用户名: 密码: 验证码:
聚对苯二甲酸丁二醇酯扩链协同阻燃改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯二甲酸丁二醇酯(PBT)作为主要的热塑性工程塑料之一,具有良好的力学性能、尺寸稳定性、热性能和加工性能,在电子电器、汽车、机械以及光纤包覆等领域得到了广泛应用。但PBT的易燃性限制了其应用范围的扩大,传统的卤系阻燃剂由于在燃烧过程中会释放出大量的有毒和腐蚀性气体,应用受到愈来愈多的限制。而常见的无卤阻燃剂在阻燃改性的同时会导致聚合物材料其他性能严重劣化。因此,研究开发新型无卤阻燃PBT材料成为了主流。
     本文首先使用硅烷偶联剂(KH570)对氢氧化镁(MH)进行表面改性,然后采用具有良好熔体流动性的聚丙烯接枝马来酸酐(PP-g-MAH)包覆改性MH,最后再与PBT共混制备了PBT/PP-g-MAH/MH复合体系。PP-g-MAH对MH的包覆处理成功解决了大添加量MH阻燃PBT树脂的加工难题,所制得的复合体系具有较好的阻燃和力学性能。如MH和PP-g-MAH添加量分别为50wt%和6wt%时,PBT/PP-g-MAH/MH复合体系达到了垂直燃烧UL943.2mm V-1阻燃级别,极限氧指数(LOI)提高到35.0%,相应的拉伸强度和Izod缺口冲击强度分别为45.0MPa和22.2J/m。通过对复合体系进行脆断面SEM分析和热失重分析(TGA)后发现,MH在复合体系中分散良好,较好地发挥了热阱和凝聚相阻燃作用。
     在上述基础上,采用兼具增塑润滑阻燃作用的间苯二酚双(二苯基磷酸酯)(RDP)和膨胀型石墨(EG)分别与MH复配制备了PBT/PP-g-MAH/RDP/MH和PBT/PP-g-MAH/EG/MH阻燃体系,两复配阻燃体系的加工性能进一步改善。MH和EG复配存在协同阻燃效应,如MH和EG的添加量分别为35wt%和10wt%时,PBT/PP-g-MAH/EG/MH阻燃体系通过了UL943.2mm V-0级测试,LOI达到33.3%。但MH和RDP复配则不存在协同阻燃作用。热重红外联用(TGA-FTIR)和残炭SEM分析表明,EG加入后一方面增强了PBT/PP-g-MAH复合体系的热稳定性,降低了可燃性产物的释放速率;另一方面其与MH共同作用提高了体系的残炭率和增强了残炭层的阻隔性,最终延缓了PBT的降解和燃烧。
     采用二乙基次膦酸铝盐(AlPi)阻燃改性PBT,研究了其对PBT结构与性能的影响,并探讨了PBT/AlPi体系的阻燃机理。当AlPi用量分别为11wt%、13wt%和20wt%时,可使PBT分别达到UL943.2mm、1.6mm和0.8mm V-0级阻燃性能,相应的LOI则分别提高到34.3%、35.4%和39.3%,但阻燃体系的烟雾释放量与释放速率均明显增大。AlPi主要通过受热分解释放出自由基捕捉剂(二乙基次膦酸)在气相发挥阻燃作用,同时其在凝聚相也具有促进成炭作用。AlPi加入后会导致PBT的降解加剧,阻燃体系的力学性能被劣化,材料的强度和韧性明显变差。如AlPi用量为20wt%时,阻燃体系的拉伸强度、断裂伸长率、Izod缺口冲击强度和弯曲模量分别为纯PBT的68.6%、10.9%、51.0%和104.4%。AlPi在PBT中存在异相成核作用,提高了PBT的结晶速度、结晶温度和结晶度。阻燃PBT的耐热性能也有较大的提升,如AlPi用量为11wt%时,阻燃PBT的热变形温度(HDT)达到了65.7℃,较纯PBT提高了10℃。
     针对PBT/AlPi阻燃体系存在降解加剧、力学性能劣化明显以及烟雾释放量显著升高等问题,本文设计合成了一种侧基带环氧基团的多官能度聚硅氧烷(EPM),将EPM和市售扩链剂苯乙烯-甲基丙烯酸缩水甘油酯低聚物(ADR)作为扩链剂分别与AlPi复配制备了PBT/AlPi/EPM和PBT/AlPi/ADR扩链协同阻燃体系。考察了AlPi用量为11wt%时,EPM和ADR在体系中的扩链作用及其对体系综合性能的影响,并讨论了两体系的协同阻燃和抑烟机理。EPM和ADR均能发挥明显的扩链作用,提高了PBT在加工过程中的扭矩。两复合体系混炼时的扭矩随着二者用量的升高而不断增大,体系中支化与交联程度也随之升高。两复合体系均存在显著的协同阻燃效应,尤其EPM对提高复合体系阻燃性能的帮助更大。当EPM用量为0.6wt%时,PBT/AlPi/EPM体系可达到UL941.6mm V-0阻燃级别,LOI为37.1%。同时体系的综合力学性能较优,与PBT/11AlPi相比,其拉伸强度、断裂伸长率、弯曲模量和Izod缺口冲击强度分别由47.6MPa、8.0%、2.92GPa和39.7J/m提高到54.9MPa、13.1%、3.17GPa和49.0J/m,分别提高了15.3%、63.8%、8.6%和23.4%。对于PBT/AlPi/ADR体系,当ADR用量为0.4wt%时其综合性能较优,相应的力学性能数据为49.7MPa、11.2%、3.00GPa和46.8J/m,且通过UL941.6mm V-0级测试,LOI为36.1%。两复合体系的玻璃化转变温度(Tg)均随着EPM和ADR用量的增大而单调上升。适量的EPM和ADR加入后均能促进PBT结晶,两复合体系的结晶度、结晶温度和结晶速度都得到了提高。HDT测试也表明,两复合体系的HDT均有明显的上升,其中含EPM的体系表现更优。
     PBT/AlPi/EPM与PBT/AlPi/ADR协同阻燃体系的凝聚相阻燃作用明显增强,而气相阻燃效应均有所减弱,相应地烟雾释放量和释放速率都有明显下降。ADR或EPM加入后能够与PBT及AlPi在热分解过程中发生强烈的相互作用,促进体系交联成炭,并形成具有优良阻隔性的残炭层。而EPM由于具有更高的反应活性与含有机硅结构,使得PBT/AlPi/EPM阻燃体系所形成的残炭层中阻燃元素的含量更高,残炭层的耐热氧分解性更强。最终导致PBT/AlPi/EPM体系的协同阻燃效率要高于PBT/AlPi/ADR体系。
Poly(butylene terephthalate)(PBT) is a major member of engineering plastics, it hasbeen widely used for industrial applications thanks to its attractive mechanical performance,dimensional stability, thermal properties and processing advantages. Nevertheless, the highflammability of neat PBT restricts its further use in the wider scope of application. Theutilization of traditional halogenated flame retardants in PBT are restrained due to the releaseof the toxic and corrosive smoke during combustion. And the employment of commonnon-halogen flame retardant will greatly impair the other key properties of PBT. Therefore,the development of novel halogen-free flame-retarded PBT has become the mainstreamnowadays.
     Owing to the difficulty in processing the blend of PBT and magnesium hydroxide (MH),the fluidity improver (maleic anhydride grafted polypropylene (PP-g-MAH)) was employedto prepare the halogen-free flame-retarded PBT/MH composites. The processability ofPBT/PP-g-MAH/MH composite was improved. With the addition of50wt%MH and6wt%PP-g-MAH, PBT/PP-g-MAH/MH composite attained UL943.2mm V-1rating and a LOI of35.0%. The tensile strength and Izod notched impact strength of the correspondingPBT/PP-g-MAH/MH composite were45.0MPa and22.2J/m, respectively. According to theTGA and SEM analysis, there existed a good dispersity of MH particle in PBT matrix. Withthe good MH particle dispersity, PBT/PP-g-MAH/MH composite showed high efficiency inflame retardancy.
     In addition, PBT/PP-g-MAH composite flame retarded by the combination of MH andresorcinol bis(diphenyl phosphate)(RDP) or expandable graphite (EG) was also investigated.The combination of MH and EG exhibited an obvious synergistic flame-retardant effect inPBT/PP-g-MAH composite. With the loadings of35wt%MH and10wt%EG,PBT/PP-g-MAH/EG/MH blend obtained UL943.2mm V-0classification and a LOI of33.3%.Nevertheless, there did not exist synergism in the flame retardancy ofPBT/PP-g-MAH/RDP/MH compound. The flame-retardant mechanism ofPBT/PP-g-MAH/EG/MH composite was analyzed through the TGA-FTIR and SEM characterization. The introduction of EG improved thermal stability and barrier effect of theresidual char layer, and the protection for the polymer matrix was enhanced.
     Aluminum diethylphosphinate (AlPi) was applied for flame retarding PBT. The influenceof AlPi in the overall properties of PBT was examined. With the combination of differentcontent for AlPi (11,13and20wt%), the corresponding PBT/AlPi composites passed UL94V-0rating (3.2,1.6and0.8mm) and achieved the LOI with34.3%,35.4%and39.3%,respectively. AlPi acted mainly through the flame inhibition in gas phase by the realease ofdiethylphosphinic acid, and an enhanced condensed-phase flame-retardant action was alsoobserved. Correspondingly, the smoke release was intensified significantly. The presence ofAlPi would provoke the degradation of PBT, resulting in the deterioration of mechanicalperformance. The tensile strength, elongation at break, Izod notched impact strength andflexural modulus of PBT/AlPi blend (AlPi:20wt%) were68.6%,10.9%,51.0%and104.4%of the corresponding value of neat PBT, respectively. A promotion in crystallization rate,crystallization temperature and crystallinity for PBT/AlPi was perceived, which was related tothe heterogeneous nucleation effect of AlPi. The heat resistance of PBT was enhanced withthe introduction of AlPi concluded from its rising heat distortion temperature (HDT). ForPBT/AlPi (AlPi:11wt%), the HDT value was65.7°C with an increment of10°C comparedto that of neat PBT.
     With the purpose of suppressing the degradation and enhancing the mechanicalproperties for PBT/AlPi composite, an epoxy-functional polysiloxane (EPM) was synthesizedand employed as chain extender to prepare the PBT/AlPi/EPM composite. Additionally,another chain-extended PBT/AlPi composite was prepared by using a commercialpolyfunctional chain extender (ADR) for comparative study. Based on the results of torquerheometer measurement, both EPM and ADR could induce evident chain extension reactionin PBT/AlPi composite. With appropriate loadings of EPM and ADR, the modified PBT/AlPicomposites not only demonstrated significant enhanced mechanical properties, but also muchbetter integrated properties including flame retardancy, crystallization performance and heatresistance. Comparatively speaking, the effect of EPM was much better than ADR due to itshigh functionality and polysiloxane chain structure.
     The synergistic flame-retarded mechanism of PBT/AlPi/EPM and PBT/AlPi/ADR system mainly related to the enhanced condensed-phase action. Small percentages of EPMand ADR could interact with PBT and AlPi intensively during the decomposition process,subsequently the formation of more stable cross-linking char residue occurred. Morephosphorus element retained in the solid phase whereas the release of phosphorus into the gasphase diminished. Logically, the smoke release was greatly suppressed. Moreover, Thecross-linking residue containing silicon showed the better thermal stability and oxidationresistance, which was accounted for the greater flame-retardant efficiency existed inPBT/AlPi/EPM composite.
引文
[1]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005.
    [2]王建祺.无卤阻燃聚合物基础与应用[M].北京:科学出版社,2005.
    [3]王永强.阻燃材料及应用技术[M].北京:化学工业出版社,2003.
    [4] Marosi G, Marton A, Anna P, et al. Ceramic precursor in flame retardant systems[J].Polymer Degradation and Stability.2002,77(2):259-265.
    [5] Liu Y, Wang Q. The investigation on the flame retardancy mechanism of nitrogen flameretardant melamine cyanurate in polyamide6[J]. Journal of Polymer Research.2009,16(5):583-589.
    [6] Innes I, Innes A. Plastic Flame Retardants: Techology and Current Developments[M].2004.
    [7] Lv J, Qiu L, Qu B. Controlled synthesis of magnesium hydroxide nanoparticles withdifferent morphological structures and related properties in flame retardant ethylene-vinylacetate blends[M]. Bristol, Royaume-Uni: Institute of Physics,2004.
    [8] Qiu L, Xie R, Ding P, et al. Preparation and characterization of Mg(OH)2nanoparticlesand flame-retardant property of its nanocomposites with EVA[J]. Composite Structures.2003,62(3-4):391-395.
    [9]孔祥健,刘述梅,赵建青. Flame retardancy effect of surface-modified metal hydroxideson linear low density polyethylene[J].中南大学学报(英文版).2008,15(6):779-785.
    [10] Shen H, Wang Y, Mai K. Effect of compatibilizers on thermal stability and mechanicalproperties of magnesium hydroxide filled polypropylene composites[J]. Thermochimica Acta.2009,483(1-2):36-40.
    [11]陈俊,刘述梅,赵建青.氢氧化镁与磷酸酯齐聚物协同阻燃聚酰胺6[J].合成树脂及塑料.2009,26(001):19-22.
    [12]齐兴国,黄兆阁,姚伟.氢氧化镁及其与红磷复配阻燃聚丙烯复合材料的性能研究[J].塑料.2006,35(005):53-56.
    [13]刘涛.无卤阻燃聚丙烯材料的性能研究[D].青岛:青岛科技大学,2008.
    [14] Li ZZ, Wang XG, Tan YJ. Synergistic effects and flame-retardant properties of melaminecyanurate with magnesium hydroxide in halogen-free flame-retardant EVA blends[J]. FireScience and Technology.2005,24(3):320-326.
    [15]冯钠,陈涛,赵建. MCA协同阻燃EVA/MH体系性能研究[J].塑料科技.2007,35(012):50-53.
    [16] Fu M, Qu B. Synergistic flame retardant mechanism of fumed silica in ethylene-vinylacetate/magnesium hydroxide blends[J]. Polymer Degradation and Stability.2004,85(1):633-639.
    [17] Weil E. Proceedings of3rd Beijing International Symposium on Flame Retardants andFlame Retardant Materials[C]. Zhou Z. Beijing:1999:177-183.
    [18] Gatti N. New red phosphorus masterbatches find new application areas inthermoplastics[J]. Plastics, Additives and Compounding.2002,4(4):34-37.
    [19] Largman T, van BB, Aharoni SM, et al. Injection moldable poly(ethyleneterephthalate)[P]. US Patent:4403052,1983-9-6.
    [20] Steiert P, Weiss H-P, Placchetta C. Flameproofed thermoplastic molding compositionsbased on phlegmatized red phosphorus[P]. US Patent:5049599,1991-9-17.
    [21] Steiert P, Weiss H-P, Placchetta C. Flameproofed thermoplastic molding compositionsbased on phlegmatized red phosphorus[P]. US Patent:5135971,1992-8-4.
    [22] Placetta C, McKee G, Weiss H-P. Fireproofed thermoplastic molding materials containingred phosphorus and based on polyesters or polyamides[P]. US Patent:4877823,1989-10-31.
    [23] Hirobe H, Tonoki S, Nishigaki M. Flame resistant resin composition[P]. US Patent:4493913,1985-1-15.
    [24] Wagner M, Peerlings H. Matieres polyester a mouler resistantes aux flammes contenantde l'hydrotalcite, du phosphore rouge et du cyanurate de melamine[P]. WO:2003002650,2003-1-9.
    [25] Yeh JT, Hsieh SH, Cheng YC, et al. Combustion and smoke emission properties ofpoly(ethylene terephthalate) filled with phosphorous and metallic oxides[J]. PolymerDegradation and Stability.1998,61(3):399-407.
    [26] Granzow A, Ferrillo R, Wilson A. The effect of elemental red phosphorus on the thermaldegradation of poly (ethylene terephthalate)[J]. Journal of Applied Polymer Science.1977,21(6):1687-1697.
    [27]马永轩.聚磷酸铵的晶体结构[J].东北林业大学学报.2001,29(2):130-133.
    [28]丁著明.高聚合度聚磷酸铵的改性和应用[J].塑料助剂.2004,2:31-34.
    [29]傅亚,陈君和,贾云,等.高聚合度II-型聚磷酸铵的合成[J].合成化学.2005,13(6):610-613.
    [30]胡云楚,吴志平,孙汉洲,等.聚磷酸铵的合成及其阻燃性能研究[J].功能材料.2006,37(3):424-427.
    [31]吴志平,舒万艮,熊联明,等.聚磷酸铵的合成工艺与阻燃性能[J].中南林学院学报.2004,24(2):41-43.
    [32]崔健.聚磷酸铵阻燃剂技术进展及应用[J].现代塑料加工应用.2000,12(2):36-38.
    [33] Balabanovich AI, Balabanovich AM, Engelmann J. Intumescence in poly (butyleneterephthalate): the effect of2-methyl-1,2-oxaphospholan-5-one2-oxide and ammoniumpolyphosphate[J]. Polymer International.2003,52(8):1309-1314.
    [34] Pawlowski KH, Schartel B. Flame retardancy mechanisms of aryl phosphates incombination with boehmite in bisphenol A polycarbonate/acrylonitrile–butadiene–styreneblends[J]. Polymer Degradation and Stability.2008,93(3):657-667.
    [35] Weil Edward D. Handbook of Organophosphorus Chemistry[M]. New York: Dekker,1992.
    [36] Rashbrook RB. Polyester films[P]. US Patent:4203888,1980-5-20.
    [37] Balabanovich A. Poly (butylene terephthalate) fire retarded by bisphenol A bis (diphenylphosphate)[J]. Journal of Analytical and Applied Pyrolysis.2004,72(2):229-233.
    [38] Murashko E, Levchik G, Levchik S, et al. Fire-retardant action of resorcinol bis (diphenylphosphate) in PC–ABS blend. II. Reactions in the condensed phase[J]. Journal of AppliedPolymer Science.1999,71(11):1863-1872.
    [39] Murashko E, Levchik G, Levchik S, et al. Fire retardant action of resorcinol bis (diphenylphosphate) in a PPO/HIPS blend[J]. Journal of Fire Sciences.1998,16(4):233-249.
    [40] Mauric C, Wolf R. Flameproofed organic materials[P]. US Patent:4388431,1983-6-14.
    [41] Birum G. Hydrogen phosphonates and polymer compositions containing them as flameretardants[P]. US Patent:4070336,1978-1-24.
    [42] Pearce EM. Contemporary Topics in Polymer Science[A]. Vanderburg EJ. PlenumPress[C]. New York,1984:401-413.
    [43] Aufmuth W, Levchik S, Levchik G, et al. Poly (butylene terephthalate) fire retarded by1,4-diisobutylene-2,3,5,6-tetraxydroxy-1,4-diphosphine oxide. I. Combustion and thermaldecomposition[J]. Fire and Materials.1999,23(1):1-6.
    [44] Moedritzer K. Polymeric phosphine oxide flame retardants[P]. US Patent:4072653,1978-2-7.
    [45] Sandler S. Polyester resins flame retarded by poly(metal phosphinate)s[P]. US Patent:4180495,1979-12-25.
    [46] Sandler S. Polyester resins flame retarded by poly(metal phosphinate)s[P]. US Patent:4208321,1980-6-17.
    [47] Sandler S. Polyester resins flame retarded by poly(metal phosphinate)s[P]. US Patent:4208322,1980-6-17.
    [48] Kleiner H-J, Budzinsky W, Kirsch G. Increasing the tracking index in mouldings offlame-retardant polyesters[P]. EP:0794220,2002-5-29.
    [49] Kleiner H-J, Budzinsky W. Flameproofed polyester molding composition[P]. US Patent:5780534,1998-7-14.
    [50] Sullalti S, Colonna M, Berti C, et al. Effect of phosphorus based flame retardants onUL94and Comparative Tracking Index properties of poly(butylene terephthalate)[J]. PolymerDegradation and Stability.2012,97(4):566-572.
    [51] Kleiner H-J, Budzinsky W, Kirsch G. Flame retardant polyester moulding composition[P].EP:0941996,1999-10-13.
    [52] Koppl T, Brehme S, Wolff-Fabris F, et al, Doring M. Structure-property relationships ofhalogen-free flame-retarded poly(butylene terephthalate) and glass fiber reinforced PBT[J].Journal of Applied Polymer Science.2012,124(1):9-18.
    [53] Brehme S, Koppl T, Schartel B, et al. Phosphorus Polyester-an Alternative toLow-Molecular-Weight Flame Retardants in Poly(Butylene Terephthalate)?[J].Macromolecular Chemistry and Physics.2012,213(22):2386-2397.
    [54] Gallo E, Schartel B, Braun U, et al. Fire retardant synergisms between nanometric Fe2O3and aluminum phosphinate in poly(butylene terephthalate)[J]. Polymers for AdvancedTechnologies.2011,22(12):2382-2391.
    [55] Brehme S, Schartel B, Goebbels J, et al. Phosphorus polyester versus aluminiumphosphinate in poly(butylene terephthalate)(PBT): Flame retardancy performance andmechanisms[J]. Polymer Degradation and Stability.2011,96(5):875-884.
    [56] Gallo E, Braun U, Schartel B, et al. Halogen-free flame retarded poly(butyleneterephthalate)(PBT) using metal oxides/PBT nanocomposites in combination with aluminiumphosphinate[J]. Polymer Degradation and Stability.2009,94(8):1245-1253.
    [57] Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate incombination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butyleneterephthalate)[J]. Macromolecular Materials and Engineering.2008,293(3):206-217.
    [58] Braun U, Bahr H, Sturm H, et al. Flame retardancy mechanisms of metal phosphinatesand metal phosphinates in combination with melamine cyanurate in glass-fiber reinforcedpoly(1,4-butylene terephthalate): the influence of metal cation[J]. Polymers for AdvancedTechnologies.2008,19(6):680-692.
    [59] Kleiner H-J, Budzinsky W, Kirsch G. Salts of1-hydroxy-dihydrophospholoxides and1-hydroxyphospholanoxides and their use as fire-retardants[P]. EP:0794191,1997-9-10.
    [60] Kleiner H-J, Jenewein E, Wanzke W. Alkyl-1-alkoxyethylphosphinous acid aluminumsalts[P]. US Patent:6229044,2001-5-8.
    [61] Kleiner H-J. Alkyl-1-alkoxyethylphosphinous acid aluminium salts[P]. EP:0971936,2002-4-17.
    [62] Kleiner H-J. Aluminium salts of alkylhydroxymethylphosphinic acids[P]. US Patent:6303674,2001-10-16.
    [63] Chiang CL, Ma CCM, Wu DL, et al. Preparation, characterization, and properties ofnovolac-type phenolic/SiO2hybrid organic-inorganic nanocomposite materials by sol-gelmethod[J]. Journal of Polymer Science Part A: Polymer Chemistry.2003,41(7):905-913.
    [64] Kashiwagi T, Gilman JW, Butler KM, et al. Flame retardant mechanism of silicagel/silica[J]. Fire and Materials.2000,24(6):277-289.
    [65] Kambour RP. Flammability resistance synergism in BPA polycarbonate–silicone blockpolymers[J]. Journal of Applied Polymer Science.1981,26(3):861-877.
    [66]李晓俊,刘小兰,刘宪增,等.硅树脂阻燃聚碳酸酯的研究[J].工程塑料应用.2005,33(2):16-18.
    [67]欧育湘,赵毅,孟征.硅系化合物阻燃聚碳酸酯及其阻燃机理[J].高分子材料科学与工程.2008,24(12):6-10.
    [68]李腊梅,李向梅,杨荣杰.无规聚苯基硅倍半氧烷阻燃聚碳酸酯的性能[J].高分子材料科学与工程.2012,5:017.
    [69] Iji M, Serizawa S. Silicone derivatives as new flame retardants for aromaticthermoplastics used in electronic devices[J]. Polymers for Advanced Technologies.1998,9(10-11):593-600.
    [70] Hamilton D. Flame retardant aromatic polyester molding compositions having reduceddripping tendencies upon burning[P]. US Patent:5034474,1991-7-23.
    [71]王正洲,范维澄,瞿保钧.膨胀石墨增效Mg(OH)2无卤阻燃PE的燃烧特性[J].合成树脂及塑料.2000,17(5):22-25.
    [72] Fu M, Qu B. Synergistic flame retardant mechanism of fumed silica in ethylene-vinylacetate/magnesium hydroxide blends[J]. Polymer degradation and stability.2004,85(1):633-639.
    [73]周文君,周箭,杨辉,等.纳米Mg(OH)2与硅树脂对聚丙烯的阻燃协同效应[J].稀有金属材料与工程.2008,37:312-315.
    [74]李碧霞,叶华,刘述梅,等.聚氨丙基苯基倍半硅氧烷与氢氧化镁协同阻燃尼龙6[J].塑料工业.2007,35:62-65.
    [75] Levchik SV, Bright DA, Dashevsky S, et al. Specialty Polymer Additives. Principles andApplications[M]. Oxford, UK: Blackwell Science,2001:259-269.
    [76] Hulskotte R. WO:99/02606,1999.
    [77] Levchik SV, Bright DA, Alessio GR, et al. Synergistic action between aryl phosphatesand phenolic resin in PBT[J]. Polymer Degradation and Stability.2002,77(2):267-272.
    [78] Balabanovich A, Levchik G, Levchik S, et al. A Review of Recent Progress inPhosphorus-based Flame Retardants[J]. Journal of Fire Science.2002,20:71.
    [79] Nodera A, Kanai T. Flame retardancy of a polycarbonate–polydimethylsiloxane blockcopolymer: The effect of the dimethylsiloxane block size[J]. Journal of Applied PolymerScience.2006,100(1):565-575.
    [80] Ye L, Miao YY, Yan H, et al. The synergistic effects of boroxo siloxanes with magnesiumhydroxide in halogen-free flame retardant EVA/MH blends[J]. Polymer Degradation andStability.2013,98(4):868-874.
    [81] Lin SW, Sun SY, He YD, et al. Effects of phosphate and polysiloxane on flameretardancy and impact toughening behavior of poly(2,6-dimethyl-1,4-phenylene oxide)[J].Polymer Engineering and Science.2012,52(5):927-936.
    [82] Vannier A, Duquesne S, Bourbigot S, et al. Investigation of the thermal degradation ofPET, zinc phosphinate, OMPOSS and their blends-Identification of the formed species[J].Thermochimica Acta.2009,495:155-166.
    [83]晓铭.我国聚对苯二甲酸丁二醇酯的供需分析[J].乙醛醋酸化工.2013(05):18-22.
    [84] Abt T, Sánchez-Soto M, Martínez de Ilarduya A. Toughening of in situ polymerizedcyclic butylene terephthalate by chain extension with a bifunctional epoxy resin[J]. EuropeanPolymer Journal.2012,48(1):163-171.
    [85] Zhou Z, Yin N, Zhang Y, et al. Properties of poly(butylene terephthalate) chain-extendedby epoxycyclohexyl polyhedral oligomeric silsesquioxane[J]. Journal of Applied PolymerScience.2008,107(2):825-830.
    [86] Guo BH, Chan CM. Chain extension of poly(butylene terephthalate) by reactiveextrusion[J]. Journal of Applied Polymer Science.1999,71(11):1827-1834.
    [87] Wang ZT, Zhang X, Bao C, et al. The synergistic effect of aluminum hypophosphide andnanosilica on flame-retarded ethylene-propylene-diene monomer rubber[J]. Journal ofApplied Polymer Science.2012,124(4):3487-3493.
    [88] Didane N, Giraud S, Devaux E, et al. A comparative study of POSS as synergists withzinc phosphinates for PET fire retardancy[J]. Polymer Degradation and Stability.2012,97(3):383-391.
    [89] Song T, Li ZS, Liu JG, et al. Novel phosphorus-silicon synergistic flame retardants:Synthesis and characterization[J]. Chinese Chemical Letters.2012,23(7):793-796.
    [90] Zhang WC, Li XM, Yang RJ. Flame retardant mechanisms of phosphorus-containingpolyhedral oligomeric silsesquioxane (DOPO-POSS) in polycarbonate composites[J]. Journalof Applied Polymer Science.2012,124(3):1848-1857.
    [91] Pusztai E, Kenyo C, Nagy J, et al. The effect of some disiloxane chain extenders on thethermal and mechanical properties of cross-linked poly(siloxane-urethane)s[J]. ExpressPolymer Letters.2013,7(5):456-470.
    [92] Nianjun K, Zhongjie D, Hangquan L, et al. Synthesis of polysiloxane-typemultifunctional flame retardant and its application in epoxy systems[J]. Journal of AppliedPolymer Science.2012,124(6):4915-4919.
    [93] Chuang FS, Tsen WC, Shu YC. The effect of different siloxane chain-extenders on thethermal degradation and stability of segmented polyurethanes[J]. Polymer Degradation andStability.2004,84(1):69-77.
    [94]吴湘锋,杨云峰,程国丽,等.氢氧化镁阻燃剂的表面改性[J].中国粉体工业.2008(3):11-13.
    [95] Levchik SV, Bright DA, Alessio GR, et al. New halogen-free fire retardant forengineering plastic applications[J]. Journal of Vinyl and Additive Technology.2001,7:98-103.
    [96] Li Z, Qu B. Flammability characterization and synergistic effects of expandable graphitewith magnesium hydroxide in halogen-free flame-retardant EVA blends[J]. Polymerdegradation and stability.2003,81:401-408.
    [97] Hornsby PR, Watson CL. A study of the mechanism of flame retardance and smokesuppression in polymers filled with magnesium hydroxide[J]. Polymer Degradation andStability.1990,30(1):73-87.
    [98] Martens R, Gentsch H, Freund F. Hydrogen release during the thermal decomposition ofmagnesium hydroxide to magnesium oxide[J]. Journal of Catalysis.1976,44(3):366-372.
    [99] Dzieciol M. Studies of volatile compounds emitted during thermo-oxidative degradationof poly(butylene terephthalate)[J]. International Journal of Environmental AnalyticalChemistry.2009,89(8-12):881-889.
    [100] Arii T, Masuda Y. The effect of humidity on thermal decomposition of terephthalatepolyester[J]. Journal of Analytical and Applied Pyrolysis.2004,71(2):525-536.
    [101] Botelho G, Queiros A, Liberal S, et al. Studies on thermal and thermo-oxidativedegradation of poly(ethylene terephthalate) and poly(butylene terephthalate)[J]. PolymerDegradation and Stability.2001,74(1):39-48.
    [102] Yang W, Lu H, Tai Q, et al. Flame retardancy mechanisms of poly (1,4-butyleneterephthalate) containing microencapsulated ammonium polyphosphate and melaminecyanurate[J]. Polymers for Advanced Technologies.2011,22(12):2136-2144
    [103] Righetti MC, Munari A. Influence of branching on melting behavior and isothermalcrystallization of poly (butylene terephthalate)[J]. Macromolecular Chemistry and Physics.1997,198(2):363-378.
    [104]樊文清.一种新型非卤阻燃剂--可膨胀石墨[J].阻燃材料与技术.1999:12.
    [105] Jimenez M, Duquesne S, Bourbigot S. Multiscale experimental approach for developinghigh-performance intumescent coatings[J]. Industrial and Engineering Chemistry Research.2006,45(13):4500-4508.
    [106] Yasmin A, Luo J-J, Daniel IM. Processing of expanded graphite reinforced polymernanocomposites[J]. Composites Science and Technology.2006,66(9):1182-1189.
    [107] Laachachi A, Cochez M, Leroy E, et al. Fire retardant systems in poly (methylmethacrylate): Interactions between metal oxide nanoparticles and phosphinates[J]. PolymerDegradation and Stability.2007,92(1):61-69.
    [108] Hu Z, Chen L, Lin GP, et al. Flame retardation of glass-fibre-reinforced polyamide6bya novel metal salt of alkylphosphinic acid[J]. Polymer Degradation and Stability.2011,96(9):1538-1545.
    [109] Braun U, Schartel B, Fichera MA, et al. Flame retardancy mechanisms of aluminiumphosphinate in combination with melamine polyphosphate and zinc borate in glass-fibrereinforced polyamide6,6[J]. Polymer Degradation and Stability.2007,92(8):1528-1545.
    [110]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.
    [111] Weil ED, Patel NG, Said MM, et al. Oxygen index: Correlations to other fire tests[J].Fire and Materials.1992,16(4):159-167.
    [112] Daasch L, Smith D. Infrared spectra of phosphorus compounds[J]. Analytical Chemistry.1951,23(6):853-868.
    [113] Massa A, Scettri A, Contessa S, et al. New catalyst for the synthesis of poly (butyleneterephthalate) with high thermo-oxidative stability[J]. Journal of Applied Polymer Science.2007,104(5):3071-3076.
    [114] Lin-Vien D, Colthup NB, Fateley WG, et al. The handbook of infrared and Ramancharacteristic frequencies of organic molecules[M]. Boston: Academic Press,1991.
    [115] Schartel B, Hull TR. Development of fire-retarded materials-Interpretation of conecalorimeter data[J]. Fire and Materials.2007,31(5):327-354.
    [116] Camino G, Costa L. Performance and mechanisms of fire retardants in polymers-Areview[J]. Polymer Degradation and Stability.1988,20(3):271-294.
    [117] Kashiwagi T. Polymer combustion and flammability-role of the condensed phase[A].Symposium (International) on Combustion[C]. Elsevier,1994:1423-1437.
    [118] Kong Y, Hay JN. Multiple melting behaviour of poly(ethylene terephthalate)[J].Polymer.2003,44(3):623-633.
    [119] Lutz JT. Thermoplastic polymer additives: theory and practice[M]. M. Dekker,1989.
    [120] G chter R, Müller H, Andreas H. Plastics additives handbook: stabilizers, processingaids, plasticizers, fillers, reinforcements, colorants for thermoplastics[M]. USA: Hanser,1985.
    [121] Mascia L. The role of additives in plastics[M]. Edward Arnold,1974.
    [122]王秀君.玻璃化转变温度对分子量的依赖性[J].塑料科技.1979,4:006.
    [123] Dalnoki-Veress K, Forrest J, Murray C, et al. Molecular weight dependence ofreductions in the glass transition temperature of thin, freely standing polymer films[J].Physical Review E.2001,63(3):031801.
    [124] Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state[J]. TheJournal of Chemical Physics.1958,28:373.
    [125] Murayama T. Dynamic mechanical analysis of polymeric material[M]. ElsevierScientific Pub. Co,1978.
    [126] Takemori MT. Towards an understanding of the heat distortion temperature ofthermoplastics[J]. Polymer Engineering&Science.1979,19(15):1104-1109.
    [127] Wu Z, Li S, Lu J. Improved method for determining epoxy value[J]. Journal of WuhanInstitute of Chemical Technology.2006,1:001.
    [128] Silva SM, Dias ML, Azuma C. Reactive processing of nylon-6and triphenyl phosphite.I. Molecular weight changes[J]. Journal of Polymer Engineering.2001,21(6):543-558.
    [129] Jacques B, Devaux J, Legras R, et al. Reactions induced by triphenyl phosphite additionduring melt mixing of PET/PBT blends: chromatographic evidence of a molecular weightincrease due to the creation of bonds of two different natures[J]. Polymer.1997,38(21):5367-5377.
    [130] Samperi F, Puglisi C, Alicata R, et al. Thermal degradation of poly(butyleneterephthalate) at the processing temperature[J]. Polymer Degradation and Stability.2004,83(1):11-17.
    [131] Raffa P, Coltelli M-B, Savi S, et al. Chain extension and branching of poly(ethyleneterephthalate)(PET) with di-and multifunctional epoxy or isocyanate additives: Anexperimental and modelling study[J]. Reactive and Functional Polymers.2012,72(1):50-60.
    [132] Li M, Li ZQ, Xu J, et al. Thermal property, morphology, mechanical and rheologicalproperties of a modified bio-polymers prepared by blendingpoly(3-hydrobutyrate-co-4-hydrobutyrate) with chain extenders[M]. Stafa-Zurich: Trans TechPublications Ltd,2011:924-930.
    [133] Liaw DJ. The relative physical and thermal properties of polyurethane elastomers:Effect of chain extenders of bisphenols, diisocyanate, and polyol structures[J]. Journal ofApplied Polymer Science.1997,66(7):1251-1265.
    [134] Factor A. Char Formation in Aromatic Engineering Polymers[M]. American ChemicalSociety,1990:274-287.
    [135] Socrates G. Infrared and Raman characteristic group frequencies. Tables and Charts[M].3rd ed. Chichester: John Wiley&Sons,2004.
    [136] Hamdani S, Longuet C, Perrin D, et al. Flame retardancy of silicone-based materials[J].Polymer Degradation and Stability.2009,94(4):465-495.
    [137] Morgan AB, Tour JM. Synthesis and testing of nonhalogenatedalkyne/phosphorus-containing polymer additives: Potent condensed-phase flame retardants[J].Journal of Applied Polymer Science.1999,73(5):707-718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700