用户名: 密码: 验证码:
EGV基因的克隆及EGV-DREB1A双价基因对玉米的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
畜牧业是黑龙江省的半壁江山,进行饲草改良和提高饲料作物的吸收率是当前发展
    畜牧业亟需解决的问题。玉米是重要的饲用作物,在畜牧业中占有支柱地位。但由于其
    中含有大量的纤维素,影响了草食性动物对它的消化率和吸收率。迄今,为提高对纤维
    的消化率和吸收率,将纤维素酶作为添加剂应用于饲料工业,取得了一定成就,但仍存
    在着诸多问题,如纤维素酶的生产菌株产酶量低、酶制剂在加工过程中易失活、酶制剂
    的成本较高等。
    低温、干旱、盐碱等逆境条件严重制约着黑龙江省的农业生产,仅盐碱地就达9000万
    亩,培育出耐低温、干旱、盐碱的饲草作物,可充分利用我省的耕地资源,对我省的畜牧
    业发展将会起到重大作用。因此,培育耐低温、干旱、盐碱以及高消化率的转基因饲料作
    物,可创造巨大的经济和社会效益。
    本研究的目的是系统探讨提高玉米再生效率的主要因子,建立稳定的玉米植株再生
    体系;克隆β-1,4-内切葡聚糖苷酶基因(EGV)并将其构建在含有对抗渗透胁迫基因起
    调控作用的转录因子—DREB1A基因的植物表达载体上,利用农杆菌介导法将编码纤维
    素酶的基因和DREB1A基因联合导入玉米中,为培育耐低温、干旱、盐碱的高消化率的
    饲用玉米新品种(系)奠定基础。主要研究结果如下:
    1.基因克隆
    利用PCR方法,用GenBank上1994年注册的β-1,4-内切葡聚糖苷酶基因的特异性引
    物,从里氏木霉的基因组DNA中克隆了β-1,4-内切葡聚糖苷酶基因。序列分析结果表明,
    该序列与GenBank上的核苷酸序列同源性达100%,氨基酸序列同源性达100%。
    2.载体构建
    构建了双价植物表达载体pAEG29A。pAEG29A带有玉米组成型启动子Ubi调控的β
    -1,4-内切葡聚糖苷酶基因和诱导型启动子rd29A调控的DREB1A基因。植物筛选标记为
    bar基因。
    3.玉米再生体系建立
    (1)影响Ⅱ型愈伤组织诱导的4个主要因素的主次顺序是:2,4-D>BA>水解酪蛋白>
    L-脯氨酸。试验较优组合为:MS培养基添加4mg/L 2,4-D、750mg/L L-脯氨酸、
    250mg/L水解酪蛋白。
    (2)确定了最佳Ⅱ型愈伤组织诱导培养基为:MS+4mg/L 2,4-D+750mg/l L-脯氨酸
    +250mg/L水解酪蛋白+250mg/L谷氨酰胺+10mg/L AgNO_3,30g/L蔗糖,0.8%琼
    
    东北农业大学理学硕l一学位论文
     月台,PHS.8。
    (3)确定了继代培养基为:N6+Zmg几2,4一D+5 00mg几L一脯氨酸十250m留L水解酪蛋白,
     309几蔗糖,0.8%琼脂,pHS.8。适当地降低2,4一D的浓度为了保持愈伤组织胚性的
     同时,不影响不定芽的分化。
    (4)不同基因型的不定芽分化率和每个外植体出芽数不同。在供试的3个基因型中,甜
     1、龙抗11和东8112的最高不定芽分化率分别为93.14%、77.65%、51.76%,每个
     外植体出芽数分别为1.35、1.20、1.08。
    (5)确定了各基因型的不定芽分化培养基。甜l的分化培养基为Ms+Zm岁L BA十0.5m留L
     NAA,309几蔗糖,0.8%琼脂,pHS.8。龙抗11的分化培养基为Ms十0.2m留L
     BA巧00m留L水解酪蛋白,30叭蔗糖,0.8%琼脂,pHS.8。东8112的分化培养基
     为Ms+ZmgzL BA+02mg/LZ,4一D,30叭蔗糖,0.8%琼脂,pHS.8。
    (6)确定了生根培养基为:MS+1m醉NAA十0.25m妙BA+0.1%活性炭,30留L蔗糖,
     0.8%琼脂,pHS.8。
    4.农杆菌介导的遗传转化
     确定不定芽分化阶段双丙氨磷的选择压力:甜l为l.25m留L,东8112为1.om以L,
    龙抗l一为1.omg/L。
    5.转基因植株的分子检测
     经PCR检测,获得EGv基因及DREB IA基因同时为阳性的植株5株。转化频率为
    3 1 .25%。
Stock raising plays a very important role in Heilongjiang Province. Meliorating grazing and improving absorption rate of feedstuff are urgent problems at present in stock raising. Maize as an important feedstuff is of vital concernment in stock raising. Because of its large quantity of cellulose, the digestion rate and absorption rate are seriously affected. Using cellulase as an additive in feedstuff has resolved the problem in certain way but there are still some questions such as low production, instability and high cost of the production.
    In addition, drought, high salt and low temperature stress also lead to reduction of crop production. There is about 6,000,000 hectares salt alkaline soil in Heilongjiang Province. Cultivating the feedstuff plants with drought, salt and temperature resistance can make good use of tilth of our province, and will play an important role in developing our stockbreeding. Therefore, fostering transgenic feedstuff crops with high digestion rate and resistance to low temperature, drought, salt can make tremendous economical and social benefit.
    In this research, the regeneration system of Maize has been established. The main factors affecting maize regeneration are analyzed. Endo-l,4-beta-glucanase V(EGV) gene is cloned and had been constructed into the plant expression vector which contain a transcription factor DREB1A. DREB1A is a transcription factor that can regulate several genes involved in stress reaction. Both of the two genes were transformed into Maize mediated by Agrobacterium. The research work will help to breed the new maize with high drought, salt and low temperature resistance and high maize feedstuff absorption rate.
    The main results were summarized as follows.
    1. Gene clone
    According to the EGV gene sequence in GenBank in 1994, a pair of specific primers was designed, and the EGV gene was cloned from genome DNA of Trichoderma reesei by PCR method. The result of sequence analysis indicated that this fragment showed 100% identity in nucleotide and 100% in amino acid to the previously reported one.
    2. Vector construction
    Bivalent expression vector pAEG29A was constructed, on which EGV gene was regulated by the constitutive promoter Ubi of maize. DREB1A gene was regulated by the rd29A and bar gene as selectable marker.
    3. Establishment of Maize regeneration system
    (1) The order of four main factors on affecting callus tissue type II is: 2, 4-D > BA > L-Pro > CH. The best combination is: MS medium adding 4mg/L 2.4-D, 750mg/L L-Pro and 250mg/LCH.
    
    
    
    (2) Establishing the optimization induction medium of callus tissue II: MS+4mg/L 2.4-D+750mg/L L-Pro+250mg/LCH+250mg/L L-Glu+1 Omg/L AgNO3,30g/L sucrose, 0.8%agar. pH5.8
    (3) Establishing Callus subculture medium : N6 + 2mg/L 2,4-D+ 0.25mg/L BA+ 750mg/L L-Pro+ 250mg/L CH,30g/L sucrose, 0.8% agar, pH5.8. Properly decreasing concentration of 2,4-D to keep the embryonic character of callus tissue and at the same time differentiation of adventitious buds is not affected.
    (4) Differentiation rate of adventitious buds and average number of buds from each explants are different among different genotypes. For the three genotypes Tianl, Longkang and Dong8112, differentiation rate of adventitious buds are 89.97%, 74.92% and 38.53% respectively, average number of buds from each explant are 1.13, 1.02 and 0.69 respectively.
    (5) Establishing adventitious buds differentiation medium of every genotypes. Composition of differentiation medium of Tianl is MS+2mg/L BA+0.5mg/L NAA, 30g/L sucrose., 0.8% agar, pH5.8. That of Longkangll is MS+0.2mg/L BA+500mg/L CH, 30g/L sucrose., 0.8% agar, pH5.8. That of Dong 8112 is MS+2mg/L BA+0.2mg/L 2,4-D,30g/L sucrose, 0.8% agar, pH5.8.
    (6) Establishing the optimization medium of root generation: MS+1mg/L NAA+ 0.25mg/L BA+0.1% active carbon+30g/L sucrose, 0.8% agar, pH5.8.
    4. Transformation into Maize by Agrobacterium-medium method
    Establishing Bialaphos selection pressure in the stage of callus differentiation: Tianl is 1.25 mg/L
引文
1 北京市海淀区东北旺公社试验站玉米单倍体育种协作组 玉米花药培养的研究初报 植物学报,1976,18(2):180-181
    2 陈声.近代工业微生物学(下册).1982.6
    3 陈新爱,夏黎明,岑沛霖.里氏木霉纤维二糖酶bgⅢ基因的cDNA克隆及其在大肠杆菌中的表达.菌物系统,2002,2
    4 陈英 玉米幼胚的组织培养及植株再生的研究 四川大学学报(自然科学版),1999,36(16)
    5 蔡旭 植物遗产育种学.北京科学出版社,1988,165
    6 丁群星等.用子房注射法将毒蛋白基因导入玉米的研究[J].中国科学(B辑),1993,23:707
    7 杜鹃 玉米遗传转化系统的研究进展 遗传,2001,23(1):69-72
    8 傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册.中国科学技术出版社,1994
    9 傅作申等 玉米93供 113-1花药愈伤组织的诱导及再生 吉林农业科学,1994
    10 傅作申等.玉米幼胚愈伤组织诱导及植株再生.玉米科学,1998(3):32~34
    11 付凤玲,朱祯.玉米优良自交系转基因受体系统建立及转化后的筛选与再生 四川农业大学学报,2000,18(2)
    12 高洁等.纤维素科学.北京:科学出版社,1996.
    13 谷明光 花药培养讨论会文集 北京科学出版社,1977,18-26
    14 广西壮族自治区玉米研究所 玉米花药培养的研究 植物学报,197719(2):89-94
    15 黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织DNA的差异.植物学报,1999,25(4):332~338
    16 胡彦民,季良越,韦小敏,袁延乐,党玉丽,王映红.玉米幼胚离体培养的影响因素研究.河南农业大学学报,2000,(34)4
    17 贾士荣等.转基因植物[J],植物学通报,1992,9(2):3~15
    18 蒋思婧 枯草芽孢杆菌寡聚1,6-葡萄糖苷酶基因的克隆及其在大肠杆菌中的表达 微生物学报,2002,42(2)
    19 焦平林,陈萍等.纤维素酶制剂对肉牛增重及奶牛产奶影响的研究.中国饲料,1996,(19):15~17
    20 李世润等.玉米胚性愈伤组织诱导和植株再生的研究[J].山东大学学报,1990,25,116~124
    21 李银心,常凤启,杜立群等.转甜菜碱脱氢酶基因豆瓣菜的耐盐性.植物学报,2000,42(5):480~484
    22 李国圣 玉米从生芽体系的建立及抗除草剂转基因植株再生.中国科学(C辑),2001,31(5)
    23 李效宇 玉米幼穗两种愈伤组织的比较研究.广西植物,18(1):62-64
    
    
    24 梁如玉,杨婉身,冯明镜.纤维素酶水解啤酒糟的研究.微生物学通报,1997,24(3):145~148
    25 陆德如.微生物基因组研究.微生物学报,1997,37(4):323~325
    26 刘大文 转Zm13-Barnase基因玉米的获得及其花粉育性研究 植物学报,2000,42(6):611-615
    27 刘强,赵南明,Yamaguchi.Shinozaki K,Shinozaki K.DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1)
    28 刘强、张勇、陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因.科学通报,2000,45(6):561~566
    29 吕兴有,王贵权.奶牛饲料中添加纤维素酶的效果.黑龙江畜牧兽医,1990,(10):12
    30 母秋华,等.甜玉米细胞和组织培养及其后代育种.吉林农业科学,1994,(2):6~9
    31 齐义鹏.纤维素酶及其应用.成都:四川人民出版社,1980
    32 任健,杨艳,谢明杰,曹文伟.细菌的β-1,4—内切葡聚糖酶基因在酿酒酵母(Saccharomyces cerevisiae)中的表达.微生物学杂志,1997,3
    33 萨姆布鲁克 J,弗里奇E F,曼尼阿蒂斯 T 著.金冬雁等译.分子克隆实验指南(第二版).北京:科学出版社,1992
    34 沈法富,尹承佾.植物基因克隆的方法和策略.大自然探索.1997,16(59):42~47
    35 沈雪亮,夏黎明,刘景晶.浙江大学学报(工学版),2001,6
    36 孙学辉 高赖氨酸基因导入玉米自交系的研究 农业生物技术学报,2001,9(12):156-158
    37 汤章城,余叔文主编.植物生理与分子生物学(第二版).北京,科学出版社,1998,739~751
    38 石太渊等.玉米体细胞培养中不同基因型和外植体的反应.国外农学-杂粮作物.1999,19(5):11~14
    39 孙迎庆,曹淑桂,韩四平.β-葡萄糖苷酶的分离纯化和性质研究.中国生物化学与分子生物学报,1998,14(1):82~86
    40 天津轻工业学院等编.食品生物化学.北京:中国轻工业出版社,1981.64
    41 吴迪,周长梅,朱延明.酚类物质对葡萄遗传转化的影响.园艺学报,2003,30(1):77~78
    42 吴甲林.玉米花药培养自交系杂交组合的产量比较试验 遗传,1988,2(2):23-26
    43 吴甲林.花药培养育成玉米纯系及其杂交组合的试种 中国科学(B辑),1983(2):154-161
    44 王安等.纤维素复合酶在饲料中的作用及应用的研究.东北农业大学学报,1998.29(3):236~251
    45 王关林,方宏筠.植物基因工程原理与技术.北京,科学出版社,1998
    46 王国英等.用基因枪法将Bt毒蛋白基因转入玉米及转基因植株再生[J].中国科学,1995,25(1):71~61
    47 王国英等.几种玉米基因转移技术的研究及转基因植株的获得[J].生物工程学
    
    报.1996,12(1):45~49
    48 王国英,张宏,谢友菊,戴景瑞,米景九.玉米胚性愈伤组织转化及转Bt基因植株的抗虫性.农业生物技术学报,1995,3(3)
    49 王雷等.胚龄和2,4-D浓度对玉米自交系幼胚愈伤组织诱导率的影响.玉米科学,2001,9(3):26~28
    50 王建荣,张曼夫.绿色木霉纤维素酶CBH Ⅱ基因的分子克隆.真菌学报,1994,13(3):235~240
    51 王建荣,张曼夫,黄涛.绿色木霉纤维素酶CBH Ⅱ基因的结构研究.遗传学报,1995,22(1):74~80
    52 王淑军,袁素珍等.纤维素酶酶解稻壳的条件研究.微生物学通报,1995,22(6):354~357
    53 汪天虹,钟玲,王春卉,朱悦.野油菜黄单胞菌S-152内切葡聚糖酶基因在大肠杆菌中的克隆与表达.遗传,1998,5
    54 王景林,高培基.微紫青霉CBH Ⅰ基因(Cbh1)在体外无细胞系统中的表达.中国生物化学与分子生物学报,1999,6
    55 向凤宁 玉米胚愈伤组织的长期继代及其染色体分析 西北植物学报,1991,14(3):157-163
    56 肖志壮,吴志红,王婷,曲音波,高培基,汪天虹.微生物学报,2001,537
    57 肖志壮,王婷,汪天虹,曲音波,高培基.瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达.微生物学报,2001,4
    58 阎伯旭等.纤维素酶分子结构和功能的研究进展.生物化学与生物物理进展,1999,26(3):233~235
    59 杨智源,陈荣忠,杨丰,徐洵.短小芽孢杆菌葡聚糖内切酶基因的克隆及序列测定.微生物学报.,2001,41(1)
    60 袁鹰,刘德璞,郑培和,陈一斌,温钢.东北玉米自交系胚性愈伤组织的诱导.玉米科学,2001,9(1):37~38
    61 原亚萍 用基因枪法将防御素基因转入玉米并再生植株初报 吉林农业大学学报,1997,19(4):113-115
    62 尹清强,陈侠甫.纤维素酶作为饲料添加剂的国内外研究进展.饲料博览,1992,(3):16~17
    63 曾庆平,郭勇.植物的逆境应答与系统抗性诱导.生命的化学,1997,17(3):31~33
    64 张国立.纤维素复合酶半干青贮添加剂新技术及其应用前景.辽宁畜牧兽医,1996,(4):6~7
    65 张红梅,王国英,张中东,董立红.农杆菌介导的玉米遗传转化进展.作物杂志.2000,6
    66 张荣,王国英,张晓红,赵虎基.根癌农杆菌介导的玉米遗传转化体系的建立.农业生物技术学报.2001,9(1):45~48
    67 张晓华,谭蓓英,刘敏雄.一个分解纤维素的瘤胃梭菌新种.微生物学报,
    
    1995.35(6):397~399
    68 赵久然,郭景伦,滕海涛,尉德铭,郭强.玉米转基因研究进展.玉米科学,2000,3(3):14~17
    69 周洪生 甜玉米胚愈伤组织的诱导、继代、植株再生的研究 作物学报,1993,19(1)
    70 邹仪明.植物纤维素化学(第二版)[M].北京:中国轻工业出版社,1995.152~154
    71 中国科学院遗传研-究所组织培养实验室诱导玉米花粉植株的初步研究 遗传学报, 1975,2(2):138-143
    72 Alia kondo Y, Sakamoto A et al. Enhanced tolerance to light stress of transgenic Arbidopsis plant that express the coda gene for a bacterial choline oxidase[J]. Plant Molecular Biology, 1999, (40): 279~288
    73 Antonelli N M. Stadle J.Genomic DNA can be used with cation method, forlrighly efficient transformation of maize protoplasts[J]. Theor Appl Genel, 1990, (80) : 395
    74 Aono M. Paraquat tolerance of transgenic nicotiana tabacum with enchanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol, 1995, 36:1687
    75 Bera C Gene sequence analysis and properties of EGC afamilyE(a) endoglucanase from Fibrobacter succinogends BL2 Microbiol lect, 1996 Feb1,136(1): 79-84
    76 Buttner M,Singh K B. Arabidopsis thaliana ethylene-responsive element binding protein(AtEBP),an ethylene-inducible,GCC box DNA-binding protein interacts with an ocs element binding protein[J].Proc Ntl Acad Sci USA,1997,(94):5961-5966.
    77 Caimi PG, Mccole I M, Kisin T M et al.Cytosolic expression of the Bacillus amyloliquefaciens SacB protein inhibits tissue development in transgenic tobacco and patato[J].The New Phytologist, 1997, (136): 19~28
    78 Cheng M, Joyce E Fry, et al. Genetic transformation of wheat mediated by Agrobacterium tnmefaciens. Plant Physiol. 1997, 115:971~980
    79 Christowp. Strategies for varidty-independent genetil transformation of important cereals[J].Euphytica, 1995, (85) : 13~27
    80 Denman S. Charactoization of a Neocallimastix patriciarum cellulase cDNA(celA) homologos to Trichoderma reesei cellobiohydrolasell Appl Environ Mierobiol 1996, Jun, 62(6): 1889-1896
    81 Drews G N. Bowman J L, Meyerowitz E M.Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product[J].Cell, 1991 ,(65): 991-1002
    82 Durette P L et al. Advancesin Carbohydrate Chem, 1971, (26):490
    83 Elliott R C, Betzner A S,Huttner E, et al.Aintegumenta, an APETALA2-like gene of Arabidopsis with pleiotropic rles in ovule development and foral organ growth[J]. Plant Cell, 1996,(8): 155-168.
    84 Golovkin M V. Production of transgenic maize plants by direct DNA uptake into embryogenic prolplasts[J].Plant Sci, 1993, (90) : 41~45
    85 Grimsley N H.Meristematic tissues of maize plants are most Susce ptibletoagroifection
    
    with maize streak vius [J].Bio/Technology, 1988, (6) : 185~189
    86 Gould L Transformation of Iea may SL.using Agrobacterium tumefaciens and the shoot apex[J] Plant physiol, 1991,(95): 426-434
    87 Goeran et al. Int Symp Wood Pulping chem.1981, (3): 39~42
    88 Gould L. Transformation of Zea mays L.using Agrobacterium tumefaciens and the shoot apex[J]. Plant Physiol, 1991, (95) : 426~434
    89 Gielkens MM Twocellobiohydrolase-encoding genes from Aspergillus niger reguire D-xylose and the xylanolytic transcriptional activator XInR for their expression Appl Environ Microbiol, 1999, Oct,65(10): 4340-4345
    90 Hao D Y, Ohmetakagi M,Sarai A .Unique mode of GCC box recognition by the DNA-binding domain of ethyleneresponsive element-binding factor(ERF domain)in Plant[J].J Biol Chem, 1998,(273): 2657-2661.
    91 Hare P D, Cress W A, Van Stdaden J.Dissecting the roles of osmolyte accumulation during stres[J]. Plant Cell and Environment, 1998, (21): 535~553
    92 Hayashi J et al. J Polym. Sci, 1975, (13):236
    93 Hici Y, Ohca S, Komari T, Kumasho T. Efficient transformation of rice mediated by Agrobacterium and sequence analsis of the boundaries of the T-DNA. the Plant Journal.1994, 6:271~282
    94 Hodges T K, Kamo K K, Imbrie C W, Becwar M R.. Genotype specificity of so matic embryogenesis and regeneration in maize [J].Bio Tech nol. 1986, 4:219~223
    95 Hodges T K, et al. In; Biotechnology in plant Science, Relevance to Agriculture in the Eighties. [M].Zaitlin M, et al .eds. Academic Press, INC. 1985.15~34
    96 Hirofumi okada Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414 Environ Microbiol,February,1998,64(2): 555-563
    97 Ishida Y.Iligh efficiency transformation of maize mediated by Agrobacterium tumefaciens [J]. Nature Biotech. 1996. 14:745~750
    98 Jaglo-Ottosen K R, Gilmour S J,Zarka D G, et al-Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance[J].Cell, 1991 ,(65):991-1002.
    99 Jones D W. J Polym Sci, 1958, (32):371
    100 Jules J., et al. Plant breeding rev [J].New York: John wiley& Sons. Ins. Volume 1995, 13:235~264
    101 Kasuga M. Liu Q,Miura S et al.Improving plant drought.salt,and freezing tolerance by gene transfer of a single stress inducible transcription factor [J]. Nature Biltechnology, 1999.(17):287-292.
    102 Kaeppler Ⅱ F. Silicom carbide fiber- mediated stable transformation of plant cells [J] Theor Appl Genet. 1992, (84) : 560~566
    103 Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing
    
    tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 1999, (17): 287~292
    104 Kiegerl, S, Cardinale, F, Siligan, C, Gross, A, Baudouin, E, Liwosz, A, Eklof, S, Till, S, Bogre, L., Hirt, H., and Meskiene, I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell, 2000, (12): 2247~2258
    105 Klein T M et al. Factors influencing gene delivety into zea mays cell by high velocity microjectiles [J].Bio. Technology.1986, 559~563
    106 Klein TM.Genetic trans form ationo fmaizecell sparti clebombar dment[J].Plant Physiol, 1989, 91: 440~444
    107 Klucher K M, Chow H, Reiser L, et al. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996, 8:137~153
    108 Koziel M G. Field penonnance of elite transgenic maize plant expressing an insecticidal protein derived from Bacillns thuringiensis[J]. Bio/Technolgy,., 1993, (11): 194
    109 Leon-Kloosterziel K M,Keijzer C J, Koornneef M.A seed shape mutant of Arabidopsis that is affected in integument development[J].Plant Cell, 1994,(6): 3895-392.
    110 Lee J H, Van Montagu M, Verbruggen N. A highly conserved kinase is an essential component of stress tolerance in yeast and plant cells. Proc NaCl Acad Sci USA, 1999, 96(10): 5873~5877
    111 Leubnermetzger G, Petruzzelli L, Waldvogel R et al. Ethylene-responsive element binding protein (DREBP) expression and the transcriptional regulation of class Ⅰ bata-1, 3-glucanase during tobacco seed germination. Plant Mol Biol, 1998, (38): 785~795
    112 Linshce et al. Ferment Technol.1979, 57 (3): 163~168
    113 Liu Q, Kasuga M, Sakuma Y et al. Two transcription factors, DREB1 and DREB2, with an DREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression in Arabidopsis. Plant Cell. 1998, (10): 1391~1406
    114 Marchessault R H, et al.Advancesin Carbohydrate Chem, 1967, (22):421
    115 Mikolajczyk, M., Olubunmi, S.A., Muszynska, G., Klessig, D.F., and Dobrowolska, G.. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 2000, (12): 165~178.
    116 Moose S P, Sisco P H, Glossy15, an APETALA2-like gene from maize that regulates lesf epidermal cell identity. Genes & Development. 1996, (10): 3018~3027
    117 Mittendory V Cloning of an endo-(1->4)-beta-glucanase gene,CelA,from the rumenbecterium Clostridium sp(c,longisporm) and characterization of its product CelA, in Escherichia coil J Gen Microbiol, 1993 Dec,139(pt12): 3233-3242
    118 Ni Colai Peitersen. biotechnol. Bioeng. 1975, 17(3):361
    
    
    119 Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995, (7): 173~182
    120 Percival E G V. Structural Carbohydrate Chem. London: J Garnet Miller Ltd.1962, 1~63
    121 Reese E T, et al. Biotechnol Bioeng Symposium, 1976, (6):9~20
    122 Richmond T, Shauna S. Chasing the dream: Plant Est Microarrays. Curr Opin Plant Biol, 2000, 3(2): 108~116
    123 Rontein D, Basset G, Hanson AD. Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng Jan2002, 4(1):49~56
    124 Rhodes D, Hanso AD Quaternary ammonium and teritiary sulfonium compounds in higher plant[J] Annu Rev Plant Physiol plant MolBiol, 1993(44): 357-384
    125 Sabi N.Transient and stable electrotransformations of intact black Mexican sweet maize cells are obtained after preplasmosis[J]. Plant Cell Rep. 1996, (15) : 924~928
    126 Sanford J C, et al. Particulate. Sei. technol. 1987, (5): 27~37.
    127 Sasaki T Song J Koga-Ban Y et al. Toward cataloguing all rice callus cDNA library. Plant J. 1994, (6): 615~624
    128 Schalpppi M, Hohn B Competece of immatur maize embryos for Agrobacterium-mediated geng transfer[J] Plant Cell, 1992,(4): 7-16
    129 Shoem aker S R et al. Biochem et biophysica Acta 1981 (523): 147~161
    130 Spender T M, Segregation of trans gene sin maize [J].Plant Molec. Biol. 1992, 18:201~210
    131 Sukhapind K, et al. Transf or mation of maize(Zea mays L.)protoplasts and regeneration of haploid transgenic plants [J].Plant cell rep. Berlin, W. Ger. Springer International.1993.13(2): 63~68.
    132 Sprey B, Lambert C Titration curbes of cellulases from Trichoderma reesei: demonstration of cellulasexylanase- β-glucosidase containing complex,FEMS Microbiol,1983(18): 217-222
    133 Sumitomo N, Ozaki K, Kawai S, et al. Biosci Biotech Biochem , 1992, 56:872~877
    134 Vain P.Osmotic teatment enhances particle bombardment-mediated transient and stable transformation of maize[J].Plant Cell Rep, 1993, (12): 84~88
    135 Walters D, et al. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants [J].Plant Molecular Biology. 1992, 18:189~200
    136 Weigel D. The APETALA2 domain is related to a novel type of DNA binging domain. Plant Cell. 1995, 388~389
    137 Yamaguchi-Shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 1992, (33): 217~224
    
    
    138 Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature or high-salt stress.Plant Cell.1994, (6): 251~264
    139 Yueqiu H. An improved protocol for fungal DNA preparation Mycosystema. 2000, 19(3): 434
    140 Zhang S Characterization of a Thermomonospora fusca exocellulase Biochemistry, 1995, Mar,14;34(10): 3386-3395
    141 Zhou J M, Tang X Y, Martin G B. The Pro kinase conferring resistance to tomato bacterisl speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997, (16): 3207~3218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700