摩擦系数和磨损量随法向载荷的变化规律,再利用扫描电子显微镜(SEM)、X射线能量色散光谱分析仪(EDX)以及红外光谱分析仪(FT-IR)对橡胶磨损后的磨痕表面、化学元素含量和官能团状态进行测定。综合试验测试结果,分析橡胶的摩擦磨损行为,观察除砂原油润滑条件下橡胶的物性变化,考虑含砂原油中磨粒浓度、尺寸、形状在不同法向载荷作用下对橡胶的磨损规律,以及关注腐蚀性介质对橡胶磨损的影响,进而得到橡胶定子在原油介质中的磨粒磨损机理以及溶胀腐蚀和机械磨损的交互作用的表达关系,并针对现有的橡胶磨损试验机的不足进行改进,设计新的含砂料浆橡胶磨粒磨损测试装置。通过上述研究,能够较全面地阐述采油螺杆泵定子橡胶的磨损机理,为定子橡胶在实际工程应用中的摩擦学设计、材料选择、性能评价提供指导性原则。
As a new practical and effective mechanical oil recovery device, PCP has uniqueadvantages including simple connfiguration, small size, low noise, low energyconsumption, and less investment. PCP is also characterized by easy use, quick installation,convenient repair and maintenance. It has the merits of both the centrifugal pump and thepositive displacement pump. Free from broken rods and tube leakage, it is well used for theinclined shaft, horizontal wells, and the operations of oil production in the marsh land andoffshore platform. The better performance and higher efficiency of PCP is achieved in thedrilling operations of high viscosity heavy oil, big oil-gas ratio oil and sand oil. At present,PCP has received widespread attention at home and abroad, and is expected to become themain method for machinery oil production. The rubber material, characterized by good oilresistance, abrasion resistance and high temperature resistance, is used as the material ofPCP’s stator. The actual working environment of oil wells is usually filled with thecorrosive medium with abrasive grain dopants, making rubber materials prone topremature fatigue wear failure in the dynamic sealing process. This tendency greatlyaffects the PCP’s stator performance and working life, and therefore becomes one of themain causes of PCP failure. To date, unfortunately, few studies has been performed on thewear mechanism of such rubber material, and no general guiding principles have beenestablished either. Research on PCP's stator rubber wear mechanism, therefore, not onlyhas a certain value to the actual production, but is also of crucial significance to theenrichment and development of rubber tribology theory and practice.
     In response to inadequate research on PCP's stator rubber wear mechanism, this paper,based on the testing of abrasive wear, abrasive grain erosion wear and corrosion wear,conducts a comprehensive study on friction-wear mechanism of oil screw pump statorrubber. To achieve this goal, rubber friction and wear tests were made. In the tests, PCP'smetal rotor and stator of metal rubber friction were used as the test subject, and the actualworking condition of PCP was simulated in the laboratory. After the stator rubber frictionand wear test analysis program was designed and the test platform was built, rubberfriction and wear tests were conducted with rubber blocks placed under oil lubricationconditions, oil and sand medium conditions and lubrication of liquid paraffin conditions.
     At first, on the basis of the full understanding of the characteristics of PCP, a detailedanalysis of the motion characteristics of PCP's screw in the rubber bushing pair was made, and then the formula of the maximum slip velocity of single screw pump rotor and stator aswell as the formula of contact pressure between rotor and stator were derived. According tothe structure parameters of GLB120-27type PCP, the sliding velocity and load databetween PCP's rotor and rubber stator were obtained through the PCP's kinematics analysismethod and calculation formula, thus establishing the speed and load parameters of rubberwear under the simulated conditions of PCP’s actual working conditions in the laboratory.
     This dissertation expounds the complexity of friction and wear of rubber, discussesthe lubrication mechanism and the impact of crude oil in the screw pump stator rubberduring friction, in-depth analysis of the rubber friction and wear theory, clear the crude oilmedium in screw pump stator rubber friction and wear process, rubber friction and wearmechanism, wear type and its influencing factors. On this basis, through the analysis aboutthe screw pump stator rubber material properties and the working environment, systematicresearch the wear mechanism in crude oil screw pump stator rubber.
     The study finds that during the early phase of PCP’s running, the main forms of wearin the normal working of a screw pump include abrasive wear, adhesive wear, abrasivegrain erosion wear, fatigue wear and corrosive wear. To study these wear behaviors, afriction wear test was conducted on MPV-600micro-computer-controlling grain-abrasiontesting machine. NBR, FPM and45#steel pair area were tested in the conditions of crudeoil lubricating, sand-contained crude oil lubricating and liquid paraffin lubricating.Through the measuring of the friction coefficient and wear volume, the variation pattern offriction coefficient and wear volume with normal load was established. Then with the aidof SEM, EDX and FT-IR, the wear scar surface, functional group state and chemicalelement contents of rubber were measured after wear occurred. Based on the above testresults, this dessertation analyzes rubber's friction and behavior, observes the physicalchanges of rubber in oil medium, considers the grain concentration, size, shape at differentnormal loads on the rubber wear in crude oil, and pays attention to the influence ofcorrosive medium to rubber wear. Thereby, this dessertation discovers relevance of theinteraction effect between rubber stator's abrasive wear mechanism in oil medium, andimmersion corrosion and abrasive wear. And make improvements for the deficiencies ofthe existing rubber abrasion testing machine, set up a new rubber sand slurry abrasive weartesting device.The research in this dissertation comprehensively expounds the mechanismof wears of the PCP stator rubber and provides guiding principles for stator rubber in theactual engineering application in tribology design, material selection and performance evaluation.
引文
[1]王世杰,李勤.潜油螺杆泵采油技术及系统设计[M].北京:冶金工业出版社,2006.
    [2]万邦列.苏联电动潜油单螺杆泵发展和应用[J].世界石油科学,1998,(3):89~96.
    [3]张连山.国外螺杆泵采油系统的现状与发展[J].国外石油机械,1997,8(1):27~34.
    [4]黄秀明,黄中明,等.国内外螺杆泵采油技术发展概况[J].国外油田工程,1996,(6):20-22.
    [5] Lea J F, Winkler H.What is new in artificial lift[J]. World Oil,1997,18(4):53~60.
    [6] Cozzens K, Tetzlaff S. Using ESPCP reduces lifting costs[R]. The American Oil&Gas Reporter,1998,41(6):134~137.
    [7]张建伟.井下采油螺杆泵的现状及发展[J].石油机械,2000,28(8):56~58.
    [8]任龙,王亚华.螺杆泵采油系统新进展[J].国外油田工程,2007,23(1):30~36.
    [9]黄有泉,何艳,曹刚.大庆油田螺杆泵采油技术新进展[J].石油机械,2003,31(11):65~69.
    [10]曹刚,刘合,黄有权.国外螺杆泵举升工艺的新进展[J].石油机械,2004,3(24):54~55.
    [11]盛国富摘译.国外螺杆泵举升工艺的新进展[J].国外油田工程,2004,10(20):12~13.
    [12]张霞,任志臣,陈洪维.螺杆泵采油工艺技术现状[J].油气田地面工程,2007,26(9):18~21.
    [13]韩修廷,王秀玲,焦振强.螺杆泵采油原理及应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [14]何希杰,劳学苏.螺杆泵现状与发展趋势[J].水泵技术,2007,(5):1~12.
    [15]焦书科.橡胶化学与物理导论[M].北京:化学工业出版社,2009.
    [16]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998.
    [17]郁文正,梁德山.螺杆泵定子橡胶的新发展[J].国外石油机械,1994,8(4):41~42.
    [18] Cao Gang, Liu He, et al. Technical breakthrough in PCPs’ sealing issue of ASP flooding in Daqingoil field[J]. Journal of petroleum Technology,2008,60(1):50~52.
    [19]王贵一.橡胶的磨耗[J].特种橡胶制品,1994,1(1):4-7.
    [20] Lea James F, Winkler Herald W. What’s new in artificial lift[J]. World Oil.2005,226(5):35-36.
    [21] Mandal UK Aggarwal S. Studies on rubber-filler interaction in carboxylated nitrile rubber throughmicrohardness measurement[J]. Polymer Testing,2001,20(3):305-311.
    [22]王立彦.丁腈橡胶的应用[J].弹性体,2000,3(10):41~44.
    [23]郑元锁,张文,宋月贤,等.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2000,16(4):92-95.
    [24]金山.我国丁苯、丁腈胶生产近况[J].中国橡胶.2003,19(18):20.
    [25]马舒文.混炼型聚氨酯的新进展[J].现代橡胶技术,2007.33(1):1-8.
    [26]李培祥,郑华.高硬度三元乙丙橡胶胶料的研制[J].世界橡胶工业,2002,29(4):30-33.
    [27]强军锋,井新利,余竹焕.氧化硅与氧化锅填充高硬度硅橡胶[J].弹性体,2005,15(3):28-33.
    [28] K P Richter.用低粘度聚辛烯胶料制备动态性能优良的高硬度硫化胶[J].橡胶译众,1992,2(5):11-14.
    [29]王艳秋.橡胶材料基础[M].北京:化学工业出版社,2006.
    [30]李书琴,林裔珍.几种NBR基本性能评价[J].橡胶工业,1999,46(11):656-659.
    [31]吴生绪.橡胶成形工艺技术问答[M].北京:机械工业出版社,2007.
    [32]周毅.单螺杆泵定子橡胶的研制[J].橡胶工业,2003,5(50):312~314.
    [33]王敏.石油工业用橡胶[J].石油化工腐蚀与防护,2003,20(2):63~64.
    [34] Gu Ju, Jia Demin, Zhou Yangbo. Synergistic reinforcement of nano-CaCO3and DZMA to NBR(英文)[J].合成橡胶工业,2004,27(3):182.
    [35] Rattanas, Saowapark T, Deeprasertku C. Reinforeement of natural rubber with sillier/carbon blackhybrid filler[J]. Polymer Testing,2007,26(3):369-377.
    [36] Ano. Nitrile rubber in China[J]. European Rubber Journal,1999,18(11):7-9.
    [37]杜承泽,等译.橡胶在工程应用中的理论与实践[M].北京:化学工业出版社,1985.
    [38]孙浩.转速对螺杆泵定子磨损影响的机理分析与速度优化[D].沈阳:沈阳工业大学,2011.
    [39]李萍,陈勇.油田螺杆泵定子橡胶性能的影响因素[J].橡胶科技市场,2008,13:23~25.
    [40] Holland J. H. Adaption in Natural and Artifical systems.Cambrige[M]. MA: MIT Press,1976.
    [41]齐振林,刘合,曹刚,等.螺杆泵采油技术问答[M].北京:石油工业出版社,2002.
    [42]陈玉祥,王霞,周松,等.提高螺杆泵定子橡胶材料寿命的分析与研究[J].排灌机械,2005,23(4):6-9.
    [43] Scieszka S F. Sliding Erosion Mechansim and Measurement[J]. Tribology Transactions,1992,35(1):59~64.
    [44]张连山.螺杆泵采油系统技术发展现状与动向研究[J].石油机械,1994,22(1):46-50.
    [45] Majid S Delpassand. Progressing cavity pump design optimization for abrasive applications[C].1997SPE Production Operations Symposium, Oklahoma,1997,547-551.
    [46]沈秀庭,张武江.地面驱动螺杆泵在我国的应用及发展前景[J].石油机械,1993,21(9):46-50.
    [47] Mills R A R. Progressing cavity oilwell pump-past, present and future[J]. The Journal of CanadianPetroleum Technology,1994,33(4):5~6.
    [48]万邦列,刘猛.单螺杆油气混输泵的空间啮合理论[J].石油机械,1990,18(9):1~12.
    [49]万邦列,葛占玉.单螺杆式水利机械的啮合理论及其作用力研究[J].石油学报,1989(3):97~108.
    [50]万邦列,张建伟.单螺杆油气混输泵轴向力分析和试验研究[J].石油大学学报(自然科学版),1991,15(3):63~70.
    [51]苏义脑,谢竹庄.螺杆钻具马达线型分析基础及研究方法[J].石油钻采机械,1985,13(6):10~20.
    [52]苏义脑,于炳忠,谢竹庄.单螺杆钻具马达线型分析[J].石油学报,1986,7(4):95~109.
    [53]谢竹庄.单螺杆马达的普通线型[J].石油学报,1997,18(2):98~103.
    [54]张建伟.单螺杆泵的空间啮合原理[J].石油机械,1991,19(10):1~16.
    [55]王忠杰,易先忠.单头单螺杆式水力机械共轭线型分析[J].石油机械,1997,25(7):1~4.
    [56]杜秀华,任彬,韩国有.双头单螺杆泵的线型设计及虚拟建模[J].石油矿场机械,2007,36(1):33~35.
    [57]万邦列.单螺杆式水力机械的研究和开发[J].石油矿场机械,1995,24(3):14~18.
    [58]魏纪德,师国臣.试验介质温度/粘度对螺杆泵容积效率的影响[J].石油机械,1993,21(9):15~20.
    [59] Majid Delpassand. Progressing cavity (PC) pump design optimization for abrasive aplications[C].Proceedings-SPE Production Operations Symposium, Oklahoma City, USA,1997:547~551.
    [60] David Stuart, Majid Delpassand. New PCP design,material cut wear[R]. The American Oil&GasReporter,1997,(6):104~109.
    [61]罗敏,张晓龙,刘巨保.地面驱动螺杆泵动液面高度控制方法研究[J].钻采工艺,2006,29(2):79~84.
    [62]马建军,李健立,候智广,等. PCM螺杆泵采油配套技术在鸭儿峡油田的应用[J].石油钻采工艺,2007,29(4):43~47.
    [63] D J Wiltse. Wliminuting Sucker Rod Couplings Can Reduce PCP Operating Costs[J]. SPE24954.
    [64]聂飞朋,马英,张雪梅.地面驱动螺杆泵井工况诊断新方法[J].断块油气田,2007,14(6):76~77.
    [65]刘巨保,罗敏,李淑红.地面驱动螺杆泵抽油杆柱动力学分析技术及其应用[J].石油学报,2005,26(1):121~124.
    [66] G. C. Smith, D. Park, K. J. Titchener, et al. Surface studies of oil-seal degradation[J]. Applied SurfaceScience,1995,90:357~371
    [67] A. N. Gent and C. T. R. Pulford. Mechanism of rubber abrasion[J]. J. Appl. Polym. Sci.,1983,28:943~958.
    [68] I. R. Sare, J. I. Mardel, A. J. Hill. Wear-resistant metallic and elastomeric materials in the mining andmineral processing industries-An overview[J]. Wear,2001,250-251(1):1~10.
    [69] Yu. S. Zuev1and A. D. Chelmodeev1, Effect of temperature and concentration of aggressivemedia on rubber wear in an abrasive flow[J]. Mechanics of Composite Materials,1968,4(1):95~101.
    [70] Craig I. Walker. Slurry pump side-liner wear: comparison of some laboratory and field results[J].Wear,2001,250-251(1):81~87.
    [71]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003.
    [72]梁小平,杨正方,刘志锋,等.橡胶材料一增韧氧化锆陶瓷摩擦副磨粒磨损试验研究[J].润滑与密封,2003(3):39~40.
    [73]杨兆春,姚斌,唐海波.橡胶线接触磨损过程的研究[J].河北轻化工学院学报,1998,19(1):48~50.
    [74]杨秀萍,郭津津.单螺杆泵定子橡胶的接触磨损分析[J].润滑与密封,2007,32(4):33~39.
    [75]王家序,陈战,秦大同.水润滑橡胶轴承的磨粒磨损特性及机理研究[J].润滑与密封,2002,3:30~31.
    [76]张嗣伟,王德国,尹卫华.高分子材料磨粒侵蚀的基本规律[J].石油机械,1992,(20):17.
    [77]王德国,张嗣伟.高分子材料磨粒侵蚀机理的研究[C].第五届全国摩擦学学术会议论文集(上册),武汉:中国机械工程学会摩擦学分会,1992,448-452.
    [78] Pinnington, R. J. Rubber friction on rough and smooth surfaces[J]. Wear,2009,267(9-10):1653-1664.
    [79]张晓峰,方亮,邢建东,等.二体磨损与三体磨损之间的关系[J].西安公路交通大学学报,2000,20(3):93~97.
    [80] Hutchings, I. M. The role of particle motion in abrasive and erosive wear[C]. Proceedings of theWorld Tribology Congress III-2005,2005,5~6.
    [81]布罗茨基,耶夫斯特拉托夫,沙赫诺夫斯基等.橡胶磨耗[M].北京:化学工业出版社,1980.
    [82] A.D. Roberts. Friction of rubber in water[J]. Rubber Development.1996,49(1-2):18~21.
    [83]张军,昊石山,林涛.聚酞胺/聚甲醛/丁睛橡胶三元共混弹性体的研究[J].高分子材料科学与工程,2000,16(4):131.
    [84]陈伟雄.我国纳米碳酸钙市场调研报告[J].化工科技市场,2005,(1):46.
    [85]张嗣伟,王德国.几种高分子材料的磨粒侵蚀机理[J].摩擦学学报,1993,13(2):105-112.
    [86]何仁洋,张嗣伟,王德国,等.聚氨酯磨粒侵蚀的机理[J].石油大学学报(自然科学版),1996,20(6):40-45.
    [87]周扬波,古菊,贾德民,等.改性纳米碳酸钙对丁睛胶的补强作用[J].弹性体,2004,14(3):35-38.
    [88]高俊刚,李源勋.高分子材料[M].北京:化学工业出版社,2002.
    [89]张嗣伟.高分子材料磨粒侵蚀的基本规律[J].石油机械,1992,20(8):17~20.
    [90]王奎升.材料磨损侵蚀机理的研究[J].摩擦磨损.1990,(1,2):13~17.
    [91]张嗣伟.摩擦磨损润滑学的系统工程原理与方法结构[J].润滑与密封,1980,(6):7-13.
    [92] Zhang Siwei. Studies in Wear Mechanisms of Rubber[C]. Proc. International Symposium onTribology. International Academic Publishers. Beijing,1993,(1):450-457.
    [93]张嗣伟等.几种高分子材料的磨粒侵蚀机理[J].摩擦学学报,1993,13(2):105~112.
    [94]吕仁国,李同生,刘旭军.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2002,18(5):12~15.
    [95]何仁洋,张嗣伟,王德国,等.聚氨酯在磨粒侵蚀条件下的表面化学效应[J].摩擦学学报,1995,15(1):45~51.
    [96]刘海春,张嗣伟.清水介质条件下天然橡胶磨损45#钢的机理研究[J].摩擦学学报,1996,16(4):303~311.
    [97]吕仁国,李同生,黄新武.不同速度下丁腈橡胶摩擦特性[J].合成橡胶工业.2002,25(2):101~103.
    [98]王霞,陈玉祥,等.采油用螺杆泵定子橡胶及其性能的改进[J].材料导报,2005,11(19):82-84
    [99]谢遂志,刘登详,周鸣峦.橡胶工业手册第一分册[M].北京:化学工业出版社,1989.
    [100]张洪雁,曹寿德,王景鹤.高性能橡胶密封材料[M].北京:化学工业出版社,2007.
    [101] Veith A G. A review of important factors affecting tread wear[J]. Rubber Chemistry andTechnology,1992,65(3):601-658.
    [102] Veith A G. Tire Treadwear-The Joint Influence of Compound Properties and EnvironmentalFactors[J]. The Tire Society,1995,23(4):212-237.
    [103]王承鹤.塑料摩擦学-塑料的摩擦/磨损/润滑理论与实践[M].北京:机械工业出版社,1994.
    [104]楚万毅.中国石油开采简述[EB/OL]. http://wenku.baidu.com.2012-4-20/2013-02-18.
    [105]马英,刘天增.液体石蜡的应用[J].沈阳化工,1993(2):14~17.
    [106]吕晓仁,王世杰,孙浩.干摩擦和原油润滑下丁腈橡胶/氟橡胶磨损行为研究[J].润滑与密封,2011,36(8):63~66.
    [107]石光,章明秋,容敏智等. X射线光电子能谱技术在高分子材料摩擦化学研究中的应用[J].化学研究,2004,15(3):76~80.
    [108]武晶,韩文霞编译.用红外光谱法鉴别聚合物[J].橡胶参考资料,2005,(1):38~43.
    [109] Moore D F. The Friction of Pneumatic Tyres[M]. New York: Elsevier Scientific,1975.
    [110]杨兆春,张嗣伟.橡胶点接触摩擦规律的研究[J].润滑与密封,2000,(1):18~20.
    [111] Bowden F P, Tabor D. The Friction and Lubrication of Solid[M]. Oxford: Clarenden Press,1964.
    [112]尤聿宁,李贵谋.橡胶摩擦的磨合过程和软化效应[J].武汉水利电力大学学报,1995,28(4):348~351.
    [113]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
    [114]孙建林.材料成形摩擦与润滑[M].北京:国防工业出版社,2007.
    [115]吕仁国,李同生,刘旭军.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2002,18(5):12~14.
    [116]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.
    [117]何仁洋,张嗣伟.磨粒侵蚀研究的发展概况[J].石油大学学报,1996,20(5):115~119.
    [118]孙家枢,贺镇江.磨料对材料表面磨损作用力及磨损机理的研究[J].农业机械学报,1984,3(1):59~68.
    [119]姚安佑.磨粒对摩擦过程的影响[J].武汉建材学院学报,1982(4):445~455.
    [120]何仁洋,张嗣伟,樊启蕴,等.天然橡胶磨粒侵蚀过程中的表面化学效应[J].摩擦学学报,1997,17(1):60~66.
    [121]周秋沙,周锡容,杨启明,等.冲击磨料磨损机理研究[J].西南石油学院学报,1996,18(3):83~88.
    [122]陈金海,韩景章.磨粒形状对侵蚀磨损影响的初步探讨[C].摩擦学第三届全国学术交流会论文集摩擦磨损部分II,1982:1~15.
    [123]于福洲.金属材料的耐腐蚀性[M].北京:科学出版社,1982.
    [124]周平安,史晋宏.腐蚀磨损影响因素研究[R].北京:中国农业机械化研究院,1985.
    [125]史晋宏.腐蚀磨损影响因素及磨损机理研究[D].北京:中国农业机械化研究院,1984.
    [126]托马晓夫. H.金属腐蚀及其保护的理论[M].北京:中国工业出版社,1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700